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Abstract

Ecosystem Informatics brings together math-
ematical and computational tools to address
scientific and policy challenges in the ecosys-
tem sciences. These challenges include novel
sensors for collecting data, algorithms for au-
tomated data cleaning, learning methods for
building statistical models from data and for
fitting mechanistic models to data, and algo-
rithms for designing optimal policies for bio-
sphere management. This presentation dis-
cusses these challenges and then describes re-
cent work on the first two of these—new meth-
ods for automated arthropod population count-
ing and linear Gaussian DBNs for automated
cleaning of sensor network data.

1 Introduction

Computer science has had a revolutionary impact in
molecular biology and genetics. This impact was not
merely the result of automating existing ways of doing
science. Instead, novel computer science methods, when
coupled with novel instruments (e.g., shotgun sequencing
of the genome, DNA arrays) transformed the scientific
enterprise. In place of hypothesis-driven experiments ex-
amining a particular subsystem or pathway, computa-
tional methods supported data-driven science in which
massive amounts of data were collected first, and then
subjected to computational analysis to suggest hypothe-
ses and fit statistical and causal models.

This change was initially controversial. Scientists
and funding agencies were concerned that data collected
without any prior hypothesis would be useless. But
whole genome sequencing has turned out to be hugely
important for addressing a wide range of questions in
molecular and cell biology as well as evolution and pop-
ulation biology.

The ecosystem sciences (ecosystem ecology, commu-
nity ecology, landscape ecology, hydrology, etc.) are to-
day where molecular biology was in the mid-1990s. Most
research projects formulate hypotheses and perform ma-
nipulative experiments to refine and test them. Conse-
quently, progress is slow, and many of the most impor-

tant management questions (e.g., preventing species ex-
tinctions, limiting the spread of invasive species and dis-
eases, restoring ecosystems to healthy function, mitigat-
ing the effects of climate change) cannot be answered by
the current state of scientific knowledge. There is broad
agreement that the ecosystem sciences are data-limited,
and there are several efforts under way to collect observa-
tional data on a much larger scale than in the past (e.g.,
the National Ecological Observatory Network (NEON;
www.neoninc.org). As ecology becomes a data-driven
science, there is a great need for computer scientists to
help with the entire data pipeline from instruments, to
data management, to model fitting, to policy making.
Figure 1 shows the data pipeline. Sensors capture data
to create datasets. These are then analyzed to produced
models that can support the design of policies. Models
also guide the formation of hypotheses which can then
be tested by designing and executing experiments. There
are many opportunities to apply advanced computer sci-
ence and artificial intelligence methods in this pipeline.

• Sensor Algorithms. Many sensors incorporate com-
plex algorithms to transform the raw signals into
meaningful data. For example, in Section 2 below, I
will describe the application of computer vision meth-
ods to classify and count arthropod specimens.

• Data Cleaning. Sensors fail, particularly when
they are placed in challenging environments (glaciers,
mountain tops, the seafloor). When data is collected
at large scale, it is no longer feasible for people to man-
ually detect and diagnose sensor failures. Automated
data cleaning methods are needed that can detect and
correct sensor failures in real time.

• Model Fitting. Once datasets are constructed, mod-
els can be fit to them. The two primary kinds of
models—predictive models and causal models—are
both needed for ecological science and ecosystem man-
agement. A challenging aspect of ecological models is
that many different kinds of data, at many different
spatial and temporal scales, need to be considered si-
multaneously. An example of predictive models are
species distribution models [Elith et al., 2006]. These
attempt to predict the spatio-temporal distribution of
plant and animal species as a function of climate and
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Figure 1: The Ecosystem Informatics Pipeline

habitat. A particular challenge is to jointly predict the
distribution of thousands of plant and animal species
in order to guide the design of conservation policies.

• Optimization. The development of optimal poli-
cies for ecosystem management usually involves solv-
ing optimization problems constrained by causal or
predictive models. In ecological settings, the objec-
tive function typically incorporates both biological
goals (e.g., species survival, biodiversity) and eco-
nomic goals (e.g., ecosystem services such as water
filtration, pollination, timber, agriculture). An im-
portant issue is to take into account the uncertainty
resulting from the previous steps in the pipeline.

