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Main Contribution

* The authors combine a graphic model and a
discriminative model and apply it in a sequential
learning setting.

— Graphic models: better at interpreting data, worse
performance

— Discriminative models: better performance,
unintelligible working mechanism




SVM

» SVM officially proposed as a QP problem

Find w, ¢
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SVM (2)

« Having learned w, our discriminant function is defined as
h(x) = sign(w*x + b)

» One way to extend binary to multiclass SVM is to train a
weight vector w for each class, and

h(x) = argmax, (w,*x + b,), r= 1.k




SVM (3)

* Multiclass SVM (Crammer & Singer)
I.lll.f-l.lgi % 5||,‘|||'||::j + Z &

=1

subject to 1 Wi,y M, ¥ +dy . — M, T 21§

where M is the matrix with w, (M,) as row vectors

» Scaling problem
This QP problem might be much harder to solve. Platt
proposed Sequential Minimal Optimization (SMO) to
speed up the training.

Problem Setting

» Multi-class Sequential Supervised Learning

— Training example: (X,Y) where
+ X=(xy, ..., X7) is @ sequence of feature vectors
* Y =(y,, ..., Yr) is @ matching sequence of class labels

— Goal: Given new X, predict new Y
« We work on OCR data, e.g.
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Problem Setting (2)

The task is to learn a function & : ' — ) from a training set
S ={x"y" =t(x")}, where Y =Y x...x Y, with
Vi = {y1,---, ¥k} Given n basis function f; : X x ¥ -+ R,
h,, is defined as:
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Note that # of assignments to y is exponential (k). Both
representing f, and solving the above argmax are infeasible

Graphic Model

Pairwise Markov network
— Defined as a graph G = (Y, E); each edge (i,j) associated with a
potential W;(x,yi,yj).
— Encodes a jointcpd P(y | x) o [T yerm i (X, yi, v5)
— Captures interactions between Y’s compactly
— Given cpd, intuitively we want to take
argmax, P(y | x)
as our prediction.




Unifying Markov Network and SVM

Markov network distribution is a log-linear model

Potential ¥;(x,y;y;) can be represented (in log-space) a sum of
basis functions over x, y; and y;.

ij (¢, ¥i, Hj) =exp Y-, wefr(x v ui)] = exp [wf(x, i, )]
If we define fi(x,y)= > fe(x,vi,u;)
(id)EE
We end up with

argmax, P(y | x) = argmax, w f(x, y)

Formulating SVM

Single-label Multi-class SVM

maximize -y
st. |w||=1; w Afe(y) >v, Yy #t(x), Vx€S
where Af,(y) = f(x,t(x)) — f(x,y)}

This is essentially the same as constraining the
margin to be a constant and minimize ||w||




Formulating SVM (2)

e y-multi-label margin: yAt,(y)
where Atx(y) = .1, Iy # (£(x)):)
« Multi-label SVM

maximize -y
st |lwll=1; W Af(y) > 7 Ate(y), Vy, Vxe S

* The result of using # of individual labeling errors as loss
function.

* The QP form:
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minimize

Formulating SVM (3)

« Final form (w/ slack variables)
T
. W w
min 5 +C ;Ex ;
st w! Af(y) > Atx(y) — &, Yx,y,
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* Its dual formulation
max an(y);\tx(y)
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s.t. Z(‘lx(y) =C,Vx; ax(y) = 0,¥x,¥y. (6)
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SMO learning of M3 Networks

+ SMO is an efficient algorithm solving QP
problems, it has three components

— An analytic method to solve two Lagrangian
multipliers subproblems

— A heuristic for choosing which multipliers to optimize
— A method for computing b

» We explore the structure of the dual form and
propose how to do SMO learning on M3
networks

Generalization Error Bound

+ A theoretical analysis to relate training error to testing
(generalization) error.
» Average per label loss
L(w,x) = Aty (argmaxy w ' fi(y))
* y-margin per-label loss
Ll (w,x) = sup lf_\tx(arg max z(y))

= |2y)—w T fely)|<vAte(y): Yy l

+ Theorem 6.1 ...there exists a constant K, the following
holds with probability 1- &
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Experiments

» We select a subset of ~6100 handwritten words, with
average length of ~8 characters, from 150 human
subjects

» Each word is divided into characters, rasterized into
16x8 images

+ 26-class problem: {a..z}
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Experiments (2)
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LR - independent-labeling; trained on conditional likelihood
— CRF - sequential-labeling; links between yi and yi+1

— SVMs - linear, quadratic and cubic kernels

Multi-class SVM — independent-labeling




