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Abstract
We describe an application of data

mining and decision analysis to the

problem of die-level functional test

in integrated circuit manufacturing.

Integrated circuits are fabricated on

large wafers that can hold hundreds

of individual chips (“die”).  In

current practice, large and expensive

machines test each of these die to

check that they are functioning

properly (die-level functional test;

DLFT), and then the wafers are cut

up, and the good die are assembled

into packages and connected to the

package pins.  Finally, the resulting

packages are tested to ensure that the

final product is functioning correctly.

The purpose of die-level functional

test is to avoid the expense of

packaging bad die and to provide

rapid feedback to the fabrication

process by detecting die failures.

The challenge for a decision-

theoretic approach is to reduce the

amount of DLFT (and the associated

costs) while still providing process

feedback.  We describe a decision-

theoretic approach to DLFT in which

historical test data is mined to create

a probabilistic model of patterns of

die failure.  This model is combined

with greedy value-of-information

computations to decide in real time

which die to test next and when to

stop testing.  We report the results of

several experiments that demonstrate

the ability of this procedure to make

good testing decisions, good

stopping decisions, and to detect

anomalous die.  Based on

experiments with historical test data

from Hewlett Packard Company, the

resulting system has the potential to
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improve profits on mature IC

products.

1. INTRODUCTION

Modern computer-integrated

manufacturing lines provide many

opportunities for applying data mining

techniques.  These lines contain many

sensors and computer-controlled

devices, so the information needed for

intelligent control is available and

control decisions can be implemented

easily.  Furthermore, in most current

computer-integrated manufacturing

lines, the supply of available sensor data

far outstrips the ability of the existing

control systems to digest and apply it.

Consequently, the combination of data

mining – to analyze data to build and

update probabilistic models – and

decision-theoretic control – to make

decisions based on those models – can

have a huge financial impact in reducing

costs, increasing throughput, and raising

profits.

In this paper, we report our experiences

with one such application.  We

developed a decision-theoretic controller

for one phase of the VLSI integrated

circuit manufacturing process.  The

controller manages the die-level

functional test (DLFT) process with the

goal of maximizing the expected utility

of the overall manufacturing process.

We applied our expertise in VLSI testing

to develop an influence diagram for the

decision-making process.  As a result of

a related project at Hewlett-Packard

Company, a detailed cost model had

already been constructed.  The

remaining part of the influence diagram

– the probabilistic model describing

patterns of IC failures – was learned

automatically from historical data.  Our

final system chooses actions via one-step

greedy value-of-information, and, in

simulation, it achieves substantial profit

increases over the current control

method.

The remainder of this paper is organized

as follows.  First, we describe the

integrated circuit manufacturing process

and the decision-making problem to be

solved.  Then we present our influence

diagram and its probabilistic model of IC

failures.  The third section of the paper

describes the training procedure and our

experimental methods.  The fourth

section reports the results of several
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experiments to understand and evaluate

the behavior of the system and its

various components.  We summarize our

conclusions in the final section.

2. IC MANUFACTURING AND

TEST

An integrated circuit (IC) is an electronic

circuit in which a number of devices are

fabricated and interconnected on a single

chip of semiconductor material.

According to current manufacturing

practice, integrated circuits are produced

en masse in the form of processed

silicon wafers.  While still in wafer form

the ICs are referred to as dice, an

individual IC is called a die.  The

process of cutting the dice from wafers

and embedding them into mountable

containers is called packaging. Figure 1

is a simplified schematic of the major IC

manufacturing steps.

Figure 1: Major IC Manufacturing Steps

Brief descriptions of the manufacturing

steps are provided below.

1. Fabrication:

A typical wafer is fabricated through a

series of more than 100 process steps

(Van Zant, 1997; Zorich, 1990).

Virtually all of the processing is

automated, but there are still many

potential sources of failure that lead to

defective wafers.  An entire processing

step may fail, in which case all of the die

on a wafer will be bad.  Many steps

involve creating uniform thin layers on

the wafer (e.g., by placing a drop of

liquid material in the center and then

spinning the wafer), and failures in this

process can lead to radially-symmetric
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patterns of failed die (e.g., in the center,

in rings around the center, and most

commonly, near the edges of the wafer).

