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Abstract

Machine Learning research has been making great progress in many directions� This article summarizes four of
these directions and discusses some current open problems� The four directions are �a� improving classi�cation
accuracy by learning ensembles of classi�ers� �b� methods for scaling up supervised learning algorithms� �c�
reinforcement learning� and �d� learning complex stochastic models�

� Introduction

The last �ve years have seen an explosion in machine learning research� This explosion has many causes� First� sep�
arate research communities in symbolic machine learning� computational learning theory� neural networks� statistics�
and pattern recognition have discovered one another and begun to work together� Second� machine learning tech�
niques are being applied to new kinds of problems including knowledge discovery in databases� language processing�
robot control� and combinatorial optimization as well as in more traditional problems such as speech recognition�
face recognition� handwriting recognition� medical data analysis� game playing� and so on�

In this article� I have selected four topics within machine learning where there has been a lot of recent activity�
The purpose of the article is to describe the results in these areas to a broader AI audience and to sketch some of
the open research problems� The topic areas are �a� ensembles of classi�ers� �b� methods for scaling up supervised
learning algorithms� �c� reinforcement learning� and �d� learning complex stochastic models�

The reader should be cautioned that this article is not a comprehensive review of each of these topics� Rather�
my goal is to provide a representative sample of the research in each of these four areas� In each of the areas� there
are many other papers that describe relevant work� I apologize to those authors whose work I was unable to include
in the article�

� Ensembles of Classi�ers

The �rst topic concerns methods for improving accuracy in supervised learning� I begin by introducing some notation�
In supervised learning� a learning program is given training examples of the form f�x�� y��� � � � � �xm� ym�g for some
unknown function y � f�x�� The xi values are typically vectors of the form hxi��� xi��� � � � � xi�ni whose components
are discrete� or real�valued such as height� weight� color� age� and so on� These are also called the features of xi� I
will use the notation xij to refer to the j�th feature of xi� In some situations� I will drop the i subscript when it is
implied by the context�

The y values are typically drawn from a discrete set of classes f	� � � � �Kg in the case of classi�cation or from the
real line in the case of regression� In this article� I will focus primarily on classi�cation� The training examples may
be corrupted by some random noise�

Given a set S of training examples� a learning algorithm outputs a classi�er� The classi�er is an hypothesis about
the true function f � Given new x values� it predicts the corresponding y values� I will denote classi�ers by h�� � � � � hL�

An ensemble of classi�ers is a set of classi�ers whose individual decisions are combined in some way �typically
by weighted or unweighted voting� to classify new examples� One of the most active areas of research in supervised
learning has been to study methods for constructing good ensembles of classi�ers� The main discovery is that
ensembles are often much more accurate than the individual classi�ers that make them up�

An ensemble can be more accurate than its component classi�ers only if the individual classi�ers disagree with one
another �Hansen 
 Salamon� 	����� To see why� imagine that we have an ensemble of three classi�ers fh�� h�� h�g
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Figure 	 The probability that exactly � �of �	� hypotheses will make an error� assuming each hypothesis has an
error rate of ��� and makes its errors independently of the other hypotheses�

and consider a new case x� If the three classi�ers are identical� then when h��x� is wrong� h��x� and h��x� will also
be wrong� However� if the errors made by the classi�ers are uncorrelated� then when h��x� is wrong� h��x� and h��x�
may be correct� so that a majority vote will correctly classify x� More precisely� if the error rates of L hypotheses h�
are all equal to p � 	�� and if the errors are independent� then the probability that the majority vote will be wrong
will be the area under the binomial distribution where more than L�� hypotheses are wrong� Figure 	 shows this for
a simulated ensemble of �	 hypotheses� each having an error rate of ���� The area under the curve for 		 or more
hypotheses being simultaneously wrong is ������ which is much less than the error rate of the individual hypotheses�

Of course� if the individual hypotheses make uncorrelated errors at rates exceeding ���� then the error rate of the
voted ensemble will increase as a result of the voting� Hence� the key to successful ensemble methods is to construct
individual classi�ers with error rates below ��� whose errors are at least somewhat uncorrelated�

��� Methods for Constructing Ensembles

Many methods for constructing ensembles have been developed� Some methods are general� and they can be applied
to any learning algorithm� Other methods are speci�c to particular algorithms� We begin by reviewing the general
techniques�

����� Subsampling the Training Examples

The �rst method manipulates the training examples to generate multiple hypotheses� The learning algorithm is
run several times� each time with a di�erent subset of the training examples� This technique works especially well
for unstable learning algorithms�algorithms whose output classi�er undergoes major changes in response to small
changes in the training data� Decision�tree� neural network� and rule learning algorithms are all unstable� Linear
regression� nearest neighbor� and linear threshold algorithms are generally very stable�

The most straightforward way of manipulating the training set is called bagging� On each run� bagging presents
the learning algorithm with a training set that consists of a sample of m training examples drawn randomly with
replacement from the original training set of m items� Such a training set is called a bootstrap replicate of the original
training set� and the technique is called bootstrap aggregation �from which the term bagging is derived� Breiman�
	���a�� Each bootstrap replicate contains� on the average� ����� of the original training set� with several training
examples appearing multiple times�
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Table 	 The AdaBoost�M� algorithm� The formula ��E�� is 	 if E is true and � otherwise�

Input� a set S� of m labeled examples� S � f�xi� yi�� i � �� �� � � � �mg�
labels yi � Y � f�� � � � �Kg
Learn �a learning algorithm�
a constant L	


�� initialize for all i� w��i� �� ��m initialize the weights


�� for � � � to L do


�� for all i� p��i� �� w��i���
P

i
w��i�� compute normalized weights


� h� �� Learn�p�� call Learn with normalized weights�


�� �� ��
P

i
p��i�

h��xi� �� yi�� calculate the error of h�


�� if �� � ��� then


�� L �� �� �

�� goto ��


��� �� �� ����� � ���


��� for all i� w����i� �� w��i��
����h��xi���yi��
�

compute new weights


��� end for


��� Output� hf �x� � argmax
y�Y

LX
���

�
log

�

��

�


h��x� � y��

Another training set sampling method is to construct the training sets by leaving out disjoint subsets of the
training data� For example� the training set can be randomly divided into 	� disjoint subsets� Then 	� overlapping
training sets can be constructed by dropping out a di�erent one of these 	� subsets� This same procedure is employed
to construct training sets for 	��fold cross�validation� so ensembles constructed in this way are sometimes called cross�
validated committees �Parmanto� Munro� 
 Doyle� 	�����

The third method for manipulating the training set is illustrated by the AdaBoost algorithm� developed by
Freund and Schapire �	���� 	���� and shown in Table 	� Like bagging�AdaBoostmanipulates the training examples
to generate multiple hypotheses� AdaBoostmaintains a probability distribution p��x� over the training examples� In
each iteration �� it draws a training set of size m by sampling with replacement according the probability distribution
p��x�� The learning algorithm is then applied to produce a classi�er h�� The error rate �� of this classi�er on the
training examples �weighted according to p��x�� is computed and used to adjust the probability distribution on the
training examples� �In Table 	� note that the probability distribution is obtained by normalizing a set of weights
w��i� over the training examples��

The e�ect of the change in weights is to place more weight on training examples that were misclassi�ed by h� and
less weight on examples that were correctly classi�ed� In subsequent iterations� therefore� AdaBoost constructs
progressively more di�cult learning problems�

The �nal classi�er� hf � is constructed by a weighted vote of the individual classi�ers� Each classi�er is weighted
according to its accuracy for the distribution p� that it was trained on�

In line � of the AdaBoost algorithm� the base learning algorithm Learn is called with the probability distribution
p�� If the learning algorithm Learn can use this probability distribution directly� then this generally gives better
results� For example� Quinlan �	���� developed a version of the decision�tree learning program C��� that works with
a weighted training sample� His experiments showed that it worked extremely well� One can also imagine versions of
backpropagation that scaled the computed output error for training example �xi� yi� by the weight p��i�� Errors for
�important� training examples would cause larger gradient descent steps than errors for unimportant �low�weight�
examples�

On the other hand� if the algorithm cannot use the probability distribution p� directly� then a training sample
can be constructed by drawing a random sample with replacement in proportion to the probabilities p�� This makes
AdaBoost more stochastic� but experiments have shown that this procedure is still very e�ective�

Figure � compares the performance of C��� to C��� with AdaBoost�M� �using random sampling�� One point is
plotted for each of �� test domains taken from the Irvine repository of machine learning databases �Merz 
 Murphy�
	����� We can see that most points lie above the line y � x� which indicates that the error rate of AdaBoost is less
than the error rate of C���� Figure � compares the performance of bagging �with C���� to C��� alone� Again� we see
that bagging produces sizeable reductions in the error rate of C��� for many problems� Finally� Figure � compares
bagging with boosting �both using C��� as the underlying algorithm�� The results show that the two techniques are
comparable� although boosting appears still to have an advantage over bagging�
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Figure � Comparison of AdaBoost�M� �applied to C���� with C��� by itself� Each point represents one of �� test
domains� Points lying above the diagonal line exhibit lower error with AdaBoost�M� than with C��� alone� Based
on data from Freund 
 Schapire �	����� Up to 	�� hypotheses were constructed�
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Figure � Comparison of bagging �applied to C���� with C��� by itself� Each point represents one of �� test domains�
Points lying above the diagonal line exhibit lower error with bagging than with C��� alone� Based on data from
Freund 
 Schapire �	����� Bagging voted 	�� classi�ers�
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Figure � Comparison of bagging �applied to C���� with AdaBoost�M� �applied to C����� Each point represents
one of �� test domains� Points lying above the diagonal line exhibit lower error with boosting than with bagging�
Based on data from Freund 
 Schapire �	�����

����� Manipulating the Input Features

A second general technique for generating multiple classi�ers is to manipulate the set of input features available to the
learning algorithm� For example� in a project to identify volcanoes on Venus� Cherkauer �	���� trained an ensemble
of �� neural networks� The �� networks were based on � di�erent subsets of the 		� available input features and
� di�erent network sizes� The input feature subsets were selected �by hand� to group together features that were
based on di�erent image processing operations �such as principal component analysis and the fast fourier transform��
The resulting ensemble classi�er was able to match the performance of human experts in identifying volcanoes�
Tumer and Ghosh �	���� applied a similar technique to a sonar dataset with �� input features� However� they found
that deleting even a few of the input features hurt the performance of the individual classi�ers so much that the
voted ensemble did not perform very well� Obviously� this technique only works when the input features are highly
redundant�

����� Manipulating the Output Targets

A third general technique for constructing a good ensemble of classi�ers is to manipulate the y values that are given
to the learning algorithm� Dietterich 
 Bakiri �	���� describe a technique called error�correcting output coding�
Suppose that the number of classes� K� is large� Then new learning problems can be constructed by randomly
partioning the K classes into two subsets A� and B�� The input data can then be re�labeled so that any of the
original classes in set A� are given the derived label � and the original classes in set B� are given the derived label
	� This relabeled data is then given to the learning algorithm� which constructs a classi�er h�� By repeating this
process L times �generating di�erent subsets A� and B��� we obtain a ensemble of L classi�ers h�� � � � � hL�

Now given a new data point x� how should we classify it� The answer is to have each h� classify x� If h��x� � ��
then each class in A� receives a vote� If h��x� � 	� then each class in B� receives a vote� After each of the L classi�ers
has voted� the class with the highest number of votes is selected as the prediction of the ensemble�

An equivalent way of thinking about this method is that each class j is encoded as an L�bit codeword Cj � where
bit � is 	 if and only if j � B�� The ��th learned classi�er attempts to predict bit � of these codewords� When the L
classi�ers are applied to classify a new point x� their predictions are combined into an L�bit string� We then choose
the class j whose codeword Cj is closest �in Hamming distance� to the L�bit output string� Methods for designing
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Table � Results on Five Domains �best error rate in boldface�

Test set ����fold ����fold
Task size C	� bootstrap C	� random C	�
Vowel �� �	���� �	���� ����	��

Soybean ��� �	���� ���
�� �	����
Part�of�Speech ���� �	���� ���	�� �	����a

NETtalk ��� �	���� �	������� ��������

Letter Recognition ��� �	���� �	������� ���������

Di�erence from C	� signi�cant at p 	 ������ ��������� a����fold random	

good error�correcting codes can be applied to choose the codewords Cj �or equivalently� subsets A� and B���
Dietterich and Bakiri report that this technique improves the performance of both the C��� and backpropagation

algorithms on a variety of di�cult classi�cation problems� Recently� Schapire �	���� has shown how AdaBoost

can be combined with error�correcting output coding to yield an excellent ensemble classi�cation method that he
calls AdaBoost�OC� The performance of the method is superior to the ECOC method �and to bagging�� but
essentially the same as another �quite complex� algorithm� called AdaBoost�M�� Hence� the main advantage of
AdaBoost�OC is implementation simplicity It can work with any learning algorithm for solving ��class problems�

Ricci and Aha �	���� applied a method that combines error�correcting output coding with feature selection�
When learning each classi�er� h�� they apply feature selection techniques to choose the best features for learning that
classi�er� They obtained improvements in � out of 	� tasks with this approach�

����� Injecting Randomness

The last general purpose method for generating ensembles of classi�ers is to inject randomness into the learning
algorithm� In the backpropagation algorithm for training neural networks� the initial weights of the network are set
randomly� If the algorithm is applied to the same training examples but with di�erent initial weights� the resulting
classi�er can be quite di�erent �Kolen 
 Pollack� 	��	��

While this is perhaps the most common way of generating ensembles of neural networks� manipulating the training
set may be more e�ective� A study by Parmanto� Munro� and Doyle �	���� compared this technique to bagging
and to 	��fold cross�validated committees� They found that cross�validated committees worked best� bagging second
best� and multiple random initial weights third best on one synthetic data set and two medical diagnosis data sets�

For the C��� decision tree algorithm� it is also easy to inject randomness �Kwok 
 Carter� 	����� The key decision
of C��� is to choose a feature to test at each internal node in the decision tree� At each internal node� C��� applies
a criterion known as the information gain ratio to rank�order the various possible feature tests� It then chooses the
top�ranked feature�value test� For discrete�valued features with V values� the decision tree splits the data into V
subsets� depending on the value of the chosen feature� For real�valued features� the decision tree splits the data into
� subsets� depending on whether the value of the chosen feature is above or below a chosen threshold� Dietterich

 Kong �	���� implemented a variant of C��� that chooses randomly �with equal probability� among the top ��
best tests� Table � compares a single run of C��� to ensembles of ��� classi�ers constructed by bagging C��� and by
injecting randomness into C���� The results show that injecting randomness obtains the best performance in three
of the domains� In particular� notice that injected randomness obtains perfect test set performance in the letter
recognition task�

Ali 
 Pazzani �	���� injected randomness into the FOIL algorithm for learning Prolog�style rules� FOIL works
somewhat like C��� in that it ranks possible conditions to add to a rule using an information�gain criterion� Ali and
Pazzani computed all candidate conditions that scored within ��� of the top�ranked candidate� and then applied
a weighted random choice algorithm to choose among them� They compared ensembles of 		 classi�ers to a single
run of FOIL and found statistically signi�cant improvements in 	� out of �� tasks and statistically signi�cant loss of
performance in only one task� They obtained similar results using 		�fold cross�validation to construct the training
sets�

Raviv and Intrator �	���� combine bootstrap sampling of the training data with injecting noise into the input
features for the learning algorithm� To train each member of an ensemble of neural networks� they draw training
examples with replacement from the original training data� The x values of each training example are perturbed by
adding Gaussian noise to the input features� They report large improvements in a synthetic benchmark task and a
medical diagnosis task�

A method closely related to these techniques for injecting randomness is the Markov Chain Monte Carlo �MCMC�
method� which has been applied to neural networks by MacKay �	���� and Neal �	���� and to decision trees by
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Chipman� George and McCulloch �	����� The basic idea of the MCMC method �and related methods� is to construct
a Markov process that generates an in�nite sequence of hypotheses h�� In a Bayesian setting� the goal is to generate
an hypothesis h� with probability P �h�jS�� where S is the training sample� P �h�jS� is computed in the usual way
as the �normalized� product of the likelihood P �Sjh�� and the prior probability P �h�� of h�� To apply MCMC� we
de�ne a set of operators that convert one h� into another� For a neural network� such an operator might adjust one
of the weights in the network� In a decision tree� the operator might interchange a parent and a child node in the
tree or replace one node with another� The MCMC process works by maintaining a current hypothesis h�� At each
step� it selects an operator� applies it �to obtain h����� and then computes the likelihood of the resulting classi�er
on the training data� It then decides whether to keep h��� or discard it and go back to h�� Under various technical
conditions� it is possible to prove that a process of this kind will eventually converge to a stationary probability
distribution in which the h��s are sampled in proportion to their posterior probabilities� In practice� it can be
di�cult to tell when this stationary distribution is reached� A standard approach is to run the Markov process for
a long period �discarding all generated classi�ers� and then collect a set of L classi�ers from the Markov process�
These classi�ers are then combined by weighted vote according to their posterior probabilities�

����� Algorithm�Speci	c Methods for Generating Ensembles

In addition to these general�purpose methods for generating diverse ensembles of classi�ers� there are several tech�
niques that can be applied to the backpropagation algorithm for training neural networks�

Rosen �	���� trains several neural networks simultaneously and forces the networks to be diverse by adding a
correlation penalty to the error function that backpropagation minimizes� Speci�cally� during training� Rosen keeps
track of the correlations in the predictions of each network� He applies backpropagation to minimize an error function
that is a sum of the usual squared output prediction error and a term that measures the correlations with the other
networks� He reports substantial improvements in three simple synthetic tasks�

Opitz and Shavlik �	���� take a similar approach� but they employ a kind of genetic algorithm to search for a
good population of neural network classi�ers� In each iteration� they apply genetic operators to the current ensemble
to generate new network topologies� These are then trained using an error function that combines the usual squared
output prediction error with a multiplicative term that incorporates the diversity of the classi�ers� After training the
networks� they prune the population to retain the N best networks using a criterion that considers both accuracy
and diversity� In a comparison with bagging� they found that their method gave excellent results in four real�world
domains�

Abu�Mostafa �	���� and Caruana �	���� describe a technique for training a neural network on auxiliary tasks
as well as on the main task� The key idea is to add some output units to the network whose role is to predict the
values of the auxiliary tasks and to include the prediction error for these auxiliary tasks in the error criterion that
backpropagation seeks to minimize� Because these auxiliary output units are connected to the same hidden units
as the primary task outputs� the auxiliary outputs can in uence the behavior of the network on the primary task�
Parmanto� et al� �	���� show that diverse classi�ers can be learned by training on the same primary task but with
many di�erent auxiliary tasks� One good source of auxiliary tasks is to have the network attempt to predict one of
its input features �in addition to the primary output task�� They apply this method to medical diagnosis problems�

More recently� Munro and Parmanto �	���� have developed an approach in which the value of the auxiliary
output is determined dynamically by competition among the set of networks� Each network has a primary output y
and a secondary �auxiliary� output z� During training� each network looks at the training example xi and computes
its primary and secondary output predictions� The network whose secondary output prediction is highest is said to
be the �winner� for this example� It is given a target value for z of 	� the remaining networks are given a target
value of � for the secondary output� All networks are given the value yi as the target for the primary output� The
e�ect is to encourage di�erent networks to become experts at predicting the secondary output z in di�erent regions
of the input space� Because the primary and secondary outputs share the hidden layer� this causes the errors in the
primary outputs to become decorrelated� They show that this method substantially out�performs an ensemble of
ordinary networks trained using di�erent initial random weights when trained on a synthetic classi�cation task�

In addition to these methods for training ensembles of neural networks� there are also methods that are speci�c
to decision trees� Buntine �	���� developed an algorithm for learning option trees� These are decision trees where
an internal node may contain several alternative splits �each producing its own sub�decision tree�� To classify an
example� each of these sub�decision trees is evaluated� and the resulting classi�cations are voted� Kohavi 
 Kunz
�	���� describe an option tree algorithm and compare its performance to bagged C��� trees� They show that option
trees generally match the performance of bagging while producing a much more understandable result�

This completes my review of methods for generating ensembles using a single learning algorithm� Of course�
one can always generate an ensemble by combining classi�ers constructed by di�erent learning algorithms� Learning
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algorithms based on very di�erent principles will probably produce very diverse classi�ers� However� often some
of these classi�ers perform much worse than others� Furthermore� there is no guarantee of diversity� Hence� when
classi�ers from di�erent learning algorithms are combined� they should be checked �e�g�� by cross�validation� for
accuracy and diversity� and some form of weighted combination should be used� This approach has been shown to
be e�ective in some applications �e�g�� Zhang� Mesirov� 
 Waltz� 	�����

��� Methods for Combining Classi�ers

Given that we have trained an ensemble of classi�ers� how should we combine their individual classi�cation decisions�
Many methods have been explored� They can be subdivided into unweighted vote� weighted vote� and gating networks�

The simplest approach is to take an unweighted vote as is done in bagging� ECOC� and many other methods�
While it may appear that more intelligent voting schemes should do better� the experience in the forecasting literature
has been that simple� unweighted voting is very robust �Clemen� 	����� One re�nement on simple majority vote
is appropriate when each classi�er h� can produce class probability estimates rather than a simple classi�cation
decision� A class probability estimate for data point x is the probability that the true class is k P �f�x� � kjh���
for k � 	� � � � �K� We can combine the class probabilities of all of the hypotheses so that the class probability of the
ensemble is P �f�x� � k� � �

L

PL
��� P �f�x� � kjh��� The predicted class of x is then the class having the highest

class probability�
Many di�erent weighted voting methods have been developed for ensembles� For regression problems� Perrone


 Cooper �	���� and Hashem �	���� apply least squares regression to �nd weights that maximize the accuracy of
the ensemble on the training data� They show that the weight applied to h� should be inversely proportional to the
variance of the estimates of h�� A di�culty with applying linear least squares is that the various hypotheses h� can
be very highly correlated� They describe methods for choosing less correlated subsets of the ensemble and combining
them by linear least squares�

For classi�cation problems� weights are usually obtained by measuring the accuracy of each individual classi�er
h� on the training data �or a holdout data set� and constructing weights that are proportional to those accuracies�
Ali and Pazzani �	���� describe a method that they call likelihood combination in which they apply the Naive
Bayes algorithm �see Section ��� below� to learn weights for classi�ers� In AdaBoost� the weight for classi�er h�
is computed from the accuracy of h� measured on the weighted training distribution that was used to learn h�� A
Bayesian approach to weighted vote is to compute the posterior probability of each h�� This method requires the
de�nition of a prior distribution P �h�� which is multiplied with the likelihood P �Sjh�� to estimate the posterior
probability of each h�� Ali and Pazzani experiment with this method� Earlier work on Bayesian voting of decision
trees was performed by Buntine �	�����

The third approach to combining classi�ers is to learn a gating network or a gating function that takes as input
x and produces as output the weights w� to be applied to compute the weighted vote of the classi�ers h�� Jordan
and Jacobs �	���� learn gating networks that have the form

w� �
ez�P
u e

zu

z� � vT� x

In other words� z� is the dot product of a parameter vector v� with the input feature vector x� The output weight
w� is then the so�called soft�max of the individual z��s� As with any learning algorithm� there is a risk of over�tting
the training data by learning the gating function in addition to learning each of the individual classi�ers� �Below we
will discuss the hierarchical mixture of experts method developed by Jordan and Jacobs that learns the h� and the
gating network simultaneously��

A fourth approach to combining classi�ers� called stacking� works as follows� Suppose we have L di�erent learning
algorithms A�� � � � � AL and a set S of training examples f�x�� y��� � � � � �xm� ym�g� As usual� we apply each of these
algorithms to our training data to produce hypotheses h�� � � � � hL� The goal of stacking is to learn a good combining
classi�er h� such that the �nal classi�cation will be computed by h � �h��x�� � � � � hL�x��� Wolpert �	���� proposed
the following scheme for learning h� using a form of leave�one�out cross�validation�

Let h
��i�
� be a classi�er constructed by algorithm A� applied to all of the training examples in S except example

i� In other words� each algorithm is applied to the training data m times� leaving out one training example each

time� We can then apply each classi�er h
��i�
� to example xi to obtain the predicted class !y

�
i � This gives us a new data

set containing �level �� examples whose features are the classes predicted by each of the L classi�ers� Each example
has the form h�!y�i � !y

�
i � � � � � !y

L
i �� yii� Now we can apply some other learning algorithm to this level � data to learn h��

Breiman �	���b� applied this approach to combining di�erent forms of linear regression with very good results�
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��� Why Ensembles Work

I have already given the basic intuition for why ensembles can improve performance uncorrelated errors made by
the individual classi�ers can be removed by voting� But there is a deeper question lurking here Why should it be
possible to �nd ensembles of classi�ers that make uncorrelated errors� And there is another question as well Why
shouldn�t we be able to �nd a single classi�er that performs as well as the ensemble�

There are at least three reasons why good ensembles can be constructed and why it may be di�cult or impossible
to �nd a single classi�er that performs as well as the ensemble� To understand these reasons� we must consider the
nature of machine learning algorithms� Machine learning algorithms work by searching a space of possible hypotheses
H for the most accurate hypothesis �that is� the hypothesis that best approximates the unknown function f�� Two
important aspects of the hypothesis space H are its size and whether it contains good approximations to f �

If the hypothesis space is large� then we will need a large amount of training data to constrain the search for good
approximations� Each training example rules out �or makes less plausible� all those hypotheses in H that misclassify
it� In a ��class problem� ideally each training example can eliminate half of the hypotheses in H� so we require
O�log jHj� examples to select a unique classi�er from H�

The �rst �cause� of the need for ensembles is that the training data may not provide su�cient information for
choosing a single best classi�er fromH� Most of our learning algorithms consider very large hypothesis spaces� so even
after eliminating hypotheses that misclassify training examples� there are many hypotheses remaining� All of these
hypotheses appear equally accurate with respect to the available training data� We may have reasons for preferring
some of these hypotheses over others �e�g�� preferring simpler hypotheses or hypotheses with higher prior probability��
but nonetheless� there are typically many plausible hypotheses� From this collection of surviving hypothesis in H�
we can easily construct an ensemble of classi�ers and combine them using the methods described above�

A second �cause� of the need for ensembles is that our learning algorithms may not be able to solve the di�cult
search problems that we pose� For example� the problem of �nding the smallest decision tree that is consistent with
a set of training examples is NP�hard �Hya�l 
 Rivest� 	����� Hence� practical decision tree algorithms employ
search heuristics to guide a greedy search for small decision trees� Similarly� �nding the weights for the smallest
possible neural network consistent with the training examples is also NP�hard �Blum 
 Rivest� 	����� Neural
network algorithms therefore employ local search methods �such as gradient descent� to �nd locally optimal weights
for the network� A consequence of these imperfect search algorithms is that even if the combination of our training
examples and our prior knowledge �e�g�� preferences for simple hypotheses� Bayesian priors� determines a unique best
hypothesis� we may not be able to �nd it� Instead� we will typically �nd an hypothesis that is somewhat more complex
�or has somewhat lower posterior probability�� If we run our search algorithms with a slightly di�erent training sample
or injected noise �or any of the other techniques described above�� we will �nd a di�erent �suboptimal� hypothesis�
Ensembles can be seen therefore as a way of compensating for imperfect search algorithms�

A third �cause� of the need for ensembles is that our hypothesis space H may not contain the true function
f � Instead� H may include several equally�good approximations to f � By taking weighted combinations of these
approximations� we may be able to represent classi�ers that lie outside of H� One way to understand this is to
visualize the decision boundaries constructed by learning algorithms� A decision boundary is a surface such that
examples that lie on one side of the surface are assigned to a di�erent class than examples that lie on the other
side of the surface� The decision boundaries constructed by decision tree learning algorithms are line segments �or
more generally� hyperplane segments� parallel to the coordinate axes� If the true boundary between two classes is a
diagonal line� then decision tree algorithms must approximate that diagonal by a �staircase� of axis�parallel segments
�see Figure ��� Di�erent bootstrap training samples �or di�erent weighted samples created by AdaBoost� will shift
the locations of the staircase approximation� and by voting among these di�erent approximations� it is possible to
construct better approximations to the diagonal decision boundary�

Interestingly� these improved staircase approximations are equivalent to very complex decision trees� However�
those trees are so large that were we to include them in our hypothesis space H� the space would be far too large
for the available training data� Hence� we can see that ensembles provide a way of overcoming representational
inadequacies in our hypothesis space�

��� Open Problems Concerning Ensembles

Ensembles are well�established as a method for obtaining highly accurate classi�ers by combining less accurate ones�
There are still many questions� however� about the best way to construct ensembles as well as issues about how best
to understand the decisions made by ensembles�

Faced with a new learning problem� what is the best approach to constructing and applying an ensemble of
classi�ers� In principle� there can be no single best ensemble method� just as there can be no single best learning
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Figure � The left �gure shows the true diagonal decision boundary and three staircase approximations to it �of the
kind that are created by decision tree algorithms�� The right �gure shows the voted decision boundary� which is a
much better approximation to the diagonal boundary�

algorithm� However� some methods may be uniformly better than others� And some methods may be better than
others in certain situations�

Experimental studies have shown that AdaBoost is one of the best methods for constructing ensembles of
decision trees� Schapire �	���� compares AdaBoost�M� and AdaBoost�OC to bagging and error�correcting
output coding and shows that the AdaBoostmethods are generally superior� On the other hand� Quinlan �	���� has
shown that in domains with very noisy training data� AdaBoost�M� can perform very badly�it places high weight
on incorrectly�labeled training examples and consequently constructs bad classi�ers� Dietterich and Kong �	����
showed that combining bagging with error�correcting output coding improved the performance of both methods�
which suggests that combinations of other ensemble methods should be explored as well� Dietterich and Kong also
showed that error�correcting output coding does not work well with highly local algorithms �such as nearest neighbor
methods��

There have been very few systematic studies of methods for constructing ensembles of neural networks� rule�
learning systems� and other types of classi�ers� Much work remains in this area�

While ensembles provide very accurate classi�ers� there are problems that may limit their practical application�
One problem is that ensembles can require large amounts of memory to store and large amounts of computation to
apply� For example� earlier I mentioned that an ensemble of ��� decision trees attains perfect performance on a letter�
recognition benchmark task� However� those ��� decision trees require �� megabytes of storage� which makes them
impractical for most present�day computers� An important line of research� therefore� is to �nd ways of converting
these ensembles into less redundant representations� perhaps by deleting highly�correlated members of the ensemble
or by representational transformations�

A second di�culty with ensemble classi�ers is that an ensemble provides little insight into how it makes its
decisions� A single decision tree can often be interpreted by human users� but an ensemble of ��� voted decision
trees is much more di�cult to understand� Can methods be found for obtaining explanations �at least locally� from
ensembles� One example of work on this question is Craven�s TREPAN algorithm �Craven 
 Shavlik� 	�����

� Scaling Up Machine Learning Algorithms

A second major research area has explored techniques for scaling up learning algorithms so that they can apply
to problems with millions of training examples� thousands of features� and hundreds of classes� Very large machine
learning problems are beginning to arise in database mining applications� where there may be millions of transactions
every day� and where it is desirable to have machine learning algorithms that can analyze such large data sets in
just a few hours of CPU time� Another area where large learning problems arise is in information retrieval from
full�text databases and the world�wide web� In information retrieval� each word in a document can be treated as
an input feature� so each training example may be described by thousands of features� Finally� problems in speech
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recognition� object recognition� and character recognition for Chinese and Japanese present problems with hundreds
or thousands of classes that must be discriminated�

��� Learning with Large Training Sets

Decision tree algorithms have been extended to handle large data sets in three di�erent ways� One approach is based
on intelligently sampling subsets of the training data as the tree is grown� To describe how this works� I must review
how decision tree algorithms operate�

Decision trees are constructed by starting with the entire training set and an empty tree� A test is chosen for the
root of the tree� and the training data are then partitioned into disjoint subsets depending on the outcome of the
test� The algorithm is then applied recursively to each of these disjoint subsets� The algorithm terminates when all
�or most� of the training examples within a subset of the data belong to the same class� At that point� a leaf node
is created and labeled with that class�

The process of choosing a test for the root of the tree �or for the root of each subtree� involves analyzing the
training data and choosing the one feature that is the best predictor of the output class� In a large and redundant
data set� it may be possible to make this choice based on only a sample of the data� Musick� Catlett� and Russell
�	���� presented an algorithm that dynamically chooses the sample based on how di�cult the decision is at each
node� The algorithm typically behaves by using a small sample near the root of the tree and then progressively
enlarging the sample as the tree grows� This can reduce the time required to grow the tree without reducing the
accuracy of the tree at all�

A second approach is based on developing clever data structures that avoid the need to store all training data in
random access memory� The hardest step for most decision tree algorithms is to �nd tests for real�valued features�
These tests usually take the form xj � �� for some threshold value �� The standard approach is to sort the training
examples at the current node according to the values of feature xj and then make a sequential pass over the sorted
examples to choose the threshold �� In standard depth��rst algorithms� the data must be sorted by each candidate
feature xj at each node of the tree� which can become very expensive�

Shafer� Agrawal� and Mehta �	���� describe their SPRINT method in which the training data is broken up into
a separate disk �le for each attribute �and sorted by attribute value�� For feature j� the disk �le contains records of
the form hi� xi�j � yii� where i is the index of the training example� xi�j is the value of feature j for training example i�
and yi is the class of example i� To choose a splitting threshold � for feature j� it is a simple matter to make a serial
scan of this disk �le and construct class histograms for each potential splitting threshold� Once a value is chosen�
the disk �le is partitioned �logically� into two �les� one containing examples with values less than or equal to �� and
the other containing examples with values greater than �� As these �les are written to disk� a hash table is built
�in main memory� in which the index for each training example i is associated with the left or right child nodes of
the newly created split� Then each of the disk �les for the other attributes xl� l �� j is read and split into a �le for
the left child and a �le for the right child� The index of each example is looked up in the hash table to determine
the child to which it belongs� SPRINT can be parallelized easily� and it has been applied to data sets containing
��� million examples� Mehta� Agrawal� and Rissanen �	���� have developed a closely�related algorithm� SLIQ� that
makes more use of main memory but also scales to millions of training examples and is slightly faster than SPRINT�
Both SPRINT and SLIQ scale approximately linearly in the number of training examples and the number of features
aside from the cost of performing the initial sorting of the data �which need only be done once��

A third approach to large datasets is to take advantage of ensembles of decision trees �Chan 
 Stolfo� 	�����
The training data can be randomly partitioned into N disjoint subsets� A separate decision tree can be grown from
each subset in parallel� The trees can then vote to make classi�cation decisions� Although the accuracy of each of
the individual decision trees is less than the accuracy of a single tree grown with all of the data� the accuracy of
the ensemble is often better than the accuracy of a single tree� Hence� with N parallel processors� we can achieve a
speedup of N in the time required to construct the decision trees�

A fourth approach to the problem of choosing splits for real�valued input features is to �discretize� the values of
such features� For example� one feature of a training example might be employee income measured in dollars� This
could take on tens of thousands of distinct values� and the running time of most decision�tree learning algorithms
is linear in the number of distinct values of each feature� This problem can be solved by grouping income into a
small number of ranges �e�g�� "�#"	������ "	�����#"������� "������#"������� "������#"	������� and greater than
"	�������� If the ranges are chosen well� the resulting decision trees will still be very accurate� Several simple and
fast algorithms have been developed for choosing good discretization points �Catlett� 	��	� Fayyad 
 Irani� 	����
Kohavi 
 Sahami� 	���� prior to running the decision tree algorithms�

A very e�ective rule�learning algorithm� called Ripper� has been developed by William Cohen �	���� based
on an earlier algorithm� IREP developed by Furnkranz and Widmer �	����� Ripper constructs rules of the form

		



test� � test� � � � � � testl � ci� where each test has the form xj � � �for discrete features� or xj � � or xj � �
�for real�valued features�� A rule is said to cover a training example if the example satis�es all of the tests on the
left�hand�side of the rule� For a training set of size m� the runtime of Ripper scales as O�m�logm���� This is a
major improvement over the rule�learning program C���rules �Quinlan� 	����� which scales as O�m���

Table � shows pseudo�code for Ripper� Ripper works by building an initial set of rules and optimizing the set
of rules k times� where k is a parameter �typically set to ��� I describe Ripper for the case where there are only two
classes� 	 and �� Examples of class 	 will be referred to as the positive examples� and examples of � will be referred
to as the negative examples� Ripper can easily be extended to handle larger numbers of classes�

To build a set of rules� Ripper constructs one rule at a time� Before learning each rule� it divides the training data
into a growing set �containing �$� of the data� and a pruning set �containing the remaining 	$��� It then iteratively
adds tests to the rule until the rule covers no negative examples� Tests are selected via an information gain heuristic
developed for Quinlan�s FOIL system �Quinlan� 	����� Once a rule is grown� it is immediately pruned by deleting
tests in reverse order� testl� testl��� � � � � test�� to �nd the pruned rule that maximizes the quantity �p � n���p% n��
where p is the number of positive pruning examples covered by the pruned rule and n is the number of negative
pruning examples covered by the pruned rule�

Once the rule has been grown and pruned� Ripper adds it to the rule set and discards all training examples that
are covered by this new rule� It employs a description length criterion to decide when to stop adding rules� The
description length of a set of rules is the number of bits needed to represent the rules plus the number of bits needed
to identify the training examples that are exceptions to the rules� Minimum description length criteria of this kind
have been applied very successfully to rule� and tree�learning algorithms �e�g�� Quinlan 
 Rivest� 	����� Ripper
stops adding rules when the description length of the rule set is more than �� bits larger than the best description
length observed so far� It then considers the rules in reverse order and deletes any rule that will reduce the total
description length of the rule set�

To optimize a set of rules� Ripper considers deleting each rule in turn and re�growing and re�pruning it� Two
candidate replacement rules are grown and pruned� The �rst candidate is grown starting with an empty rule� whereas
the second candidate is grown starting with the current rule� The better of the two candidates is selected �via a
description length heuristic� and added to the rule set�

Cohen comparedRipper to C���Rules on �� data sets and found that Ripper matched or beat C���Rules in ��
of the �� problems� The rule sets that it �nds are always smaller than those constructed byC���Rules� An implemen�
tation ofRipper is available for research use from Cohen �http���www�research�att�com��wcohen�ripperd�html��

��� Learning with Many Features

In many learning problems� there are hundreds or thousands of potential features describing each input object x�
Popular learning algorithms such as C��� and backpropagation do not scale well when there are many features�
Indeed� from a statistical point of view� examples with many irrelevant� but noisy� input features provide very little
information� It is easy for learning algorithms to be confused by the noisy features and construct poor classi�ers�
Hence� in practical applications it is wise to carefully choose which features to provide to the learning algorithm�

Research in machine learning has sought to automate the selection and weighting of features� and many di�erent
algorithms have been developed for this purpose� An excellent review has been written by Wettschreck� Aha� and
Mohri �	����� A comprehensive review of the statistical literature on feature selection can be found in Miller �	�����
I will discuss a few of the most signi�cant methods here�

There are three main approaches that have been pursued� The �rst approach is to perform some initial analysis
of the training data and select a subset of the features to feed to the learning algorithm� A second approach is to
try di�erent subsets of the features on the learning algorithm� estimate the performance of the algorithm with those
features� and keep the subsets that perform best� The third approach is to integrate the selection and weighting of
features directly into the learning algorithm� I will discuss two examples of each approach�

����� Selecting and Weighting Features by Preprocessing

A simple preprocessing technique is to compute the mutual information �also called the information gain� between
each input feature and the class� The mutual information between two random variables is the average reduction
in uncertainty about the second variable given a value of the �rst� For discrete feature j� the mutual information
weight wj can be computed as

wj �
X
v

X
c

P �y � c� xj � v� 	 log
P �y � c� xj � v�

P �y � c�P �xj � v�
�
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Table � The Ripper algorithm �Cohen� 	����

procedure BuildRuleSet�P �N�
P � positive examples
N � negative examples
RuleSet � fg
DL � DescriptionLength�RuleSet�P�N�
while P �� fg

�� Grow and prune a new rule
split �P�N� into �GrowPos�GrowNeg� and �PrunePos�PruneNeg�
Rule �� GrowRule�GrowPos�GrowNeg�
Rule �� PruneRule�Rule� PrunePos�PruneNeg�
add Rule to RuleSet
if DescriptionLength�RuleSet� P�N� � DL� � then

�� Prune the whole rule set and exit
for each rule R in RuleSet �considered in reverse order�

if DescriptionLength�RuleSet � fRg� P�N� 	 DL then

delete R from RuleSet
DL �� DescriptionLength�RuleSet� P�N�
end if

end for

return �RuleSet�
end if

DL �� DescriptionLength�RuleSet� P�N�
delete from P and N all examples covered by Rule
end while

end BuildRuleSet

procedure OptimizeRuleSet�RuleSet� P�N�
for each rule R in RuleSet

delete R from RuleSet
UPos �� examples in P not covered by RuleSet
UNeg �� examples in N not covered by RuleSet
split �UPos�UNeg� into �GrowPos�GrowNeg� and �PrunePos�PruneNeg�
RepRule �� GrowRule�GrowPos�GrowNeg�
RepRule �� PruneRule�RepRule� PrunePos�PruneNeg�
RevRule �� GrowRule�GrowPos�GrowNeg�R�
RevRule �� PruneRule�RevRule� PrunePos�PruneNeg�
choose better of RepRule and RevRule and add to RuleSet
end for

end OptimizeRuleSet

procedure Ripper�P�N� k�
RuleSet �� BuildRuleSet�P�N�
repeat k times RuleSet �� OptimizeRuleSet�RuleSet� P�N�
return �RuleSet�
end Ripper

where P �y � c� is the proportion of training examples in class c� and P �xj � v� is the probability that feature j takes
on value v� For real�valued features� the sums become integrals which must be approximated� A good approximation
is to apply a discretization algorithm� such as the one advocated by Fayyad and Irani �	����� to covert the real�valued
feature into a discrete�valued feature� and then apply the formula above� Wettschereck and Dietterich �	���� have
obtained good results with nearest�neighbor algorithms using mutual information weighting�

A problem with mutual information weighting is that it treats each feature independently� For features whose
predictive power is only apparent in combination with other features� mutual information will assign a weight of zero�
For example� a very di�cult class of learning problems involves learning parity functions with random irrelevant
features� A parity function over n binary features is equal to 	 if�and�only�if an odd number of the features are equal
to 	� Suppose we de�ne a learning problem in which there are four relevant features and 	� irrelevant �random�
binary features� and the class is the ��parity of the four relevant features� The mutual information weights of all
features will be approximately zero using the formula above�

An algorithm that overcomes this problem �and is one of the most successful preprocessing algorithms to date�
is the Relief�F algorithm �Kononenko� 	����� which is an extension of an earlier algorithm called Relief �Kira 

Rendell� 	����� The basic idea of these algorithms is to draw examples at random� compute their nearest neighbors�
and adjust a set of feature weights to give more weight to features that discriminate the example from neighbors of
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Table � The Relief�F algorithm�

procedure Relief�F�L�B�
L � the number of random examples to draw
B � the number of near neighbors to compute
for all features j� wj �� ���
pc �� the fraction of the training examples belonging to class c
for l �� � to L do

randomly select an instance �xt� yt�
let Hit be the set of B examples �xi� yi� nearest to xt such that yi � yt	
for each class c �� yt

let Mc be a set of B examples �xi� yi� nearest to xt such that yi � c	
end for

for each feature j

wj �� wj �
�

LB

X
�xi�yi��Hit


�xtj � xij� �
X
c��yt

py

��� pc�LB

X
�xi�yi��Mc


�xtj � xij�

end for j
end for l

return wj � j 	
end Relief�F

di�erent classes� Speci�cally� let x be a randomly�chosen training example� and let xs and xd be the two training
examples nearest to x �in Euclidean distance� in the same class and in a di�erent class� respectively� The goal of
Relief is to set the weight wj on input feature j to be

wj � P �xj �� xdj �� P �xj �� xsj��

In other words� the weight wj should be maximized when xd has a high probability of taking on a di�erent value
for feature j and xs has a low probability of taking on a di�erent value for feature j� Relief�F computes a more
reliable estimate of this probability di�erence by computing the B nearest neighbors of x in each class�

Table � describes the Relief�F algorithm� In this algorithm� 	�u� v� for two feature values u and v is de�ned as
follows

	�u� v� �

��
�

ju� vj for real�valued features
� if u � v
	 if u �� v for discrete features

Kononenko� &Simec� and Robnik�&Sikonja �	���� have shown that Relief�F is very e�ective at detecting relevant
features� even when those features are highly dependent on other features� For the ��parity problem mentioned
above �with 	� irrelevant random features�� Relief�F can correctly separate the four relevant features from the
	� irrelevant ones given ��� training examples� Kononenko computes the 	� nearest neighbors in each class �i�e��
B � 	��� In his experiments� he sets the number of sample points L to be equal to the number of training examples�
but in large data sets� good results can be obtained from much smaller samples�

Kononenko� et al have also experimented with integrating Relief�F into a decision tree learning algorithm called
Assistant�R� They show that Assistant�R is able to perform much better than the original Assistant program
�which uses mutual information to choose features� in domains with highly dependent features while giving essentially
the same performance in domains with independent features�

����� Selecting and Weighting Features by Testing with the Learning Algorithm

John� Kohavi� and P eger �	���� describe a computationally expensive method that they call the wrapper method
for selecting input features� The idea is to generate sets of features� run the learning algorithm using only those
features� and evaluate the resulting classi�ers via 	��fold cross�validation �or via a single holdout set�� In 	��fold
cross�validation� the training data are subdivided randomly into 	� disjoint equal�sized sets� The learning algorithm
is applied 	� times� each time on a training set containing all but one of these subsets� The resulting classi�er is
tested on the one�tenth of the data that was held out� The performance of the 	� classi�ers �on their 	� respective
hold�out sets� is averaged to provide an estimate of the overall performance of the learning algorithm when trained
with the given features�

Kohavi and John explored step�wise selection algorithms that start with a set of features �e�g�� the empty set��
and considered adding or deleting a single feature� The possible changes to the feature set are evaluated �via 	��
fold cross�validation�� and the best change is made� Then� a new set of changes is considered� This method is
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only practical for data sets with relatively small numbers of features and very fast learning algorithms� but it gave
excellent results on the UC Irvine benchmarks�

Moore and Lee �	���� describe a much more e�cient approach to feature selection that combines leave�one�out
cross�validation �LOOCV� with the nearest neighbor algorithm� In leave�one�out cross�validation� each training
example is temporarily deleted from the training data and the nearest neighbor learning algorithm is applied to
predict the class of that example� The total number of classi�cation errors is the leave�one�out cross�validated
estimate of the error rate of the learning algorithm� Moore and Lee use the LOOCV error to compare di�erent sets
of features with the goal of �nding the set of relevant features that minimizes the LOOCV error�

They combine two very clever ideas to achieve this� The �rst idea is called racing� Suppose we are considering
two di�erent sets of relevant features� A and B� We repeatedly choose a training example at random� temporarily
delete it from the training set� and apply the nearest neighbor rule to classify it using features in set A and the
features in set B� We count the number of classi�cation errors corresponding to each set� As we process more and
more training examples in this leave�one�out fashion� the error rate for feature set A may become so much larger
than the error rate for B that we can conclude with high con�dence that B is the better feature set and terminate
the race� In their �	���� paper� they apply Bayesian statistics to make this termination decision�

The second idea is based on schemas� We can represent each set of relevant features by a bit vector where a 	
in position j means that feature j is relevant� and a � means it is irrelevant� A schema is a vector containing ��s�
	�s� and 
�s� A 
 in position j means that this feature should be randomly selected to be relevant ��� of the time�
Moore and Lee race pairs of schemas against one another as follows� A training example is randomly selected and
temporarily deleted from the training set� The nearest neighbor algorithm is applied to classify it using each of the
two schemas being raced� To classify an example using a schema� features indicated by a � are ignored� features
indicated by a 	 are selected� and features indicated by a 
 are selected with probability ���� Suppose� for illustration�
that we have � features� Moore and Lee begin by conducting � simultaneous pairwise races
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All of the races are terminated as soon as one of the schemas is found to be better than its opponent� In the next
iteration� all single bit re�nements of the winning schema are raced against one another� For example� suppose the
schema 
	 
 

 was the winner of the �rst race� Then the next iteration involves the following four pairwise races
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This continues until all of the 
�s are removed from the winning schema� Moore and Lee found that this method
never misses important relevant features� even when the features are highly dependent� However� in some rare cases�
the races may take a very long time to conclude� The problem appears to be that the algorithm can be very slow
to replace a 
 with a �� In contrast� the algorithm is very quick to replace a 
 with a 	� Moore and Lee therefore
investigated an algorithm� called Schemata� that terminates each race after ���� evaluations �in favor of the ��
using the race statistics to choose the feature least likely to be relevant�� The median number of training examples
that must be evaluated by Schemata� is only 	�� of the number of evaluations required by greedy forward selection
and only 		� of the number of evaluations required by greedy backward elimination while achieving the same levels
of accuracy� An important direction for future research is to compare the accuracy and speed of Schemata� and
Relief�F� to see which works better with various learning algorithms�

����� Integrating Feature Weighting into the Learning Algorithm

I now discuss two methods that integrate feature selection directly into the learning algorithm� Both of them have
been shown to work well experimentally� and the second method� called Winnow� works extremely well in problems
with thousands of potentially relevant input features�

The �rst algorithm is called the Variable�kernel Similarity Metric or VSM method �Lowe� 	����� VSM is a
form of Gaussian radial basis function method� To classify a new data point xt� it de�nes a multivariate Gaussian
probability distribution � centered on xt with standard deviation �� Each example �xi� yi� in the training data set
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�votes� for class yi with an amount ��jjxi � xtjj���� The class with the highest vote is assigned to be the class
yt � f�xt� of the data point xt�

The key to the e�ectiveness of VSM is that it learns a weighted distance metric for measuring the distance
between the new data point x and each training point xi� VSM also adjusts the size � of the Gaussian distribution
depending on the local density of training examples in the neighborhood of xt�

In detail� VSM is controlled by a set of learned feature weights w�� � � � � wn� a kernel radius parameter r� and a
number of neighbors R� To classify a new data point xt� VSM �rst computes the weighted distances to the R nearest
neighbors �xi� yi�

di �

vuut nX
j��

w�
j �xtj � xij���

It then computes a kernel width � from the average distance to the R�� nearest neighbors

� �
�r

R

R��X
i��

di�

Finally� it computes the probability that the next point xt belongs to each class c �the quantity vi is the �vote� from
training example i�

vi � exp

�
�
d�i
��

�

P �f�xt� � c� �
RX
i��

vi��yi � c��

vi

VSM then guesses the class with the highest probability�
How does VSM learn the values of the feature weights and the kernel radius r� By performing gradient descent

search to minimize the leave�one�out cross�validated accuracy of the VSM classi�er� Lowe �	���� shows how to
compute the gradient of the LOOCV error with respect to each of the weights wj and the parameter r� Starting with
initial values for these parameters� VSM computes the R nearest neighbors of each training examples �xi� yi�� It
then computes the gradient and performs a search in the direction of the gradient to minimize LOOCV error �while
keeping this set of nearest neighbors �xed�� The search along the direction of the gradient is called a line search� and
there are several e�cient algorithms available �Press� Flannery� Teukolsky� 
 Verrerling� 	����� Even though the
weights are changing during the line search� the set of nearest neighbors �and the gradient� is not recomputed� Once
the error is minimized along this direction of the gradient� the R nearest neighbors are recomputed� a new gradient
is computed� and a new line search is performed� Lowe applied the conjugate gradient algorithm to select each new
search direction� and he reports that generally only �#�� line searches were required to minimize the LOOCV error�
The resulting classi�ers gave excellent results on two challenging benchmark tasks�

The last feature weighting algorithm I will discuss is theWinnow algorithm developed by Littlestone �Littlestone�
	����� Winnow is a linear threshold algorithm for ��class problems with binary �i�e�� �$	�valued� input features� It
classi�es a new example x into class � if X

j

wjxj � �

and into class 	 otherwise� Winnow is an online algorithm� it accepts examples one�at�a�time and updates the
weights wj as necessary� Pseudo�code for the algorithm is shown in Table ��

Winnow initializes its weights wj to 	� It then accepts a new example �x� y� and applies the threshold rule to
compute the predicted class y�� If the predicted class is correct �y� � y�� Winnow does nothing� However� if the
predicted class is wrong� Winnow updates its weights as follows� If y� � � and y � 	� then the weights are too low�
so for each feature xj � 	� wj � wj 	 � where  is a number greater than 	 called the promotion parameter� If
y� � 	 and y � �� then the weights were too high� so for each feature xj � 	� it decreases the corresponding weight
by setting wj � wj 	 �� where � is a number less than 	 called the demotion parameter�

The fact that Winnow leaves the weights unchanged when the predicted class is correct is somewhat puzzling
to many people� It turns out to be critical for its successful behavior� both theoretically and experimentally� One
explanation is that� like AdaBoost� this strategy focusesWinnow�s attention on its mistakes� Another explanation
is that it helps prevent over�tting�

Littlestone�s theoretical analysis of Winnow introduced the worst�case mistake bound method� The idea is to
assume that the true function y � f�x� belongs to some set of classi�ers H and derive a bound on the maximum
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Table � The Winnow algorithm

procedure Winnow��� �� ��
� � � is the promotion parameter
� 	 � is the demotion parameter
� is the threshold
initialize wj �� � for all j
for each training example �x� y�

z ��
P

j
wj � xj

y� ��

n
� if z 	 �
� if z � �

if y� � � and y � � then

wj �� wj � � for each j such that xj � �
end if

else if y� � � and y � � then

wj �� wj � � for each j such that xj � �
end if

end for
end Winnow

number of mistakes that Winnow will make when an adversary is allowed to choose f and allowed to choose the
order in which the training examples are presented to Winnow� Littlestone proves the following result

Theorem � Let f be a disjunction of r out of its n input features� Then Winnow will learn f and make no more
than � % �r�	 % lgn� mistakes� �For  � �� � � 	��� and � � n��

This theorem shows that the convergence time ofWinnow is linear in the number of relevant features r and only
logarithmic in the total number of features n� Similar results hold for other values of the � �� and � parameters�
which permits Winnow to learn functions where u out of v of the features must be 	 and many other interesting
classes of boolean functions�

Winnow is an example of an exponential update algorithm� The weights of the relevant features grow exponen�
tially� while the weights of the irrelevant features shrink exponentially� General results in computational learning
theory have developed similar exponential update algorithms for many applications� A common property of these
algorithms is that they excel when the number of relevant features is small compared to the total number of features�

Winnow has been applied to several experimental learning problems� Blum �	���� describes an application to a
calendar scheduling task� In this task� a calendar system is given a description of a proposed meeting �including the
list of invitees and their properties�� It must then predict the start�time� day�of�week� location� and duration of the
meeting� There were �� input features available� some with many possible values� Blum de�ned boolean features
corresponding to all possible values of all pairs of the input features� For example� given two input features event�type
and position�of�attendees� he would de�ne a separate boolean feature for each legal combination� such as event�type �
meeting and position�of�attendees � grad�student� This gave a total of �����	 boolean input features� He then applied
Winnow with  � ��� and � � 	��� He modi�ed Winnow to prune �set to zero� weights that become very small
�less than ������	��

Winnow found that ��	 of the Boolean features were actually useful for prediction� Its accuracy was better
than that of the best previous classi�er for this task �which employed a greedy forward selection algorithm to select
relevant features for a decision tree learning algorithm��

Golding and Roth �	���� describe an application of Winnow to context�sensitive spelling correction� This is the
task of identifying spelling errors where one legal word is substituted for another� such as It�s not to late� where to
is substituted for too� The Random House dictionary �Flexner� 	���� lists many sets of commonly�confused words�
and Golding and Roth developed a separate Winnow classi�er for each of the listed sets �e�g�� fto� too� twog��
Winnow�s task is to decide whether each occurrance of these words is correct or incorrect based on its context�

Golding and Roth use two kinds of boolean input features� The �rst kind are context words� A context word is a
feature that is true if a particular word �e�g�� �cloudy�� appears within 	� words before or after the target word� The
second kind are collocation features� These test for a string of � words or part�of�speech tags immediately adjacent
to the target word� For example� the sequence �htargeti to VERB� is a collocation feature that checks whether the
target word is immediately followed by the word �to� and then a word that can potentially be a verb �according to a
dictionary lookup�� Based on the 	�million word Brown corpus �Ku&cera 
 Francis� 	����� Golding and Roth de�ned
more than 	����� potentially relevant features�
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Figure � Comparison of the percentage of correct classi�cations for a modi�ed Bayesian method and Winnow for
�	 sets of frequently�confused words� Trained on ��� of the Brown corpus and tested on the remaining ���� Points
lying above the line y � x correspond to cases where Winnow is more accurate�

Golding and Roth applied Winnow �with  � ���� � varying between ��� and ���� and � � 	�� They compared
its accuracy to the best previous method� which is a modi�ed naive Bayesian algorithm� Figure � shows the results
for �	 sets of frequently�confused words�

An important advantage of Winnow� in addition to its speed and ability to operate online� is that it can adapt
rapidly to changes in the target function� This was shown to be very important in the calendar scheduling problem�
where the scheduling of di�erent types of meetings may shift when semesters change �or during summer break��
Blum�s experiments showed that Winnow was able to respond quickly to such changes� By comparison� to enable
the decision tree algorithm to respond to changes� it was necessary to decide which old training examples could be
deleted� This is di�cult to do� because while some kinds of meetings may change with the change in semesters� other
meetings may stay the same� A decision to keep� for example� only the most recent 	�� training examples� means
that examples of rare meetings whose scheduling does not change will be lost� which hurts the performance of the
decision tree approach� In contrast� because Winnow only revises the weights on features when they have the value
	� features describing such rare meetings are likely to retain their weights even as the weights for other features are
being modi�ed rapidly�

��� Summary� Scaling Up Learning Algorithms

This concludes my review of methods for scaling up learning algorithms to apply to very large problems� With the
techniques described here� problems having one million training examples can be solved in reasonable amounts of
computer time� However� it is not clear whether the current stock of ideas will permit the solution of problems with
billions of training examples� An important open problem is to gather more practical experience with very large
problems� so that we can understand their properties and determine where these algorithms fail�

A recurring theme is the use of subsamples of the training data to make critical intermediate decisions �such as
the choice of relevant features�� Another theme is the development of e�cient online algorithms� such as Winnow�
These are �anytime� algorithms that can produce a useful answer regardless of how long they are permitted to run�
The longer they run� the better the result that they produce�

An important open topic is the problem of handling thousands of output classes� Section � has already described
the two methods that are most appropriate in this case error�correcting output coding and AdaBoost�OC� Both
of these methods should scale well with the number of classes� Error�correcting output coding has been tested on
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problems with up to 	�� classes� but tests on very large problems with thousands of classes have not yet been
performed�

� Reinforcement Learning

The previous two sections have discussed problems in supervised learning from examples� This section addresses
problems of sequential decision making and control that come under the heading of reinforcement learning�

Work in reinforcement learning dates back to the earliest days of arti�cial intelligence when Arthur Samuel
developed his famous checkers program �Samuel� 	����� More recently� there have been several important advances
in the practice and theory of reinforcement learning� Perhaps the most famous work is Gerry Tesauro�s �	���� TD�
gammon program� which has learned to play backgammon better than any other computer program and almost as
well as the best human players� Two other interesting applications are the work of Zhang and Dietterich �	���� on
job shop scheduling and Crites and Barto �	���� on real�time scheduling of passenger elevators�

Kaelbling� Littman� and Moore �	���� have published an excellent survey of reinforcement learning and Mahade�
van and Kaelbling �	���� report on a recent NSF�sponsored workshop on the subject� Two new books �Barto 

Sutton� 	���� Bertsekas 
 Tsitsiklis� 	���� describe the newly�developed reinforcement learning algorithms and the
theory behind them� I will summarize these developments here�

��� An Introduction to Dynamic Programming

The most important insight of the past �ve years is that reinforcement learning is best analyzed as a form of online�
approximate dynamic programming �Barto� Bradtke� 
 Singh� 	����� I will introduce this insight using the following
notation� Consider a robot interacting with an external environment� At each time t� the environment is in some
state st� and the robot has available some set of actions A� The robot executes an action at� which causes the
environment to move to a new state st��� A convenient way of specifying the desired behavior of the robot is to
de�ne an immediate reward function R�st� a� st��� that speci�es a real�valued reward for this transition from st to
st��� For example� we can assign a positive reward to actions that reach a desired goal location and we can assign a
negative reward to undesirable actions such as colliding with walls� people� or other robots� The immediate reward
in all other states could be de�ned to be zero�

Our long�term goal for the robot can then be de�ned as some function of the immediate rewards it receives� A
commonly�used criterion is the cumulative discounted reward�

�X
t��

�tR�st� a� st����

where � � � � 	 is a discount factor that controls the relative importance of short�term and long�term rewards�
A procedure or rule for choosing each action a given state s is called the policy of the robot� and it can be

formalized as a function a � ��s�� The goal of reinforcement learning algorithms is to compute the optimal policy�
denoted ��� which maximizes the cumulative discounted reward�

Researchers in dynamic programming �e�g�� Bellman� 	���� found it convenient to de�ne a real�valued function
f��s� called the value function of policy �� The value function f��s� gives the expected cumulative discounted reward
that will be received by starting in state s and executing policy �� It can be de�ned recursively by the formula�

f��s� �
X
s�

P �s�js� ��s�� 	 �R�s� ��s�� s�� % �f��s���� �	�

where P �s�js� ��s�� is the probability that the next state will be s� given that the current state is s and we take action
��s��

Given a policy �� a reward runction R� and the transition probability function P � it is possible to compute the
value function f� by solving the system of linear equations containing one equation of the form of Equation �	� for
each possible state s� The system of equations can be solved via standard methods� such as Gaussian Elimination
or Gauss�Seidel iteration or it can be solved iteratively by converting the equation into an assignment statement

f��s� �
X
s�

P �s�js� ��s�� 	 �R�s� ��s�� s�� % �f��s���� ���

This assignment statement is called a simple backup� because it can be viewed as taking the current estimated value�s�
f��s�� and �backing them up� to compute a revised estimate for f��s�� An example is shown in Figure �� In state s�
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Figure � An example of a simple backup� Each arc is labeled with the probability of making that transition� The
resulting states are labeled with their associated immediate reward and their value�

Table � The Policy Iteration Algorithm

procedure PolicyIteration�P�R�
let  be an arbitrary initial policy
repeat until  is unchanged

perform simple backups to compute f� for each state �Equation ��	
update  for each state �Equation ��	
end

we perform action a � ��s�� There are three possible resulting states� s��� s
�
�� and s

�
�� with probabilities ���� ��	� and

��	 �respectively�� The immediate rewards for reaching these states are �� �� and � �respectively� and the estimated
values f�s�� of the states are 	�� �� and � �respectively�� Assuming � � 	� the new estimated value of f��s� is

f��s� � �� % ��� 	 	�� % �� % ��	 	 �� % �� % ��	 	 ��

� 	����

To compute the value of a policy� the simple backups can be performed in any convenient order�even at random�
The only requirement is that � must be small enough so that the sum of the expected discounted rewards converges
and the simple backups must be performed until f��s� converges for every state s�

Given a value function f�� it is possible to compute a new policy �� that is guaranteed to be at least as good ��
This is accomplished by performing a one�step lookahead search and choosing the action whose backed�up value is
the largest

���s� � argmax
a

X
s�

P �s�js� a� 	 �R�s� a� s�� % �f��s���� ���

In words� we consider each possible action a� compute its expected backed�up value� and de�ne ���s� to be the action
that gives the maximum backed�up value�

By alternately computing the value f� of policy � and then updating � via Equation ���� we can converge to the
optimal policy �� and its optimal value function f�� Note that if we plug f� into Equation ���� the new policy is
unchanged�it is still the optimal policy� This de�nes the algorithm known as policy iteration� shown in Table �� It
is easy to show that policy iteration converges in a �xed number of iterations� Unfortunately� each iteration can be
expensive� because it requires computing the value of the current policy�

An alternative to policy iteration is to work directly with the value function� Bellman proved that the value
function f� of the optimal policy �� is the unique �xed point of the Bellman Equation

f�s� � max
a

X
s�

P �s�js� a� 	 �R�s� a� s�� % �f�s���� ���

In other words� we perform a one�step lookahead just as we did for the policy improvement step of policy iteration�
but instead of remembering the best action� we update our estimate of the value of state s� This is called a Bellman
Backup� It is more expensive than a simple backup� because we must consider each possible action a and then each
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Table � The Value Iteration Algorithm

procedure ValueIteration�P�R�
let f be an arbitrary initial value function
repeat until f is unchanged in all states

for each state s� perform a Bellman backup �Equation �
end

for each state s� compute the optimal policy �Equation ��
end ValueIteration

possible resulting state s�� By performing enough Bellman backups in every state� we can converge to the optimal
value function f�� This is called the Value Iteration algorithm� and it is summarized in Table ��

Unfortunately� value iteration can be more di�cult than policy iteration because �a� each backup is a more
expensive Bellman backup rather than a simple backup and �b� the value function may take a very long time to
converge� Indeed� it is possible for the optimal policy to have converged long before the value function converges�

A hybrid algorithm that combines aspects of both value iteration and policy iteration is called Modi�ed Policy
Iteration� This algorithm is essentially the same as Policy Iteration except that only a �xed number of simple backups
are performed in each state in each iteration� This means that the estimated value function for the current policy f�

does not completely converge to the correct value function� but under fairly mild conditions� it can be shown that
the algorithm will still converge to the optimal policy�

All three of these algorithms�policy iteration� value iteration� and modi�ed policy iteration�require performing
backups in every state� so their running time scales with the number of states� In fact� value iteration may run for
an in�nite amount of time without converging� Policy iteration requires time at least O�n�� for problems with n
states just to compute the value of the policy in each iteration� For small problems� this is not a di�culty� but for
problems of interest in arti�cial intelligence� the state space often has 	��� or 	�	� possible states� which renders
these algorithms infeasible� Bellman termed this the curse of dimensionality� because the number of states� and
hence the running time� increases exponentially with the number of dimensions in the state space�

Another drawback of these algorithms is that they require a complete �model� of the system� by which I mean
the transition probabilities P �s�js� a� and the reward function R�s� a� s��� There are many applications where this
model is unavailable �e�g�� in a robot interacting with an unknown environment� or where the model cannot easily be
converted into a transition probability matrix� For example� in the elevator control problem studied by Crites and
Barto �	����� a software simulator is available that can take a current state s and a proposed action a and generate
the next state s� according to the transition probability distribution� However� that distribution is not explicitly
represented anywhere� so it is not available for direct use by a dynamic programming algorithm� The problem of
constructing an explicit probability transition matrix and reward function has been called the curse of modeling� and
in many problems it is just as severe than the curse of dimensionality� Reinforcement learning algorithms provide a
way of overcoming these two curses�

Reinforcement learning algorithms have introduced three key innovations �a� stochastic approximation of back�
ups� �b� value function approximation� and �c� model�free learning� I will discuss these innovations in the context of
an algorithm known as TD��� developed by Sutton �	�����

��� Temporal Di�erence Learning and TD��	

I will begin by describing a simpli�ed version of Sutton�s TD��� algorithm� called TD���� TD��� is a method for
computing approximate simple backups online� Suppose we are in state s and we follow the current policy by taking
action a � ��s�� If we are interacting with a real external environment �or with a simulator�� the environment makes
a probabilistic transition to a new state s� and produces the immediate reward R�s� a� s��� The TD��� algorithm
observes this new state and reward and updates the value function as follows

f��s� � �	� � 	 f��s� %  	 �R�s� a� s�� % �f��s����

where  is a learning rate parameter� Typical values for  are between ���	 and ���� �Technically� the  values must
shrink to zero over time in order for TD��� to converge��

The basic idea of TD��� is that if we visit s many times and apply action a many times� then by sampling over
time� we will get the same e�ect as if we performed a simple backup� We can do this by sampling from the probability
distribution P �s�js� a� rather than by having direct computational access to P �
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Figure � A sequence of states� The eligibility of each state �with � � ���� is shown as a vertical bar�

This strategy allows TD��� to compute the value of a policy without having an explicit model� The environment
serves as its own model'

When Sutton developed TD���� he also introduced a second idea� Instead of storing a separate value f��s� for
each state s� suppose we represent the value function as a neural network �or some other di�erentiable function
approximator� of the form f�s�W �� where W is a vector of adjustable weights� With this representation� we can�t
directly assign a value to a state� but we can adjust the weights so that f�s�W � is closer to the desired value� We
do this by de�ning an error function

J�W � �
	

�

�
f��s�W �� �R�s� a� s�� % �f��s��W ��

��
�

This is the squared di�erence between the current estimated value of state s� f��s�W �� and the backed�up value�
This is called the temporal di	erence error� Our goal is to modify W to reduce the temporal di�erence error J�W ��
Di�erentiating J�W � �and treating only the �rst occurrence of W as adjustable�� we obtain the learning rule

W �W � rW f�s�W �
�
f��s�W �� �R�s� a� s�� % �f��s��W ��

�
�

where rW f�s�W � is the gradient of f with respect to the weights W � This takes a step of size  in the direction of
the decreasing gradient scaled by the size of the temporal di�erence error�

By using a smoothly parameterized function approximation f�s�W �� TD��� can circumvent the curse of dimen�
sionality provided that f�s�W � can accurately approximate the true value function f�s� with a small number of
parameters W �

Sutton introduced one other wonderful idea in the TD��� algorithm�the eligibility trace� Suppose we have
visited a sequence of states s�� s�� � � � � st� st��� and we are updating the value of f�st�Wt�� Sutton suggested that
we might want to update the values of the preceding states as well� since the key idea of dynamic programming
is to propagate information about expected rewards backward through the state space� Sutton proposed that we
should remember the gradient rWt�i

f�st�i�Wt�i� for each state st�i� for i � 	� � � � � n� that we have visited� When we
update f�st�Wt� by taking a step in the direction of �rWt

f�st�Wt�� we will also take a smaller step in the direction
of �rWt��

f�st���Wt��� and an even smaller step in the direction of �rWt��
f�st���Wt��� and so on� Each stepsize

will be decreased by a factor of � � 	� This gives us the learning rule

W �W � 

	
�X
i��

�irWt�i
f�st�i�Wt�i�


�
f��st�W �� �R�st� a� st��� % �f��st���W ��

�
�

The value of �i is called the eligibility of state st�i� Figure � shows the eligibility of a sequence of states as a bar
graph�

The in�nite sum
P�

i�� �
irW f�st�i�Wt�i� can be implemented by maintaining a current gradient vector G

Gt � �Gt�� %rWt
f�st�Wt��

With this change� we get the full algorithm TD��� shown in Table �� Readers familiar with the momentum method
for stabilizing backpropagation will note that the eligibility trace mechanism is very similar� However� in the mo�
mentum method� previous weight changes are remembered� while in the eligibility trace� previous gradient vectors
are remembered and future temporal di�erences determine the stepsize along those previous gradients�

There have been many theoretical studies of the behavior of TD���� The most general results have been obtained
by Tsitsiklis and Van Roy �	����� They analyze the case where the function approximator f�s�W � is a linear
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Table � The TD��� algorithm for computing the value of a policy �

procedure TD�� �� �� �� s��
initialize G � �

initialize W randomly
s� is the starting state
while W has not converged do

take action a � �st�
observe resulting state st�� and reward R�st� a� st���
G �� �G�rW f�st�W �

W ��W � �G �

�
f�st�W �� 
R�st� a� st��� � �f�st���W ��

�
end while

return W which de�nes f�

end TD

combination of �xed �and arbitrary� orthogonal basis functions� To analyze how well f�s�W � can approximate f��
some notion of the distance between two value functions is needed� Tsitsiklis and Van Roy de�ne the following
measure

jjf � f�jjD �

	X
s

�f�s�� f��s���D�s�


���

�

where D�s� is the probability that the policy � visits state s�

Using this measure� let !f� be the best approximation of f� that can be represented by a linear combination of
the given basis functions� Tsitsiklis and Van Roy prove that TD��� will converge to a function f such that

jjf � f�jjD �
jj !f� � f�jjD

	� ��	� ����	� ���
�

The quantity on the left�hand side is the error between the function f learned by TD��� and the true value
function f� for policy �� The numerator on the right�hand side is the inherent approximation error resulting from
the use of a linear combination of the given� �xed basis functions� The denominator is the error that results from
the fact that approximation errors in one state will be propagated backward to earlier states� For large �� the
denominator approaches 	 �no error�� but for � � �� the denominator becomes 	 � �� which could be very small�
and hence produce very large errors� For this result to hold� it is essential that the backups performed by TD��� be
performed according to the current policy �� If this condition is not observed� then TD��� may fail to converge�

The TD��� algorithm provides a way of computing the value of a �xed policy without direct access to the
transition probabilities and reward function� However� this is only of limited utility unless we can perform the policy
improvement step from Equation ��� and thereby implement the policy iteration algorithm� Unfortunately� policy
improvement requires access to a model that can generate the possible next states and their probabilities�

��� Applications of TD��	

There are many domains where such a model is available� For example� in game�playing settings� such as backgam�
mon� it is easy to compute the set of available moves from each state and the probabilities of all successor states�
Hence� TD��� can be combined with policy improvement to learn an optimal policy for backgammon� This is what
Tesauro did in his famous TD�gammon system �Tesauro� 	���� 	�����

TD�gammon employs a neural network representation of the value of a state� The state of the backgammon game
is described by a vector of 	�� features that encode the locations of the pieces on the board and the values shown
on the dice� TD�gammon begins with a randomly�initialized neural network� It plays a series of games against itself�
At each step� it makes a full one�step lookahead search� applies the neural network to evaluate each of the resulting
states� and makes the move corresponding to the highest backed up value� In short� it applies Equation ��� to
compute the action to perform next� This is a form of local policy improvement� After making the move� it observes
the resulting state and applies the TD��� rule to update the value function� In e�ect� TD�gammon is executing a
form of modi�ed policy iteration where it alternates between one step of policy evaluation �the TD��� update� and
one step of policy improvement �the computation of the best move to make��

There is no guarantee that this algorithm will converge to the optimal policy� Indeed� it is easy to construct
examples where the strategy of always performing the best action based on the current approximation to the value

��



Start Goal

Figure � Two networks of roads around a mountain� Without exploration� an initial policy that follows the northern
roads will never discover that the southern roads provide a shorter route to the goal�

function� f�s�W �� will lead to a local minimum� For example� consider the navigation problem shown in Figure ��
There is a large mountain separating the start state from the goal� A network of roads passes to the north of the
mountain� and a similar �and shorter� network passes to the south� Suppose that our initial policy takes us to the
north side and we eventually reach the goal� After updating our value function using TD���� suppose that the north
side still appears to be shorter than the south side �because our estimates for the values of the states along the south
side are too high�� Then� in future trials we will continue to take the north roads� and we will never try the southern
route�

This is called the problem of exploration� The heart of the problem is that to �nd the optimal policy� it is
necessary to prove that every o��policy action leads to worse expected results than the actions of the optimal policy�
In this situation� it is essential to explore the southern path to determine whether it is worse �or better'� than the
northern path� The strategy of always taking the action that appears to be optimal based on the current value
function is called the pure exploitation strategy� The example in Figure � shows that the pure exploitation strategy
will not always �nd the optimal policy� Hence� online reinforcement learning algorithms must balance exploitation
with exploration�

Fortunately� in backgammon� the random dice rolls inject so much randomness into the game that TD�gammon
thoroughly investigates the possible moves in the game� Experimentally� the performance of TD�gammon is out�
standing� It plays much better than any other computer program� and it is nearly as good as the world�s best players�
The results of three versions of the program in three separate matches against human players are shown in Table ��
In some situations� the moves chosen by TD�gammon have been adopted by expert humans�

A similar strategy was applied by Zhang and Dietterich �	���� to the problem of job�shop scheduling� In job�
shop scheduling� a set of tasks must be scheduled to avoid resource con icts� Each task requires certain resources
throughout its duration� and each task has prerequisite tasks that must be completed before it can be executed� An
optimal schedule is one that completes all of its tasks in the minimum amount of time while satisfying all resource
and prerequisite constraints�

Zweben� Daun� and Deale �	���� developed a repair�based search space for this task in which each state is a
complete schedule �i�e�� all tasks have assigned start times�� The starting state is a critical path schedule in which
every task is scheduled as early as possible subject to its prerequisite constraints and ignoring its resource constraints�
The actions in this search space identify the earliest constraint violation and repair it by moving tasks later in time
�thus lengthening the schedule�� The search terminates when a violation�free schedule is found�

Zhang and Dietterich reformulated this as a reinforcement learning problem where the optimal policy will choose
a sequence of repairs that will produce the shortest possible schedule� The immediate reward function gives a small
cost to each repair action and a �nal reward that is inversely proportional to the �nal length of the schedule� Zhang
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Table � Summary of the Performance of TD�gammon against some of the world�s best players� The results are
expressed in net points won �or lost� and in points won per game� Taken from Tesauro �	�����

Program Training Games Opponents Results
TDG 	�� ������� Robertie� Davis� �	� pts$�	 games

Magriel ������ ppg�
TDG ��� ������� Goulding� Woolsey �� pts$�� games

Snellings� Russell� ����	� ppg�
Sylvester

TDG ��	 	�������� Robertie �	 pts$�� games
������ ppg�

and Dietterich applied TD��� with a feed�forward neural network to represent the value function� The actions in this
domain are deterministic� so deliberate exploration is needed� Their system makes a random exploratory move with
a given probability� �� which is gradually decreased during learning� After learning� their system �nds schedules that
are substantially shorter than the best previous method �for the same expenditure of CPU time�� This approach of
converting combinatorial optimization problems into reinforcement learning problems should be applicable to many
other important industrial domains�

These two applications show that when a simulator is available for a task� it is possible to solve the reinforcement
learning problem using TD��� even in very large search spaces� However� in domains involving interaction with
hard�to�model real�world environments �e�g�� robot navigation� factory automation�� some other method is needed�
Two approaches have been explored�

One approach is to learn a predictive model of the environment by interacting with it� Each interaction with
the environment provides a training example for supervised learning of the form s� � env�s� a�� where env is the
environment� s and a are the current state and action� and s� is the resulting state� Standard supervised learning
algorithms can be applied to learn this model� which can then be combined with TD��� to learn an optimal policy�

The second approach is a model�free algorithm called Q�learning� developed by Watkins �Watkins� 	���� Watkins

 Dayan� 	����� which is the subject of the next section�

��� Model	free Reinforcement Learning 
Q	learning�

Q�learning is an online approximation of value iteration� The key to Q�learning is to replace the value function f�s�
with an action�value function� Q�s� a�� The quantity Q�s� a� gives the expected cumulative discounted reward of
performing action a in state s and then pursuing the current policy thereafter� Hence� the value of a state is the
maximum of the Q values for that state

f�s� � max
a

Q�s� a��

We can write down the Q version of the Bellman equation as follows

Q�s� a� �
X
s�

P �s�js� a�
h
R�s�js� a� % max

a�
�Q�s�� a��

i
�

The role of the Q function is illustrated in Figure 	�� where it is contrasted with the value function f � In the left
part of the �gure� we see that the Bellman backup updates the value of f�s�� by considering the values f�s�� of states
that result from di�erent possible actions� In the right part of the �gure� the analogous backup works by taking the
best of the values Q�s�� a�� and backing them up to compute an updated value for Q�s� a��

The Q function can be learned by an algorithm that exploits the same insight as TD����online sampling of the
transition probabilities�and an additional idea�online sampling of the available actions� Speci�cally� suppose we
have visited state s� performed action a� and observed the resulting state s� and immediate reward R�s� a� s��� We
can update the Q function as follows

Q�s� a� � �	� �Q�s� a� %  	
�
R�s� a� s�� % �max

a
Q�s�� a�

�
�

Suppose that every time we visit state s� we choose the action a uniformly at random� Then the e�ect will be to
approximate a full Bellman backup �see Equation ��� Each value Q�s� a� will be the expected cumulative discounted
reward of executing action a in s� and the maximum of these values will be f�s�� The random choice of a ensures that
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Figure 	� A comparison of the value function f and the Q function� Black nodes represent situations where the
agent has chosen an action� White nodes are states where the agent has not yet chosen an action�

we learn Q values for every action available in state s� The online updates ensure that we experience the resulting
states s� in proportion to their probabilities P �s�js� a��

In general� we can choose which actions to perform in any way we like� as long as there is a non�zero probability
of performing every action in every state� Hence� a reasonable strategy is to choose the best action �i�e�� the one
whose estimated value Q�s� a� is largest� most of the time but to choose a random action with some small probability�
Watkins proves that as long as every action is performed in every state in�nitely many times� the Q function will
converge to the optimal function Q� with probability 	�

Once we have learned Q�� we must convert it into a policy� While this presented an insurmountable di�culty for
TD���� it is trivial for the Q representation� The optimal policy can be computed as

���s� � argmax
a

Q��s� a��

Crites and Barto �	���� applied Q�learning to a problem of controlling four elevators in a 	��story o�ce building
during peak �down tra�c�� People press elevator call buttons on the various  oors of the building to call the elevator
to that  oor� Once inside the elevator� they may also press destination buttons to request that the elevator stop
at various  oors� The elevator control decisions are �a� to decide� after stopping at a  oor� which direction to go
next� and �b� to decide� when approaching a  oor� whether to stop at that  oor or skip it� Crites and Barto applied
rules to make the �rst decision� so the reinforcement learning problem is to learn whether to stop or skip  oors� The
goal of the controller is to minimize the square of the time that passengers must wait for the elevator to arrive after
pressing the call button�

Crites and Barto used a team of four Q�learners� one for each of the four elevator cars� Each Q�function was
represented as a neural network with �� input features� �� sigmoidal hidden units� and � linear output units �to
represent Q�s� stop� and Q�s� skip��� The immediate reward was the �negative of the� squared wait time since the
previous action� They employed a form of random exploration in which exploratory actions are more likely to be
chosen if they have higher estimated Q values�

Figure 		 compares the performance of the learned policy to that of eight heuristic algorithms� including the best
non�proprietary algorithms� The left�hand graph shows the squared wait time� while the right�hand graph shows the
percentage of passengers that had to wait more than �� seconds for the elevator� The learned Q policy performs
better than all of the other methods�

Another interesting application of Q learning is to the problem of assigning radio channels for cellular tele�
phone tra�c� Singh and Bertsekas �	���� showed that Q learning could �nd a much better policy than some quite
sophisticated and complex published methods�

��� Open Problems in Reinforcement Learning

Many important problems remain unsolved in reinforcement learning� which re ects the relative youth of the �eld�
I discuss a few of these problems here�
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Figure 		 Comparison of learned elevator policy Q with eight published heuristic policies�

First� the use of multilayer sigmoidal neural networks for value function approximation has worked� but there is
no reason to believe that such networks are well�suited to reinforcement learning� First� they tend to forget episodes
�both good and bad�� unless they are retrained on those episodes frequently� Second� the need to make small gradient
descent steps makes learning very slow� particularly in the early stages� An important open problem is to clarify what
properties an ideal value function approximator would possess and to develop function approximators with those
properties� Initial research suggests that value function approximators should be �local averagers� that compute the
value of a new state by interpolating among the values of previously visited states �Gordon� 	�����

A second key problem is to develop reinforcement methods for hierarchical problem solving� For very large search
spaces� where the distance to the goal and the branching factor are big� no search method can work well� Often such
large search spaces have a hierarchical �or approximately hierarchical� structure that can be exploited to reduce the
cost of search� There have been several studies of ideas for hierarchical reinforcement learning �e�g�� Singh� 	����
Dayan 
 Hinton� 	���� Kaelbling� 	�����

The third key problem is to develop intelligent exploration methods� Weak exploration methods that rely on
random or biased random choice of actions cannot be expected to scale well to large� complex spaces� A property of the
successful applications shown above �particularly backgammon and job�shop scheduling� is that even random search
will reach a goal state and receive a reward� In domains where success is contingent on a long sequence of successful
choices� random search has a very low probability of receiving any reward� More intelligent search methods� such
as means�ends analysis� need to be integrated into reinforcement learning systems as they have been integrated into
other learning architectures such as Soar �Laird� Newell� 
 Rosenbloom� 	���� and Prodigy �Minton� Carbonell�
Knoblock� Kuokka� Etzioni� 
 Gil� 	�����

A fourth problem is that optimizing cumulative discounted reward is not always appropriate� In problems where
the system needs to operate continuously� a better goal is to maximize the average reward per unit time� However�
algorithms for this criterion are more complex and not as well�behaved� Several new methods have been put forward
recently �Schwartz� 	���� Mahadevan� 	���� Ok 
 Tadepalli� 	�����

The �fth� and perhaps most di�cult� problem is that existing reinforcement learning algorithms assume that the
entire state of the environment is visible at each time step� This is not true in many applications� such as robot
navigation or factory control� where the available sensors provide only partial information about the environment�
A few algorithms for the solution of hidden�state reinforcement learning problems have been developed �Cassandra�
Kaelbling� 
 Littman� 	���� Littman� Cassandra� 
 Kaelbling� 	���� McCallum� 	���� Parr 
 Russell� 	�����
Exact solution appears to be very di�cult� The challenge is to �nd approximate methods that scale well to large
hidden�state applications�

Despite these very substantial open problems� reinforcement learning methods are already being applied to a
wide range of industrial problems where traditional dynamic programming methods are infeasible� Researchers in
the area are optimistic that reinforcement learning algorithms can solve many problems that have resisted solution
by machine learning methods in the past� Indeed� the general problem of choosing actions to optimize expected
utility is exactly the problem faced by general intelligent agents� Reinforcement learning provides one approach to
attacking these problems�
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� Learning Stochastic Models

The �nal topic that I will discuss is the area of learning stochastic models� Traditionally� researchers in machine
learning have sought very general�purpose learning algorithms�such as decision tree� rule� neural network� and
nearest neighbor algorithms�that could e�ciently search a large and  exible space of classi�ers for a good �t to
training data� While these algorithms are very general� they have a major drawback� In a practical problem where
there is extensive prior knowledge� it can be quite di�cult to incorporate this prior knowledge into these very general
algorithms� A secondary problem is that the classi�ers constructed by these general learning algorithms are often
di�cult to interpret�their internal structure may not have any correspondence to the real�world process that is
generating the training data�

Over the past �ve years or so there has been tremendous interest in a more knowledge�based approach based
on stochastic modeling� A stochastic model is a model that describes the real�world process by which the observed
data are generated� Sometimes the terms generative stochastic model and causal model are used to emphasize this
perspective� The stochastic model is typically represented as a probabilistic network�a graph structure that captures
the probabilistic dependencies �and independencies� among a set of random variables� Each node in the graph has an
associated probability distribution� and from these individual distributions� the joint distribution of the observed data
can be computed� To solve a learning problem� the programmer designs the structure of the graph and chooses the
forms of the probability distributions� This yields a stochastic model with many free parameters �i�e�� the parameters
of the node probability distributions�� Given a training sample� learning algorithms can be applied to determine
the values of the free parameters and thereby �t the model to the data� Once a stochastic model has been learned�
probabilistic inference can be carried out to support tasks such as classi�cation� diagnosis� and prediction�

More details on probabilistic networks are given in two recent textbooks Jensen �	���� and Castillo� Gutierrez�
and Hadi �	�����

��� Probabilistic Networks

Figure 	� is an example of a probabilistic network that might be used to diagnose diabetes� There are six variables
�with their abbreviations�


 Age� Age of patient �A��


 Preg� Number of pregnancies �N��


 Mass� Body mass �M��


 Insulin� Blood insulin level �after a glucose tolerance test� �I��


 Glucose� Blood glucose level �after a glucose tolerance test� �G�� and


 Diabetes� True if the patient has diabetes �D��

In a medical diagnosis setting� the �rst �ve variables would be observed and then the computer would estimate the
probability that the patient has diabetes �i�e�� estimate the probability that the Diabetes variable is true��

This network corresponds to the following decomposition of the joint probability distribution among the six
variables

P �A�N�M� I�G�D� � P �A� 	 P �N� 	 P �M jA�N� 	 P �DjM�A�N� 	 P �I jD� 	 P �GjI�D��

Each node in the network corresponds to a probability distribution of the form P �NodejParents�� where the Parents of
Node are the nodes with arcs pointing to Node� In other words� if we believe the network is a correct representation
of the relationships among the variables� then it should be possible to factor the joint probability distribution into
the product of these smaller distributions�

The structure of the network�particularly the arcs that are absent�can be viewed as specifying conditional
independencies� Two variables A and B are conditionally independent given C if

P �A�BjC� � P �AjC� 	 P �BjC��

In the graph� Age a�ects Insulin only through the Diabetes node� so Age and Insulin are conditionally independent
given Diabetes� More generally� given the values of its parents� a node is independent of all other nodes in the graph
except its descendents� Formally�

P �A�BjParents�A�� � P �BjParents�A�� 	 P �AjParents�A���
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Figure 	� A probabilistic network for diabetes diagnosis

Table 	� Probability tables for the Age� Preg� and Mass nodes from Figure 	�� A learning algorithm must �ll in the
actual probability values based on the observed training data�

Age P �A�
����
�����
�����
���

Preg P �N�
�
�
� �

P �M jA�N�
Age Preg ���� ������ ����
���� �
���� �
���� ��
����� �
����� �
����� ��
����� �
����� �
����� ��
��� �
��� �
��� ��

unless B is a descendent of A�
In addition to specifying the structure of the network� we need to specify how each probability distribution will

be represented� One standard approach is to discretize the variables into a small number of values and represent
each probability distribution as a table� For example� suppose we discretized Age into the values f����� ������ �	����
���g� Preg into the values f�� 	� �	g� and Mass into the values f����kg� �	�	��kg� �	��kgg� Then the probability
distributions for those three nodes could be represented by the probability tables shown in Table 	�� The learning
task is to �ll in the probability values in these tables� The table for P �A� requires � independent parameters �because
the four values must sum to 	�� The table for P �N� requires � parameters� and the table for P �M jA�N� requies ��
parameters �because each row must sum to 	�� Similar tables would be required for the other � nodes in the network�

Given a set of training examples� this learning problem is very easy to solve� Each probability can be computed
directly from the training data� For example the cell P �N � 	� can be computed as the number of patients in
the sample that had exactly 	 pregnancies� The parameter P �M � �	�	��jA � ������ N � 	� is the fraction of
training examples with Age � ����� and Preg � 	 that have a Mass � �	�	��kg� Technically� these are the maximum
likelihood estimates of each of the probabilities� A di�culty that can arise is that some of the cells in the tables may
have very few examples� so the resulting probability estimates are very uncertain� One solution to this is to smooth
probabilities for �adjacent� cells in the table� For example� we might require that P �M � �	�	��jA � ������ N � 	�
have a value similar to P �M � �	�	��jA � ������ N � �	�� Of course we could also take an ensemble approach and
generate an ensemble of �tted stochastic models� as described in Section � above�

The process of learning a stochastic model consists of three steps �a� choosing the graphical structure� �b�
specifying the form of the probability distribution at each node in the graph� and �c� �tting the parameters of those
probability distributions to the training data� In most current applications� steps �a� and �b� are performed by a
user and step �c� is performed by a learning algorithm� However� below I brie y discuss methods for automating
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Figure 	� Probabilistic network for the Naive Bayes classi�er

step �a��learning the graphical structure�
Once we have learned the model� how can we apply it to predict whether new patients have diabetes� For a new

case� we will observe the values of all of the variables in the model except for the Diabetes node� Our goal is to
compute the probability of that node�that is� we seek the distribution P �DjA�N�M� I�G�� We could pre�compute
this distribution o(ine before observing any of the data� but the resulting conditional probability table would be
immense� A better approach is to wait until the values of the variables have been observed� and then compute the
single corresponding row of the class probability table�

This inference problem has been studied intensively� and a very general and elegant algorithm�the junction tree
algorithm�has been developed �Jensen� Lauritzen� 
 Olesen� 	����� In addition� e�cient online algorithms have
been discovered �e�g�� D�Ambrosio� 	����� In the worst case� these algorithms require exponential time� but if the
probabilistic network is sparsely connected� the running time is quite reasonable�

��� The Naive Bayes Classi�er

A very simple approach to stochastic modeling for classi�cation problems is the so�called �naive� Bayes classi�er
�Duda 
 Hart� 	����� In this approach� the training examples are assumed to be produced by the probabilistic
network shown in Figure 	�� where the class variable is y� and the features are x�� � � � � xn� According to this model�
the environment generates an example by �rst choosing �stochastically� which class to generate� Then� once the class
is chosen� the features describing the example are generated independently according to their individual distributions
P �xj jy��

In most applications� the values of the features are discretized so that each feature takes on only a small number
of discrete values� The probability distributions are represented as tables as in the diabetes example� and the network
can be learned directly from the training data by counting the fraction of examples in each class that take on each
feature value�

Because of the simple form of the network� it is easy to derive a classi�cation rule through the application of
Bayes� rule� Suppose there are only two classes f	� �g� Then our decision rule is to classify a new example into class
	 if P �y � 	jx� � P �y � �jx�� or equivalently� if P �y � 	jx��P �y � �jx� � 	� By Bayes� rule� we can write

P �y � 	jx� �
P �xjy � 	� 	 P �y � 	�

P �x�

P �y � �jx� �
P �xjy � �� 	 P �y � ��

P �x�

Dividing the �rst equation by the second allows us to cancel the normalizing denominator P �x� and obtain

P �y � 	jx�

P �y � �jx�
�

P �xjy � 	� 	 P �y � 	�

P �xjy � �� 	 P �y � ��

The quantity P �xjy � i� is just the product of the individual probabilities P �xj jy � 	�� so we have

P �y � 	jx�

P �y � �jx�
�

P �x�jy � 	� 	 P �x�jy � 	� 	 	 	P �xnjy � 	� 	 P �y � 	�

P �x�jy � �� 	 P �x�jy � �� 	 	 	P �xnjy � �� 	 P �y � ��
�

This gives the decision rule that we should classify an example into class 	 if and only if

P �x�jy � 	�

P �x�jy � ��
	
P �x�jy � 	�

P �x�jy � ��
	 	 	

P �xnjy � 	�

P �xnjy � ��
	
P �y � 	�

P �y � ��
� 	�
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Figure 	� Comparison of C��� and the naive Bayesian classi�er on �� data sets�

Despite the fact that the naive Bayes model barely deserves the name �model� in many applications� it performs
surprisingly well� Figure 	� compares the performance of C��� to the naive Bayes classi�er on �� benchmark tasks
�Domingos 
 Pazzani� 	����� The results show that except for a few domains where naive Bayes performs very
badly� it is typically competitive with or superior to C���� Domingos and Pazzani showed that the algorithm is very
robust to violations of the assumption that the features are generated independently�

��� Naive unsupervised learning

An important application of stochastic models is to problems of unsupervised learning� In unsupervised learning�
we are given a collection of examples fx�� � � � �xmg� and our goal is to construct some model of how these examples
are generated� For example� we might believe that these examples belong to some collection of classes� and we
want to determine the properties of those classes� This is sometimes called clustering the data into classes� and
many algorithms have been developed that apply a measure of the distance between two examples to group together
nearby examples�

A stochastic modeling approach for unsupervised learning works essentially the same way as for supervised
learning� We begin by de�ning the structure of the model as a probabilistic network� One commonly�used model is
the same �naive� network used by the naive Bayes classi�er shown in Figure 	��

Although we can use the same network structure� the problem of learning the parameters of the network is much
more di�cult� because our data do not contain the values of the class variable y� This is a simple case of the problem
of �tting stochastic models that contain hidden variables� which are variables whose values are not observed in the
training data�

Many di�erent algorithms have been developed for �tting networks containing hidden variables� As with the
naive Bayes classi�cation algorithm� the basic goal �at least for this article� is to compute the maximum likelihood
estimates of the parameters of the network� which I will refer to as the vector of weights W � In other words� we
want to �nd the value of W that maximizes P �SjW �� where S is the observed training sample� This is typically
formulated as the equivalent problem of maximizing the log likelihood logP �SjW �� Under the assumption that each
training example in S is generated independently� this is equivalent to maximizing

P
i logP �xijW �� where xi is the

i�th training example�
I brie y sketch three algorithms gradient descent� the expectation�maximization algorithm� and Gibbs sampling�
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����� Gradient Descent for Bayes Networks

Russell� Binder� Koller� and Kanazawa �	���� describe a method for computing the gradient of the log likelihood
rW logP �xijW �� Let us focus on a particular node in the network representing variable V � Let U be the parents of
V � and let w � P �V � vjU � u� be the entry in the conditional probability table for V when V � v and U � u�
Then Russell et al� show that

� logP �xijW �

�w
�
P �V � v� U � ujW�xi�

w
�

The conditional probability in the numerator can be computed by any algorithm for inference in probabilistic networks
�including the junction tree algorithm mentioned above��

Using this formula� the gradient of the parameters of a network can be computed with respect to a training
sample S� We can then apply standard gradient descent algorithms� such as �xed step size methods or the conjugate
gradient algorithm� to search for the maximum likelihood set of weights� One subtlety is that we must ensure that
the weights lie between � and 	 and sum to 	 appropriately� It su�ces to constrain and renormalize them after
each step of gradient descent� Russell et al have tested this algorithm on a wide variety of probabilistic network
structures�

����� The Expectation Maximization Algorithm

The second algorithm I will discuss is the Expectation Maximization �EM� algorithm �Dempster� Laird� 
 Rubin�
	����� EM can be applied to probabilistic networks if the node probability distributions belong to the exponential
family of distributions �which includes the binomial� multinomial� exponential� poisson� and normal distributions�
and many others�� In particular� conditional probability tables have multinomial distributions� so the EM algorithm
can be applied to the case I am considering in this article�

The EM algorithm is an iterative algorithm that starts with an initial value for W and incrementally modi�es W
to increase the likelihood of the observed data� One way to understand EM is to imagine that each training example
is augmented to include parameters describing values of the hidden variables� For concreteness� consider the simple
case of Figure 	� with the class variable y hidden� Assume y takes on two values 	 and �� Then we would augment
each training example with P �y � 	jx� and P �y � �jx�� �Actually� the P �y � �jx� is redundant in this case� because
P �y � �jx� � 	 � P �y � 	jx��� More generally� each observed example xi will be augmented with the expected
values of the su
cient statistics for describing the probability distribution of the hidden variables�

The EM algorithm alternates between two steps until W converges


 E�step
 Given the current value of W � compute the augmentations P �yi � 	jxi� and P �yi � �jxi� for each
example xi�


 M�step
 Given the augmented data set� compute the maximum likelihood estimates for W under the as�
sumption that the probability distribution of the values of the hidden variables is correctly speci�ed in each
augmented training example�

In the case of Figure 	�� the E�step applies Bayes� theorem

P �yi � 	jxi� �
P �xijyi � 	� 	 P �yi � 	�

P �xi�

All of the quantities on the right�hand side can be computed given the current value forW � The quantity P �xijyi � 	�
is the product of P �xij jyi � 	� for each feature j� and P �yi � 	� is the current estimated probability of generating
an example in class 	� P �y � 	��

The M�step for naive Bayes classi�cation must estimate each of the weights from the augmented training examples�
To estimate P �y � 	�� we sum the augmented value P �yi � 	� over all i and divide by the sample size m

P �y � 	� �
	

m

X
i

P �yi � 	��

To estimate the conditional probability that feature xj is 	 for examples in class 	� we take each training example i
that has xij � 	� sum up the augmented values P �yi � 	�� and divide by the total P �y � 	�

P �xj � 	jy � 	� �
	

P �y � 	�

X
fijxij��g

P �yi � 	��

��



In e�ect� we treat each augmented training example as if it were a member of class 	 with probability P �yi � 	� and
as if it were a member of class � with probability 	� P �yi � 	��

A well�known application of the EM algorithm in unsupervised clustering is the Autoclass program �Cheeseman�
Self� Kelly� Taylor� Freeman� 
 Stutz� 	����� In addition to discrete variables �of the kind I have been discussing��
Autoclass can handle continuous variables� Instead of computing the maximum likelihood estimates of the param�
eters� it adopts a prior probability distribution over the parameter values and computes the maximum a posteriori
probability �MAP� values� This is easily accomplished by a minor modi�cation of EM� One of the most interesting
applications of Autoclass was to the problem of analyzing the infrared spectra of stars� Autoclass discovered a new
class of star� and this discovery was subsequently accepted by astronomers �Cheeseman et al�� 	�����

����� Gibbs Sampling

The �nal algorithm that I will discuss is a Monte Carlo technique called Gibbs sampling �Geman 
 Geman� 	�����
Gibbs sampling is a method for generating random samples from a joint probability distribution P �A�� � � � � An�
when sampling directly from the joint distribution is di�cult� Suppose we know the conditional distribution of each
variable Ai in terms of all of the others P �A�jA�� � � � � An�� P �A�jA�� A�� � � � � An�� � � � � P �AnjA�� � � � � An���� The
Gibbs sampler works as follows� We start with a set of arbitrary values� a�� � � � � an� for the random variables� For
each value of i� we then sample a new value ai for random variable Ai according to the distribution P �AijA� �
a�� � � � � Ai�� � ai��� Ai�� � ai��� � � � � An � an�� If we repeat this long enough� then under certain mild conditions
the empirical distribution of these generated points will converge to the joint distribution�

How is this useful for learning in probabilistic networks� Suppose we wish to take a full Bayesian approach
to learning the unknown parameters in the network� In such cases� we want to compute the posterior probability
of the unknown parameters given the data� Let W denote the vector of unknown parameters� In a full Bayesian
approach� we treatW as a random variable with a prior probability distribution P �W �� Given the training examples
fx�� � � � �xmg� we want to compute P �W jx�� � � � �xm�� This is very di�cult� because of the hidden classes y�� � � � � ym�
However� using the Gibbs sampler� we can generate samples from the distribution

P �W� y�� � � � � ymjx�� � � � �xm��

Then� by simply ignoring the y values� we obtain samples for W  W�� � � � �WL�
These W values constitute an ensemble of learned values for the network parameters� To classify a new data

point x� we can apply each of the values of W� to predict the class of x and have them vote� The voting is with
equal weight� If some W values have higher posterior probability than others� then they will appear more often in
our sample�

To apply the Gibbs sampler to our unsupervised learning problem� we begin by choosing random initial values
for the parameters W of the network and setting � to zero� We then repeat the following loop L times�

	� Compute new values for y�� � � � � yn
 From the probabilistic network in Figure 	�� we can compute P �yijW�xi��
because we know �current guesses for� W and �observed values for� xi� To sample from this distribution� we
 ip a biassed coin with probability of heads P �yijW�xi��

�� Compute new values for W 
 Let w� be the parameter that represents the probability of generating an
example from class �� Suppose the prior distribution� P �w��� is the uniform distribution for all values � � w� �
	� Let m� be the number of training examples �currently� assigned to class �� Then the posterior probability
P �w�jy�� � � � � ym� has a special form known as a Beta distribution with parameters m� % 	 and m �m� % 	�
Algorithms are available for drawing samples from this distribution�

Similarly� let wjv� be the parameter that represents the probability that the j�th feature will have the value
v when drawn from class zero P �xj � vjyj � ��� Again assuming uniform priors for P �wjv��� this variable
also has a Beta distribution with parameters cjv� % 	 and m� � cjv� % 	� where cjv� is the number of training
examples in class � having xj � v� As with w�� we can sample from this distribution�

We can do the same thing for the parameters concerning class 	 wjv��

�� Record the value of the parameter vector� Let � � �% 	 and set W� �W �

To allow the Gibbs sampler to converge to a stationary distribution� we should perform some number of iterations
in which we skip Step �� before recording L values of the parameter vector� This procedure gives us an ensemble of
L probabilistic networks which can be applied to classify new data points�
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Figure 	� Probabilistic model describing a mixture of experts

There is a close resemblance between Gibbs sampling and the EM algorithm� In both algorithms� the training
examples are augmented with information about the hidden variables� In EM� this information describes the prob�
ability distribution of the hidden variables� whereas in Gibbs sampling� this information consists of random values
drawn according to that probability distribution� In EM� the parameters are recomputed to be their maximum
likelihood estimates based on the current values of the hidden variables� whereas in Gibbs sampling� new parameter
values are sampled from the posterior distribution given the current values of the hidden variables� Hence� EM can
be viewed as a maximum likelihood �or MAP� approximation to Gibbs sampling�

One potential problem that can arise in Gibbs sampling is caused by symmetries in the stochastic model� In the
case we are considering� for example� suppose there are two true underlying hidden classes� class A and class B� We
want the model to generate examples from class A when y � 	 and from class B when y � �� However� there is
nothing to force the model to do this� It could just as easily use y � 	 to represent examples of class B and y � �
to represent examples of class A� If permitted to run long enough� in fact� the Gibbs sampler should explore both
possibilities� If our sample of weight vectors W� includes weight vectors corresponding to both of these alternatives�
then when we combine these weight vectors� we will get bad results� In practice� this problem often does not arise�
but in general� steps must be taken to remove symmetries from the model �see Neal� 	�����

Gibbs sampling is a very general method� it can often be applied in situations where the EM algorithm cannot�
The generality of Gibbs sampling has made it possible to construct a general�purpose programming environment�
called BUGS� for learning stochastic models �Gilks� Thomas� 
 Spiegelhalter� 	����� In this environment� the user
speci�es the graph structure of the stochastic model� the form of the probability distribution at each node� and prior
distributions for each parameter� The system then develops a Gibbs sampling algorithm for �tting this model to the
training data� BUGS can be downloaded from http���www�mrc�bsu�cam�ac�uk�bugs��

��� More Sophisticated Stochastic Models

This section presents three examples of more sophisticated stochastic models that have been developed the Hier�
archical Mixture of Experts �HME� model� the Hidden Markov Model �HMM�� the Dynamic Probabilistic Network
�DPN�� Like the naive model from Figure 	�� these models can be applied to a wide number of problems without
performing the kind of detailed modeling of causal connections that we performed in the diabetes example from
Figure 	��

����� The Hierarchical Mixture of Experts

The Hierarchical Mixture of Experts �HME� model �Jordan 
 Jacobs� 	���� is intended for supervised learning in
situations where one believes the training data are being generated by a mixture of separate �experts�� For example�
in a speech recognition system� we might face the task of distinguishing the spoken words �Bee�� �Tree�� �Gate��
and �Mate�� This naturally decomposes into two hard sub�problems �a� distinguishing �Bee� from �Tree� and �b�
distinguishing �Gate� from �Mate��

Figure 	� shows the probabilistic network for a simple mixture�of�experts model for this case� According to this
model� a training example �xi� yi� is generated by �rst generating the data points xi� then choosing an �expert� ei
stochastically �depending on the value of xi�� and then choosing the class yi depending on the values of xi and ei�

��



GateExpert 1 Expert 2

X

Y

Figure 	� The mixture of experts model viewed as a specialized neural network

There are two things to note about this model� First� the direction of causality is reversed from the naive Bayes
network of Figure 	�� Second� if we assume that all of the features of each xi will always be observed� we do not need
to model the probability distribution P �X� on the bottom node in the graph� Third� unless we make some strong
assumptions� the probability distribution P �Y jX�E� is going to be extremely complex� because it must specify the
probability of the classes as a function of every possible combination of features for X and expert E�

In their development of this general model� Jordan and Jacobs assume that each probability distribution has
simple form �see Figure 	�� which shows the model as a kind of neural network classi�er�� Each value of the random
variable E speci�es a di�erent �expert�� The input features x are fed into each of the experts and into a �gating
network�� The output of each expert is a probability distribution over the possible classes� The output of the gate
is a probability distribution over the experts� This overall model has the following analytical form