• Experiment Design. Although the primary (upper)
pipeline focuses on observational data, there is still a
need for hypothesis-driven data collection. Methods
for experiment design can help scientists construct ex-
periments that are inexpensive and maximize the sci-
entific value of the information that is collected.

• Sensor Placement. A special case of experiment de-
sign is to determine where to place sensors (and possi-
bly, where to move them) to maximize their scientific
effectiveness [Krause et al., 2008].

Over the past decade at Oregon State University, we
have launched research and education efforts to address
these computational challenges. In the remainder of this
presentation, I will discuss two of our current activities:
(a) rapid throughput arthropod identification and (b)
automated data cleaning for sensor networks. This talk
is an invitation to join us in addressing these important
and challenging problems.

2 Rapid Throughput Arthropod

Identification

The arthropods (insects, arachnids, crustaceans, milli-
pedes, and centipedes) form a huge branch of the tree

Figure 2: Sample images from our STONEFLY9 dataset.
The top and bottom rows show two distinct stonefly
species, difficult to classify even for trained human ex-
perts.

of life. Arthropods are found in virtually all environ-
ments on earth including lakes, streams, soils, oceans,
and on animals. In typical food webs, arthropods con-
sume the primary producers (bacteria and plants) and in
turn are consumed by “higher” animals such as birds and
mammals. Consequently, arthropods are very good in-
dicators of ecosystem functioning. They provide conve-
nient measures of biodiversity and ecosystem health, so
they are important dependent variables for understand-
ing and restoring ecosystems.

Arthropods are very easy to collect. Unfortunately,
while some arthropods are easy to distinguish, many
species are only subtly different from one another.
Hence, the effective exploitation of arthropod data is
limited by the number of (expensive) experts available
to manually classify and count the specimens.

To address this problem, we launched the BugID
project whose goal is to develop robotic devices and as-
sociated computer vision algorithms for automatically
manipulating, photographing, classifying, and separat-
ing arthropod specimens. The first problem that we fo-
cused on was identifying stonefly larvae. Stoneflies live
in the substrate of freshwater streams, and they are sen-
sitive indicators of pollution. Figure 2 shows example
images for two stonefly species. These were collected us-
ing a robotic apparatus that manipulates the specimens
into the field of view of a microscope via pumps and al-
cohol jets and captures images via a computer-controlled
camera [Larios et al., 2008].

We formulated the problem of classifying these insect
images as a problem of generic object recognition. Much
recent research in computer vision and machine learning
has studied this problem. The state-of-the-art approach
is based on the following sequence of steps:

• Detection. Apply one or more interest detectors
to the image to find interest regions. Detectors in-
clude the Harris and Hessian detectors [Mikolajczyk
and Schmid, 2002], our own PCBR detector [Deng et
al., 2007], and the Kadir-Brady salient region detec-
tor [Kadir and Brady, 2001]. These are regions of the
image of various sizes.

• Description. Describe each interest region by a de-
scriptor vector. The 128-dimensional SIFT descriptor



[Lowe, 2004] is by far the most popular. Each image
i is now represented by a bag Bi = {xi,1, . . . , xi,Ni

}
of descriptor vectors. The key machine learning chal-
lenge is to develop a classifier architecture that can
handle these bags of descriptors.

• Dictionary Learning. The dominant architecture is
to take all of the descriptor vectors in a training set
of images and cluster them (e.g., via k-means cluster-
ing) into D clusters. In our work, we form a separate
dictionary for each class (e.g., species). Let wj,k be
cluster j for class k. These are often referred to as
keywords.

• Conversion to Histograms. Convert the bag Bi

into a histogram Hi such that Hi,j,k is the number
of elements in Bi that were assigned to cluster wj,k.
Note that each descriptor vector xi,l is mapped to one
cluster in each of the D dictionaries.