The wafers can also be scratched during

automated handling, which creates linear

failure patterns and edge defects.

Finally, defects in the silicon substrate

and in the applied materials, as well as

dust particles, can create spatially

uniform patterns of die failures.

2. Wafer parametric test:

Parametric tests measure physical and

electrical parameters of the wafer such

as electrical conductivity and behavior

of individual sample components

(transistors, capacitors, resistors).

Although the above diagram depicts

parametric testing as a distinct stage

following wafer fabrication, in reality,

parametric tests are performed

throughout the fabrication process.

3. Die-level functional test (DLFT)

Functional testing typically occurs once

the wafers are completely fabricated and

the dice are completely formed and

functional.  Functional tests measure the

operational quality of the individual

dice.  A large and expensive robotic

machine presses electrical probes onto

the die contacts, input signals are fed to

the circuit, and output signals are

measured.  Functional testing simulates

normal and abnormal operating

conditions (e.g., high, normal, and low

voltage tests). The conventional

approach to DLFT is exhaustive wafer

test, i.e., all dice on all wafers undergo

DLFT.  If a die fails the functional test,

an ink dot is placed on it, so that it will

not be packaged later.  The decision to

place the ink dot is called the “inking

decision”.  After inking, the wafers are

typically shipped to a separate location

for packaging.

 

4. Packaging

To convert the wafers into packaged ICs,

the wafers are cut into individual dice by

a high-precision diamond saw.  The

resulting chips are mounted into

packages, electrical contacts are bonded

in place, and then a protective covering

is added.

5. Package test

Once the ICs are packaged, they are

tested again to ensure that the packaging

process was successful. Package tests
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usually repeat many of the functional

tests that were performed during DLFT.

The test results from package testing are

used to decide which ICs to sell.

This brief summary shows that Die-

Level Functional Test (DLFT) is not

essential to the quality of the final

product, because any failures will be

detected during Package Test.  Hence,

the main purpose of DLFT is to reduce

costs by avoiding packaging defective

dice.  A secondary purpose of DLFT is

to provide rapid feedback to the

manufacturing process by detecting and

diagnosing faulty manufacturing

processes.  The challenge for a decision-

theoretic approach is to reduce the

amount of DLFT (and hence reduce its

cost) while not appreciably increasing

the costs of packaging and

manufacturing.

3. DECISION-THEORETIC WAFER

TEST

The goal of our project was to replace

the exhaustive test policy with a

decision-theoretic policy that decides in

real time which die to test and when to

stop testing.  Because the DLFT is

performed by a robotic tester, it can be

reprogrammed to test the die in any

desired order based on the results of

previous tests.  The decision-theoretic

policy seeks to maximize overall profit

by combining a probabilistic model of

the spatial distribution of die failures

with a utility model of the costs of the IC

manufacturing process.

Figure 2 shows the influence diagram

that we developed to model the

manufacturing process.  It contains a set

of nodes {Fi, fi, Ii, pi, Vi} for each die i

on the wafer.  According to this model,

the first step in the process is to generate

a value for the variable w at random

according to P(w).  This latent variable

w is called the “wafer class”, and it

models the spatial correlations among

the failures of individual die as a finite

mixture model, as discussed in more

detail below.  The next step in the model

is to choose a die to be tested.  This is

indicated by choosing one of the

decision variables Fi and setting its value

to 1.  The results of all previous

functional tests are available when test

Fi is chosen, although the diagram does

not show this. The result of the

functional test for die i is fi, which is

distributed according to P(fi|Fi, w).
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After testing Fi, another die Fj can be

chosen and test result fj observed, and so

on.

At some point, the testing process is

terminated by setting all of the

remaining Fi to 0. The next step is to

choose which die to ink.  This is

indicated by choosing values for all of

the decision variables Ii (i = 1,… ,n).

Depending on the inking decision Ii and

the functional test result fi, the result of

the final package test, pi, is observed

according to probability P(pi|Ii, fi).

Finally, we have included a wafer

disposition decision D, which represents

the decision to either package the (non-

inked) die on the wafer or to scrap the

entire wafer.   

