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Main Contribution

• The authors combine a graphic model and a 
discriminative model and apply it in a sequential 
learning setting.
– Graphic models: better at interpreting data, worse 

performance
– Discriminative models: better performance, 

unintelligible working mechanism
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SVM

• SVM officially proposed as a QP problem

• Schematic plot

SVM (2)

• Having learned w, our discriminant function is defined as
h(x) = sign(w·x + b)

• One way to extend binary to multiclass SVM is to train a 
weight vector w for each class, and 

h(x) = argmaxr (wr*x + br), r = 1..k
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SVM (3)

• Multiclass SVM (Crammer & Singer)

where M is the matrix with wr (Mr) as row vectors

• Scaling problem
This QP problem might be much harder to solve. Platt 
proposed Sequential Minimal Optimization (SMO) to 
speed up the training. 

Problem Setting

• Multi-class Sequential Supervised Learning 
– Training example:  (X,Y) where

• X = (x1, …, xT) is a sequence of feature vectors
• Y = (y1, …, yT) is a matching sequence of class labels

– Goal: Given new X, predict new Y
• We work on OCR data, e.g.
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Problem Setting (2)

• The task is to learn a function                  from a training set 
, where                  with    

. Given n basis function                             , 
hw is defined as:

• Note that # of assignments to y is exponential (kl ). Both 
representing fj and solving the above argmax are infeasible

Graphic Model

• Pairwise Markov network
– Defined as a graph G = (Y, E); each edge (i,j) associated with a

potential Ψij(x,yi,yj).
– Encodes a joint cpd 
– Captures interactions between Y’s compactly
– Given cpd, intuitively we want to take

argmaxy P(y | x)
as our prediction.
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Unifying Markov Network and SVM

• Markov network distribution is a log-linear model
• Potential Ψij(x,yi,yj) can be represented (in log-space) a sum of 

basis functions over x, yi and yj.

• If we define 

We end up with

argmaxy P(y | x) = argmaxy wT f(x, y)

Formulating SVM

• Single-label Multi-class SVM

where

• This is essentially the same as constraining the 
margin to be a constant and minimize ||w||
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Formulating SVM (2)

• γ-multi-label margin: 
where

• Multi-label SVM

• The result of using # of individual labeling errors as loss 
function.

• The QP form:

Formulating SVM (3)

• Final form (w/ slack variables)

• Its dual formulation



7

SMO learning of M3 Networks

• SMO is an efficient algorithm solving QP 
problems, it has three components
– An analytic method to solve two Lagrangian 

multipliers subproblems
– A heuristic for choosing which multipliers to optimize
– A method for computing b

• We explore the structure of the dual form and 
propose how to do SMO learning on M3

networks

Generalization Error Bound

• A theoretical analysis to relate training error to testing 
(generalization) error.

• Average per label loss 

• γ-margin per-label loss

• Theorem 6.1  …there exists a constant K, the following 
holds with probability 1-
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Experiments

• We select a subset of ~6100 handwritten words, with 
average length of ~8 characters, from 150 human 
subjects

• Each word is divided into characters, rasterized into 
16x8 images

• 26-class problem: {a..z}

Experiments (2)

• Result

– LR – independent-labeling; trained on conditional likelihood
– CRF – sequential-labeling; links between yi and yi+1
– SVMs – linear, quadratic and cubic kernels
– Multi-class SVM – independent-labeling