• Classifier Training and Testing. Each training ex-
ample is now represented by a fixed length histogram
feature vector Hi (containing D × K elements, where
D is the number of clusters in each dictionary and K is
the number of classes). Hence, any standard machine
learning classification method can be applied.

In practice, the available data is split into three parts:
clustering, training, and testing. The clustering data is
used only for learning the dictionary. The training data
is then re-represented as histograms using the learned
dictionary. And the testing data is employed to evaluate
performance.

Our entomology collaborators collected specimens for
9 taxa of stoneflies from streams in Oregon. These
were photographed using our apparatus, and good dor-
sal views were selected. The result is our STONE-
FLY9 dataset, which is available for download from
web.engr.oregonstate.edu/~tgd/bugid/.

We applied the standard dictionary approach out-
lined above to STONEFLY9. However, the results were
mediocre: 16.1% error. We hypothesize that there are
at least two reasons for this poor performance. First,
the dictionaries are learned using purely unsupervised
methods—they do not take into account the perfor-
mance task. Second, information is lost when each de-
scriptor vector is mapped to a dictionary entry. Map-
ping a SIFT vector to a 2700-word dictionary retains at
most 12 bits of information, whereas the original SIFT
vector contains 1024 bits. To address the first prob-
lem, several researchers including ourselves have devel-
oped quasi-supervised methods for creating visual dic-
tionaries [Moosmann et al., 2007; Winn et al., 2005;
Yang et al., 2008; Zhang and Dietterich, 2008] However,
we have recently developed two methods that both yield
very big increases in performance by using simpler meth-
ods. We now describe these two methods.

The first method is called stacked random forests
[Mart́ınez-Muñoz et al., 2009]. Given a set of training
bags of the form (Bi, yi), where Bi is the bag of SIFT
vectors and yi is the class label, we generate labeled in-
stances by pushing the training labels down to the indi-

Evidence

histograms Stacked classifier

Stacking dataset

Detections +

Descriptor s Random forest

Harris + 

sifts

Edges

Kadir +

sifts

Cl 1 … Cl Y Cl 1 … Cl Y … Cl 1 … Cl Y Class

91 … 22 45 … 12 … 10 … 23 1

… … … … … …

1 … 12 1 … 5 … 5 … 33 Y

……

h1

h2

hn

h1 h2 hn

Final 

output

Figure 3: Stacked Random Forest Architecture

vidual descriptor vectors: (xi,l, yi). Next, for each type
of detector (Harris, Hessian, PCBR, Kadir-Brady), we
train a random forest [Breiman, 2001] to predict the class
of the image from individual detections. We modify the
random forest algorithm in two ways. First, we con-
strain each decision tree so that every leaf contains at
least 20 training examples. Second, we store in each leaf
` a histogram h` whose kth entry is the number of train-
ing examples from class k that reached this leaf. We call
h` the evidence histogram for leaf `.

To classify a new image (represented as a bag B of
descriptor vectors), we take each descriptor vector and
“drop” it through all of these random forests. We then
take the vector sum of the leaf evidence histograms to
create a K-element histogram, which is then normal-
ized to form a probability distribution. A separate K-
element histogram is obtained from each random forest.
These are then concatenated and fed to the second-level
“stacked” classifier to make the final decision.

To train this stacked classifier, we use the “out-of-bag”
strategy. Recall that when tree τ in the random forest
is constructed, it is learned from a bootstrap sample of
the original training data. This means that for each tree
τ , there is a set of training images that were not used
to build that tree (aka “out of bag”). To construct a
stacking example for image i, we process the descriptor
vectors in Bi through each tree τ for which image i was
out-of-bag. We form the evidence histograms, normalize
them, and concatenate them. After the stacking exam-
ples are formed, we apply C4.5 with 200 iterations of Ad-
aboost [Freund and Schapire, 1997] to learn the stacking
classifier. This process is summarized in Figure 3.