The utility of die i is represented by Vi,

and it includes the cost of the functional

test (indicated by the arrow from Fi), the

cost of packaging and package test

(indicated by the arrow from Ii), and the

selling price of the IC (indicated by the

arrow from pi, since the IC can only be

sold if it passes package testing).  The

total utility of the wafer is represented

by V, and it includes the sum of the Vi’s

and also the cost of cutting up the wafer

and shipping the die to the packaging

facility (indicated by the arrow from D).

The utility model is summarized in

Table 1.

Figure 2: Wafer Test Influence Diagram
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benefit) of detecting fabrication

problems is ignored.  A reduction in die

testing may reduce packaging costs, but

increase fabrication costs because

fabrication problems are not diagnosed

as quickly.  Second, the capital costs of

purchasing and maintaining the die

testing machines is ignored. If die-level

testing can be significantly reduced, then

fewer machines are needed, and these

capital costs can be saved.  Third, for

some IC products, the current exhaustive

testing policy becomes a rate-limiting

bottleneck.  A decrease in the number of

dice tested per wafer means that more

wafers can be tested, and therefore,

wafer starts, throughput, and profits per

unit time can increase.

To understand the probabilistic model of

Figure 2, it is helpful to separate it out

from the rest of the influence diagram

(see Figure 3). This shows that we are

modeling the die failures as being

conditionally independent given a latent

class variable w.  This is the standard

naïve Bayes’ belief network that has

already proven useful in diagnostic

systems (Henrion, 1990) and learning

and discovery systems (Dietterich, 1997,

Cheeseman, Self, Kelly, Taylor, and

Stutz, 1988).  Each die i corresponds to a

fixed spatial location on the wafer, so if

a particular location (e.g., near the edge)

is prone to frequent failure, its value for

P(fi=0|w) will be large.  In the

experiments reported below, we set w to

have four possible values, which gives

us a mixture model with four

multinomial components.

Note that unlike the applications of the

naïve Bayes model in supervised

learning, the class variable w is not

observed.  Also note that unlike in the

applications of naïve Bayes to clustering

in Autoclass, we are not particularly

interested in the structure of the classes

that are learned.  We simply view it as a

convenient representation of the joint

distribution P(f1, f2, … , fn) of failures of

the die on the wafers.  We considered

employing more sophisticated models of

die failure, including models of “blobs”

and “scratches”.  However, an analysis

of the spatial statistics of die failure

showed no evidence for such spatially-

local patterns (Fountain, 1998).

To acquire the probabilities P(w) and

P(fi|w), we applied the EM algorithm to

fit this naïve Bayes network to historical

data from a mature IC product

manufactured by Hewlett-Packard.
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The probabilities P(pi|fi) were set to be

identical for all die, and they were

acquired from domain experts rather

than from data.  They represent the

probability that a packaged die will fail

the post-packaging functional test given

that it passed (or failed) the die-level

functional test.

Figure 3: Wafer Test Belief Net

To apply this model to compute a DLFT

policy, we perform an iterative one-step

value of information (VOI) computation.

Initially, all of the functional test

decision nodes Fi are set to 0 (no test).

The die inking decisions, Ii, and the

wafer disposition decision, D, are then

made to maximize expected utility.  Call

this the “termination utility”, Uterm,

because it is the utility of terminating

functional testing and carrying out

inking and packaging.  The functional

testing process then proceeds as follows.

For each die that has not yet been tested,

the expected utility Ui of testing that one

die and then making the inking and

wafer disposition decisions is computed.

If termii
UU >max , then test i is

performed, fi is observed, and the

termination utility Uterm is recomputed.

Otherwise, testing terminates, and the

inking and disposition decisions are

made.

One-step greedy VOI does not in general

yield the optimal policy for a sequential

decision problem.  However, we expect

it to perform very well in this particular

problem because we are assuming that

each testing action does not alter the

wafer (e.g., by causing other die to fail).

In addition, the inking decisions can be

made independently, and the total utility

is additive.  Below, we will test

experimentally how well greedy VOI

works.

4.  METHODS

Hewlett-Packard provided a data set for

a mature IC product.  The data consisted

of the test results from 2400 wafers.  We

split this data into two separate data sets.