P �yjx� �
X
e

ge�x�pe�yjx��

where the index e varies over the di�erent experts� The value ge�x� is the output of the gating network for expert e�
The value pe�yjx� is the probability distribution over the various classes output by expert e�

Jordan and Jacobs have investigated networks where the individual experts and the gating network have very
simple forms� In a ��class problem� each expert has the form

pe�yjx� � ��wT
e x��

where wT
e is the transpose of a vector of parameters� x is the vector of input feature values� and � is the usual logistic

sigmoid function 	��	 % exp�	���
The gating network was described earlier in Section �� The gating values are computed according to

ze � vTe x

ge �
ezeP
u e

zu

In other words� ze is the dot product of a weight vector ve and the input features x� The output ge is the soft�max of
the ze values� The ge values are all positive and sum to 	� This is known as the multinomial logit model in statistics�

The problem of learning the parameters for a mixture�of�experts model is similar to the problem of unsupervised
learning� except that here� the hidden variable is not the class yi of each training examples i� but rather the expert
ei that was responsible for generating that training example� If we knew which expert generated each training
example� then we could �t the parameters directly from the training data as with did for the naive Bayes algorithm�
Jordan and Jacobs have applied both gradient descent and the EM algorithm to solve this learning problem� For the
particular choice of sigmoid and soft�max functions for the experts and gates� the EM algorithm has a particularly
e�cient implementation as a sequence of weighted least squares problems�

The simple one�level hierarchy of experts shown in Figure 	� can be extended to deeper hierarchies� Figure 	�
shows a ��level hierarchy� All of the �tting algorithms apply to this more general case as well�
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Figure 	� The probabilistic network for a Hidden Markov Model

����� The Hidden Markov Model

Figure 	� shows the probabilistic network of a hidden Markov model �HMM� Rabiner� 	����� An HMM generates
examples that are strings of length n over some alphabet A of letters� Hence� each example x is a string of letters
o�o� 	 	 	 on �where the o stands for �observable��� To generate a string� the HMM begins by generating an initial
state s� according to probability distribution P �s��� From this state� it then generates the �rst letter of the string
according to the distribution P �o�js��� It then generates the next state s� according to P �s�js��� Then it generates
the second letter according to P �o�js�� and so on�

In some applications� the transition probability distribution is the same for all pairs of adjacent state variables
P �stjst���� Similarly� the output �or emission� probability distribution can be the same for all states P �ojs�� In this
variation� the HMM is equivalent to a stochastic �nite�state automaton �FSA�� At each time step� the FSA makes a
probabilistic state transition and then generates an output letter�

Another common variation on HMM�s is to include an absorbing state or halting state as one of the values of the
state variable� If the HMM makes a transition into this state� it terminates the string being generated� This permits
HMM�s to model strings of variable length�

Hidden Markov models have been widely applied in speech recognition� where the alphabet of letters consists
of �frames� of the speech signal �Rabiner� 	����� Each word in the language can be modeled as an HMM� Given
a new spoken word� a speech recognition system computes the likelihood that each of the word HMM�s generated
that spoken word� The recognizer then predicts the most likely word� A similar analysis can be applied at the level
of whole sentences by concatenating word�level HMM�s� Then the goal is to �nd the sentence most likely to have
generated to speech signal�

To learn an HMM� a set of training examples is provided� where each example is a string� The sequence of states
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Figure 	� A simple dynamic probabilistic network with two independent state variables� robot location �Lt� and
camera direction �St��

that generated the string is hidden� Once again� however� the EM algorithm can be applied� In the context of
HMM�s� it is known as the Baum�Welch or Forward�Backward algorithm� In the E�step� the algorithm augments
each training example with statistics describing the hypothesized string of states that generated the example� In the
M�step� the parameters of the probability distributions are re�estimated from the augmented training data�

Stolcke and Omohundro �	���� have developed algorithms for learning the structure and parameters of hidden
Markov models from training examples� They applied their techniques to several problems in speech recognition and
incorporated their algorithm into a speaker�independent speech recognition system�

����� The Dynamic Probabilistic Network

In the hidden Markov model� the number of values for the state variable at each point in time can become very
large� Consequently� the number of parameters in the state transition probability distribution P �stjst��� can become
intractably large� One solution is to represent the causal structure within each state by a stochastic model� For
example� consider a mobile robot with a steerable television camera� The images observed by the camera will be
the output alphabet of the HMM� The hidden state will consist of the location of the robot within a room and the
direction the camera is pointing� Suppose there are 	�� possible locations and 	� possible camera directions� In an
HMM� the hidden state will be a single variable with 	��� possible values�

However� suppose that the robot has separate commands to change its location and to steer its camera� At each
time step� it chooses to perform exactly one of these two actions� Then it makes sense to represent the hidden state
by two separate state variables robot location and camera direction� Figure 	� shows the resulting stochastic model�
which is variously called a dynamic probabilistic network �DPN� Kanazawa� Koller� 
 Russell� 	����� a dynamic
belief network �DBN� Dean 
 Kanazawa� 	����� and a factorial HMM �Ghahramani 
 Jordan� 	�����

Unfortunately� inference and learning with DPN�s is computationally challenging� The overall approach of apply�
ing the EM algorithm or Gibbs sampling is still sound� However� the E�step of computing the augmented training
examples is itself di�cult� Ghahramani and Jordan �	���� and Kanazawa� Koller� and Russell �	���� describe al�
gorithms that can perform approximate E�steps� A recent review of this very active research area can be found in
Smyth� Heckerman and Jordan �	�����

��� Application	Speci�c Stochastic Models

A major motivation for the stochastic modeling approach to machine learning is to communicate background knowl�
edge to the learning algorithm� While the general models discussed above achieve this goal to some extent� it is
possible to go much further in this direction� and many applications of machine learning are pursuing this approach�
To give a  avor of the kinds of models being developed� I describe one example out of the many recently published
papers�

Revow� Williams� and Hinton �	���� have developed a stochastic model for hardwritten digit recognition� shown
in Figure ��� To generate a digit according to this model� we �rst randomly choose one of the 	� digits� This
determines the �home locations� of � points that control a uniform B spline �denoted h�� � � � � h
 in the �gure�� The
B spline speci�es the shape of the digit� The next step randomly perturbs those control points �using a Gaussian
distribution� to produce the control points that will be used to generate the handwritten digit �denoted k�� � � � � k

in the �gure��
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Figure �� Probabilistic network for generating a digit and choosing N pixels to ink�

Next we generate a ��degree�of�freedom a�ne transformation that models translation� rotation� skewing� and so
forth� From the randomly chosen a�ne transformation and the control points� we deterministically lay out a sequence
of beads along the spline curve� These beads will act as circular Gaussian ink generators that will ink the pixels in
the image� There is a parameter � that speci�es the standard deviation of the Gaussian ink generators� The beads
are placed a distance �� apart along the spline� hence� the number of beads varies as a function of �� At this point�
we have made all of the choices that are independent of the image pixels�

Now� the model generates N inked pixels �indicated in the diagram by the box with an N in the lower left corner��
To generate each pixel� it �rst generates a boolean variable that indicates whether the pixel will be a noise pixel or
a pixel from the digit� If it is a noise pixel� the location is chosen uniformly at random and inked� If it is a digit
pixel� one of the l beads is chosen at random �speci�ed by the variable bead index�� and a pixel is inked according to
a symmetric Gaussian probability distribution�

The parameters of the model include the probability of noise pixels� the standard deviation � of the Gaussian
ink generators� the variance of the Gaussian used to perturb the control points� the parameters controlling the a�ne
transformation� and the home locations of the eight control points�

There are two tasks that we wish to perform with this model classi�cation and learning� Let us consider
classi�cation �rst� Given an image and 	� learned spline models� our goal is to �nd the spline model that is most
likely to have generated the image� We do this by computing the probability that the spline model for each digit
generated the image� This computation is di�cult� because we are given only the locations of the inked pixels and
the �hypothesized� class of the digit� In principle� we should consider all possible locations for the control points� all
possible values for �� and all possible choices for whether each inked pixel is a noise pixel or a digit pixel� Each such
combination could have generated the observed image �with a certain probability�� We should integrate over these
parameters to compute the probability that a given digit model generated the given image�

In practice� Revow et al� take a maximimum likelihood approach� They compute the values for the control points
�k�� � � � � k
�� �� and the noise$digit choices that maximize the likelihood of generating the observed image� The EM
algorithm is applied to compute this� Figure �	 shows the �tting of the model for � and for � to a typical image�
Notice that during the �tting� � is initialized to a very large value� so that the ink generators are likely to capture
inked pixels� When EM begins to converge� � is decreased �according to a given schedule�� and new beads are
positioned along the spline using the current value of �� Then� �tting is resumed� This is performed approximately
six times per image�

Now let�s consider learning� The goal of learning is to learn for each digit the home locations of the control points
and the variance for perturbing these control points� In addition� the parameters controlling the a�ne transformation
must be learned� but these are assumed to be the same for all classes� To solve this learning problem� Revow et
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Figure �	 Some stages of �tting models to an image of a � �from Revow� et al�� 	���� reproduced with permission��
The image is displayed in the top row� The next row shows the model for a � being �tted� The bottom row attempts
to �t the model of a �� The light circles indicate the value of �� In the bottom two rows� the image has been
arti�cially thinned so that the circles are visible�

al� again apply EM� In the E�step� the training examples are augmented with the maximimum likelihood locations
of the control points and the value of �� which are computed via a nested EM as described above� In the M�step� the
average home location of each control point and the average � is computed� The model for each digit is trained by
�tting only to training examples of that digit� The running time is dominated by the cost of the inner �classi�cation�
EM algorithm�

Revow et al)report results that are competitive with the best known methods on the task of recognizing digits
from US mail zip codes� To achieve this performance� they employ some post�processing steps that analyze how well
each digit model �ts the image� They also considered learning mixtures of digit models for cases where there are
signi�cantly di�erent ways of writing a digit �e�g�� the digit � with and without a central horizontal bar��

The advantage of the stochastic modeling approach is that learning is very fast both computationally� because
EM is very quick� and statistically� because there are only �� parameters in each digit model �� coordinates for each
control point and � a�ne transformation parameters�� Another advantage is that the digit images do not need to be
preprocessed �e�g�� to remove slants� scale to a standard size� and so forth�� This preprocessing can be a signi�cant
source of errors as well as requiring extra implementation e�ort� A related advantage is that the stochastic models
can �t a single digit in the context of several other digits�so that precise segmentation is not required prior to
classi�cation� The primary disadvantage is that classi�cation is slower� because of the need to perform a search to
�t each digit model�

�� Learning the Structure of Stochastic Models

All of the methods I have discussed so far learn the parameters of a stochastic model whose structure is given� An
important research question is whether this structure can be learned from data as well� Recent research has made
major progress in developing algorithms for this problem�

One of the �rst algorithms was developed by Chow and Liu �	���� for learning a network structure in the form
of a directed tree� This algorithm �rst constructs a complete undirected graph where the nodes are the variables and
the edges are labeled with the mutual information between the variables� The algorithm then �nds the maximum
weighted spanning tree of this graph� chooses a root node arbitrarily� and orders the arcs to point away from the
root� A nice feature of this algorithm is that it is quite fast�it runs in polynomial time�
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Figure �� Probabilistic network constructed by the TAN algorithm for a diabetes diagnosis task

Cooper and Herskovits �	���� developed an algorithm� called K�� for learning the structure of a stochastic model
where all variables are observed in the training data� They adopt a maximum a posteriori �MAP� approach within
a Bayesian framework� The key contribution of their paper was to derive a formula for the posterior probability of
network� This formula can be updated incrementally as changes are made to the network�

Using their formula� they implemented a simple greedy search algorithm for �nding �approximately� the MAP
network structure� Their algorithm requires the user to provide an ordering of the variables� and it will consider
adding arcs only from variables earlier in the ordering to variables later in the ordering� This signi�cantly constrains
the search and also ensures that the learned network will remain acyclic� K� begins with a network having no arcs�
all variables are independent of one another� K� evaluates the posterior probability of adding each possible single
edge and makes the highest�ranking addition� This greedy algorithm is continued until no single change improves
the posterior probability�

Heckerman� Geiger� and Chickering �	���� describe a modi�cation to the K� method for computing posterior
probabilities and a local search algorithm that uses this improvement� Their method requires a prior probability
distribution in the form of a prior network and two parameters �a� an equivalent sample size �which controls how
much new data is required to override the prior� and �b� a penalty for each arc that is di�erent from the prior
network� Their local search algorithm considers all one�step changes to the network �arc addition� deletion� and
reversal�� and retains the change that most increases the posterior probability of the network� They obtain results
comparable to K�� Interesting� they found that the most important role for the prior network was to provide a good
starting point for local search �rather than to bias the objective function for guiding the search��

Friedman and Goldszmidt �	���� developed a network learning algorithm� called Tree Augmented Naive Bayes
�TAN�� speci�cally for supervised learning� The TAM algorithm starts with a naive Bayes network of the kind shown
in Figure 	� and considers adding arcs to improve the posterior probability of the network� They apply a modi�cation
of the Chow and Liu algorithm to learn a tree structure of arcs connecting the xj variables to one another� Figure ��
shows a network learned by TAN for a diabetes diagnosis problem� Compared to Figure 	�� the directions of the
arcs are wrong� Nonetheless� the network gives quite accurate classi�cations� Figure �� compares the performance
of TAN to C��� on �� benchmark problems� The plot shows that TAN outperforms C��� on most of the domains�

There are many other important papers on the topic of structure learning for probabilistic networks� Four
important references are Verma and Pearl �	����� Spirtes and Meek �	����� Spiegelhalter� Dawid� Lauritzen� and
Cowell �	����� Spirtes� Glymour and Scheines �	���� and the references therein�

��� Summary� Stochastic Models

This completes my review of methods for learning with stochastic models� There are several good survey articles of
this topic �Buntine� 	���� 	���� Heckerman� 	�����

The area of stochastic modeling is very active right now� Journals and conferences that were once devoted
exclusively to neural network applications are now presenting many papers on stochastic modeling� The research
community is still gathering experience and developing improved algorithms for �tting and reasoning with stochastic
models� Many of the stochastic models we would like to work with are intractable� The challenge is to �nd general�
purpose� tractable approximation algorithms for reasoning with these very elegant and expressive stochastic models�
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Figure �� Comparison of TAN and C��� on �� benchmark tasks� Points above the diagonal line correspond to cases
where TAN gave more accurate results than C����

� Concluding Remarks

Any survey must choose particular areas and omit others� Let me brie y mention some other active areas� A central
topic in machine learning is the control of over�tting� There have been many developments in this area as researchers
explored various penalty functions and resampling techniques �including cross�validation� for preventing over�tting�
An understanding of the over�tting process has been obtained through the statistical concepts of bias and variance�
and several authors have developed bias$variance decompositions for classi�cation problems�

Another active topic has been the study of algorithms for learning relations expressed as Horn clause programs�
This area is also known as Inductive Logic Programming� and many algorithms and theoretical results have been
developed in this area�

Finally� many papers have addressed practical problems that arise in applications such as visualization of learned
knowledge� methods for extracting understandable rules from neural networks� algorithms for identifying noise and
outliers in data� and algorithms for learning easy�to�understand classi�ers�

There have been many exciting developments in the past �ve years� and the relevant literature in machine learning
has been growing rapidly� As more areas within arti�cial intelligence and computer science apply machine learning
methods to attack their problems� I expect that the  ow of interesting problems and practical solutions will continue�
It is a very exciting time to be working in machine learning�
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