The second method that we developed is even sim-
pler. The basic idea is just to apply boosting to the
classic dictionary method [Zhang et al., 2009]. Specifi-
cally, we do the following. We employ 3 detectors (Hes-
sian, Kadir-Brady, and PCBR). The outer loop consists
of 30 iterations of Adaboost. We employ boosting by
sampling, so after updating the weights of the images
via the standard Adaboost method, we sample only 20%
of the data set (with replacement) using a slight modi-
fication of weighted sampling known as Quasi-Random
Weighted Sampling [Kalal et al., 2008]. Once a sam-
ple of images is drawn, the descriptor vectors in the
image are used to learn one D = 100 cluster dictio-



Table 1: Error rates of 3 classification architectures on
the STONEFLY9 data set

Method Error rate
Class-specific dictionaries + Adaboost 16.1
Stacked random forests 6.4
Boosted dictionaries 4.9

nary for each detector via k-means clustering. Unlike
the class-specific dictionaries described above, these dic-
tionaries are learned from all detections of all classes.
After learning the dictionary, we map each training im-
age into a histogram of word occurrences as described
above. We then reweight those histograms according to
the TF-IDF measure [Salton and Buckley, 1988]. This
reduces the weight on very common keywords. To learn
each so-called weak classifier, we perform 50 iterations
of bagging using C4.5.

Table 1 shows the results of these two methods and the
standard dictionary method as measured by 3-fold cross-
validation on the STONEFLY9 dataset. The results
show that both the stacked random forest architecture
and the boosted dictionary architecture achieve much
better results than the standard dictionary method. A
shortcoming of the stacked random forests is that the
classifier cannot require multiple kinds of detections
(e.g., both eyes and characteristic spots on the back).
All detections just contribute to the total evidence for
the classes, and the stacked classifier then finds an ap-
propriate way to weigh the total evidence to make the
final decision. In contrast, the dictionary methods are
able to require multiple kinds of detections, as long as
they correspond to multiple dictionary entries. Clearly,
the boosted dictionary method is able to do a better
job of this, because in the second and subsequent iter-
ations, it is able to learn dictionaries that focus on the
“hard” cases. One direction for future work is to combine
boosting with the stacked random forests, as this may
also allow the final classifier to require multiple kinds of
detections in order to make a decision.

3 Automated Data Cleaning for Sensor

Network Data

The second step in the Ecosystem Informatics pipeline is
data cleaning. Ecology is one of the prime beneficiaries of
the emerging technology of wireless sensor networks. We
have been collaborating with the SensorScope project at
the École Polytechnique Fédérale de Lausanne (EPFL)
in Switzerland. SensorScope is a low-cost wireless plat-
form for environmental sensor networks. In place of
few, expensive permanent monitoring stations deployed
sparsely over a large area, SensorScope allows field sci-
entists to deploy many light-weight, inexpensive stations
at a much higher spatial resolution. While SensorScope
can support many different sensors, in our collaboration
so far, we have studied only temperature sensors.

Although wireless sensor networks can be much less

Figure 4: Left: Top-down view of the FishNet Deploy-
ment. Right: Learned dependency relationships between
the six sensor stations at the deployment.

expensive than traditional, permanent sensors, they are
also subject to much more frequent failures. These can
be caused by failure of the sensor, failure of the local net-
work, or failure of the uplink from the field network to
the research lab. The goal of our research is to develop
automated data cleaning methods that can detect fail-
ures in real time and also fill in (impute) missing values
to make the resulting data set more useful.

To achieve both of these functions, our approach is to
learn a joint probability distribution over the outputs of
all of the sensors. An advantage of these wireless sensor
networks is that the larger number of sensors can provide
redundancy that allows us to infer the true sensor value
when a sensor fails.

Figure 4 shows a SensorScope deployment known as
FishNet, where the variables {Xi} indicate the true sen-
sor values indexed by sensor i. Given a few weeks of
sensor readings from this network, we assume that all
sensors were working properly and learn a joint dynamic
Bayesian network model that consists of three compo-
nents. First, as shown in Figure 4(right), we learn
the structure and parameters of a joint linear Gaussian
model of the sensor readings. This network captures the
correlations among the sensors at each time step. This
becomes the “time slice” for the second component—a
first-order dynamic Bayesian network in which there is
a first-order linear Gaussian dependency between each
variable in the network at time t and its value at time
t − 1. Finally, we introduce an observation model into
the DBN such that the observed sensor value Oi depends
on the true value Xi and a hidden sensor state variable
Si (where Si = 1 means the sensor is working properly,
in which case Oi = Xi plus a small amount of Gaussian
noise and where Si = 0 means the sensor is broken, in
which case Oi = Xi but with a very large amount of
Gaussian noise). All parameters of the model, except
for the observation Gaussian noise, are learned from the
data in the training period.