Set 1 was used during model

development and debugging.  It

consisted of 1200 wafers: 600 for

f2f1 f3 fn

w P w( )

P f wi( | )
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training and 600 for testing.  Set 2 was

used for a final test of the system, and it

also consisted of 1200 wafers: 600 for

training and 600 for testing. The wafers

are grouped into “lots” of 24 wafers,

which are kept together (in a cassette)

during the manufacturing process.

Because there is a strong possibility that

wafers within a lot share the same

defects, we divided the wafers according

to entire lots, so each training data

consisted of 25 lots and each testing set

of 25 lots.  The lots were kept in

chronological order.

Tables 2 and 3 provide summary

statistics for these two data sets.  Each

wafer contains 209 dice.

Total Number

Good Dice

102288

Total Number

Dice

125400

Yield 0.8157

      Table 2: Test Wafer Statistics (Data

Set 1)

Total Number

Good Dice

101516

Total Number

Dice

125400

Yield 0.8095

      Table 3: Test Wafer Statistics (Data

Set 2)

We applied the Expectation-

Maximization (EM, Dempster, Laird,

and Rubin, 1976) algorithm to train the

naïve Bayes stochastic model. To

determine the number of values of the

latent variable w, we fit models with 1,

2, 4, 8, 12, 16, 20, and 24 values to the

training data from Data Set 1 and

measured the log likelihood of the

wafers in the corresponding validation

set.  The best validation set log

likelihood was achieved with a model

containing 4 classes.  For this model, the

EM algorithm converged after no more

than 50 iterations, which required less

than three minute of CPU time.  To

obtain our final probability model for the

decision-theoretic tester, we trained a 4-

class model on the training data from

Data Set 2.
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5. RESULTS

We performed four experiments to

address the following questions:

1. How well does the decision-theoretic

approach perform compared to

exhaustive testing, no testing, and

optimal testing?

2. How well does greedy value of

information (VOI) perform in

deciding when to stop testing?

3. How does the system respond to

abnormal wafers?   Is the approach

sensitive to process problems?

4. How robust is the system with

respect to changes in utility

parameters?  Do changes in utility

parameters result in rational

responses from the system?

Each of these questions is addressed in

turn.

5.1 PERFORMANCE

We compared the performance of the

decision-theoretic testing policy (“DT”)

with three other policies:  (a) the current

exhaustive test approach (“Exhaustive”),

(b) a policy that performed no tests and

packaged all die (“Package All”), and (c)

an optimal testing policy (“Oracle”) that

performs no testing but packages only

those die that would have passed the

functional test.   The oracle policy

provides an upper bound on the best that

any implementable policy could do.  We

measured the net profit on the test set

from Data Set 2.

                     Total    Number    Number

                     Profit   Tested     Packaged

Exhaustive 1184550 125400 102288

Package

All

1226598 0 125400

DT 1229531 8210 121560

Oracle 1278600 0 102288

Table 4: Four Test Policies on Data Set 1

                   Total      Number    Number

                     Profit    Tested     Packaged

Exhaustive 1174900 125400 101516

Package

All

1215211 0 125400

DT 1218309 5194 122292

Oracle ? ? ?

Table 5: Four Test Policies on Data Set 2
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The results from the model tests are

presented in Tables 4 and 5 (for the test

data in Data Set 1 and Data Set 2,

respectively).  The results show that the

current exhaustive testing policy is the

worst, and the DT policy is the best of

the three implementable policies.

Indeed, the DT policy achieves 96% of

the profit that can be realized by the

Oracle, and it gives a 3.8% improvement

in profit over exhaustive testing.

The Package All policy produces almost

as much profit as the DT policy, so a

reasonable question is what advantage

the DT policy has over Package All.

The answer is that on wafers with high

yield there may be little benefit.  The

problem with Package All is that process

problems will not be detected until

package test results become available.

This can be a problem, because often

packaging is performed at a location

(e.g., Asia) far from the wafer

fabrication plant (e.g., US). In these

cases the delay in feedback and the costs

of shipping and handling make the

Package All policy risky.  Furthermore,

after packaging, the physical position of

each die on the wafer is no longer

known, so the spatial information

provided by die-level test is lost.  This

spatial information is valuable for

diagnosing fabrication problems.  One of

the benefits of the DT policy is that for

good wafers it can produce profits

comparable to those produced with a

Package All policy, but for bad wafers, it

can detect process problems while the

wafers are still at the fabrication plant

5.2 EVALUATION OF THE

GREEDY VOI STOPPING

CRITERION

The decision-theoretic policy relies on a

greedy value of information (VOI)

computation to decide when to terminate

testing.  To determine how well this

heuristic works, experiments were

performed in which greedy VOI

stopping was compared to the optimal

stopping point.  To determine the

optimal stopping point, the decision-

theoretic policy was modified to

continue testing past the past the point of

non-positive VOI until all dice were

tested.  Then the history of testing

decisions was analyzed to find the

moment at which the profit would have

been maximized had the system stopped

then. Profit includes the costs for

functional tests up to that point and the
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rewards obtained by making package

decisions at that point.

                       Profit    Tested   Packaged

Exhaustive 1184550 125400 102288

VOI 1229531 8210 121560

Optimal

Stop

1231970 11206 119264

Table 6: Optimal Stopping: Results

(Data Set 1)

Table 6 summarizes the results of this

experiment on the test data from Data

Set 1.  The table shows that greedy VOI

Stopping tests less than Optimal

Stopping (performing only about 73% as

many tests) and packages more (about

2% more packages). So Optimal

Stopping spends a bit more on functional

testing in order to reduce the number of

bad dice packaged. Despite this

difference, greedy VOI Stopping

performs very well and realizes over

99% of the profit achieved by Optimal

Stopping.

5.3 DETECTING PROCESS

PROBLEMS

An interesting question for any testing

policy is how it responds to abnormal

wafers.  Although the decision-theoretic

approach was targeted towards a stable

mature product, process problems are

common, and abnormal wafer test results

are often the first symptoms of such

problems.  An important question for a

testing policy is how well can it

recognize abnormally bad wafers?

To explore this issue, we discuss six

wafers from Data Set 1 in detail.  The

first two wafers are typical “good”

wafers with yields over 80%.  The next

two wafers are “bad”,  with yields of less

than 10%. The final two wafers are

“mediocre”, with yields of 66% and

65%. The test wafers are described in

Table 7. The simulation results are

presented in Table 8.

         WID       NGD                     Y

1 178 0.85

2 180 0.86

3 17 0.08

4 2 0.01

5 138 0.66

6 118 0.56

Table 7: Test Wafer Statistics (WID =

wafer id number, NGD = number of

good dice on wafer, Y = yield)
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    WID  NT    NP     CP           VOIP

1 9 205 2068.25 2158.25

2 9 206 2093.25 2185.50

3 202 25 55.75 43.75

4 202 10 -131.75 -143.75

5 57 182 1568.25 1583.25

6 13 202 1318.25 1277.00

Table 8:  Wafer Test Results (NT =

number of die tested, NP = number

packaged, CP = exhaustive test profit,

VOIP = VOI test profit)

In Table 8, current profit is the profit

realized under the exhaustive test policy.

VOI profit is the profit realized under

the decision-theoretic policy.

To visualize the testing behavior, wafer

test maps are presented below for each

wafer.  These maps show the good dice,

the dice that were tested according to the

selective test policy, and the dice that

were packaged according to this policy.

In each map, green (light) encodes true,

so green represents good dice, tested

dice, and packaged dice.  Red (dark)

encodes bad dice, untested dice, and

unpackaged dice.

Figure 7: Detecting Process Problems:

Wafer 1

Figure 8: Detecting Process Problems:

Wafer 2

Figure 9: Detecting Process Problems:

Wafer 3

Figure 10: Detecting Process Problems:

Wafer 4
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Figure 11: Detecting Process Problems:

Wafer 5

Figure 12: Detecting Process Problems:

Wafer 6

Figures 7 and 8 correspond to good

wafers, Figures 9 and 10 bad wafers, and

Figures 11 and 12 mediocre wafers.