To perform data cleaning, we apply standard DBN fil-
tering. At each time step, the observations are made,



and we perform probabilistic inference to determine the
most likely state of each sensor. We then assert this
most likely state to be the true state, and assimilate the
observations into the model to update the posterior dis-
tributions of the Xi variables at time t. If Si is believed
to be 0 at time t, the reading is marked as “faulty” and
the posterior mean of Xi is used to predict (impute) the
value for Xi.

Structure learning is accomplished by hill-climbing in
the BGe metric of Geiger and Heckerman [1994]. Pa-
rameter learning for each conditional linear Gaussian is
essentially linear regression via maximum likelihood.

Figure 5 shows the application of this method to days
22-41 of a deployment at Grand St. Bernard on the
Swiss-Italian border. We can observe many sensor fail-
ures including bad sensor values (the spikes) and flat
lines at −1 degrees, which are caused by network fail-
ures. The model was trained on the first 21 days of
deployment and then applied to the remaining time. We
can see that it is doing a very good job of identifying
faults and imputing missing values.

4 Concluding Remarks

Computer science and artificial intelligence have the po-
tential to transform the ecosystem sciences much the
way they transformed molecular biology. Although
many problems in ecology are superficially similar to
previously-studied problems (e.g., object recognition,
density estimation, model fitting, optimization), exist-
ing solutions are not directly applicable. This paper
has shown one instance of this: standard methods for
generic object recognition did not provide sufficient ac-
curacy for recognizing stoneflies. Similarly, while pre-
dicting the distribution of a single species can be viewed
as a Boolean classification problem, jointly predicting
5000 species poses a host of novel problems. For exam-
ple, there are more than 12 million potential interactions
among pairs of species. It is not feasible to estimate all
of these interactions, even from large data sets. An-
other case arises with finding optimal policies for the ac-
tive prevention of wildfires. In principle, these are just
Markov decision problems, and we already have many
methods for solving them. But if we consider a region
made up of 10,000 management units, such that each
year, we must choose 100 units on which to perform fuel
reduction treatments, then our existing methods do not
scale. This problem has O(10500) potential actions at
each time point!

To prepare students to work in ecosystem infor-
matics, we have created two educational programs.
Each summer, we conduct a 10-week Summer Institute
in Eco-Informatics at the H. J. Andrews Experimen-
tal Forest (eco-informatics.engr.oregonstate.edu.
This provides an opportunity for juniors, seniors,
and first-year graduate students to work in interdis-
ciplinary teams that combine field work with mathe-
matical and computational modeling. We have also
established an interdisciplinary graduate program in

Ecosystem Informatics under the NSF IGERT program
(ecoinformatics.oregonstate.edu). This program
trains students to conduct research in teams that com-
bine mathematics, computer science, and the ecosystem
sciences. Students receive rigorous education in their
core discipline while also obtaining a Ph.D. minor in
Ecosystem Informatics.

I urge everyone to join us in addressing these interest-
ing research problems. Given the ecological challenges
facing our planet, there is an urgent need to develop the
underlying science that can guide policy making and im-
plementation. Ecology is poised for a data-driven revolu-
tion that can help it address these needs. But ecologists
can’t do this alone. They need computer scientists to ac-
cept the challenge and develop the novel computational
tools that can make this revolution a reality.
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Figure 5: Quality Control performance on Grand St. Bernard. Solid line indicates the actual temperature recorded
at each station. Dashed line indicates the posterior prediction made for that station. Red hashes indicate values
labeled as “faulty”. The X axis denotes the day since the deployment began, and the Y axis denotes temperature in
degrees.
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