The analysis of these six wafers shows

that the decision-theoretic policy is

responsive to abnormal wafers.  There is

a direct relationship between wafer yield

and the number of functional tests

performed.  The higher the yield, the

fewer tests.  This means that, for a stable

and mature product, the system tests

only a small fraction of the total dice.

However, the system is sensitive to

abnormal yields, which indicate process

problems.  On such wafers, the system

tends to test more thoroughly.  For

wafers with extremely low yield, the

system responds by testing almost all

dice.  This means that a minimal amount

of resources are expended on good

wafers, yet bad wafers are detected.

The reasons for this highly-desirable

behavior are not entirely clear.  One

explanation is that because our IC

product was a mature, high-yield

product, the learned stochastic model is

expecting to see good wafers.  So when

it encounters a bad wafer,  its predictions

concerning the untested wafers become

uncertain (near 0.5), and it must do more

testing to make good inking decisions.

If our product had been one where half

of the wafers were good and the other

half very bad, then a bad wafer would

not have been surprising, and the

decision-theoretic policy would only

perform enough tests to be confident of

which kind of wafer it had.  Then it

would proceed to the inking decisions.

This analysis suggests that the output

from the decision-theoretic approach

could be fed into statistical process

control (SPC) methods that routinely

monitor for process problems.  A

straightforward extension to the current

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18



15

SPC system would be to replace actual

test measures with predicted measures.

So, for example, rather than setting

control limits around the actual

functional test results, the control limits

could be set around the predicted

functional test results.  Thus, the

decision-theoretic approach provides

dual benefits.  First, it greatly reduces

the requirement for testing resources.

Second, it satisfies the requirement for

prompt detection of process problems.

5.5 ROBUSTNESS TO CHANGES IN

UTILITY PARAMETERS

One benefit of decision-theoretic

methods is that changes in utility

parameters should result in rational

changes in performance without explicit

re-engineering the learned models or

control structures. To verify this, we

experimented with changes to two of the

utility parameters:

• Cost of performing a single

functional  test,

• Cost of packaging a single die.

For each of these parameters, a series of

tests was performed in which the

parameter of interest was swept through

a range of values and performance on a

testing scenario was measured.  For

these tests, we applied the stochastic

model trained on the 600 training wafers

from Data Set 1 to test 48 test-set

wafers.  Performance was measured by

the number of functional tests

performed, the number of dice packaged,

the number of false positives (i.e., bad

die packaged), and the number of true

negatives (i.e., bad die not packaged).

5.5.1 Changes to Package Cost

In the first set of tests, the cost to

package a single die was manipulated.

Let ck  represent the normal package

cost.  Then consider the effects of

cutting the package cost in half (.5ck )

and of doubling the package cost (2ck ).

The results are summarized in Table 9.

                 NT     NP       NFP   NTN

.5ck 240 9854 1568 178

ck 796 9672 1386 360

2ck 2484 9312 1026 720

Table 9: Robustness Tests: Changes to

Package Cost (NT = number of die

tested, NP number packaged, NFP =

false positives, NTN = true negatives)

The results show that when it is

relatively inexpensive to package dice,
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the system packages more and tests less.

As the package cost increases, false

positives become more expensive, so

more tests are performed to reduce this

risk.  Thus, with respect to changes in

package cost, the system performs

rationally by adjusting its testing and

package decisions to maximize expected

profits.

5.5.2 Changes to Functional Test Cost

A second set of tests was performed in

which the functional test cost was

manipulated.  Let c f  represent the

current cost of a single functional test.

Then consider the effects of setting the

functional test cost at .1c f , .67c f , c f ,

1.33c f , 1.67c f , 2c f , and 10 c f .   The

results are summarized in Table 10.

               NT     NP          NFP      NTN

.1C 1003

2

8286 0 1746

.67C 1509 9485 1199 547

C 796 9672 1386 360

1.33C 321 9835 1549 197

1.67C 240 9854 1568 178

2.0C 169 9912 1626 120

10C 0 10032 1746 0

Table 10: Results of Changes to

Functional Test Costs (NT = number of

die tested, NP = number packaged, NFP

= false positives, NTN = true negatives).

This table shows that the system behaves

rationally by adjusting its testing and

packaging decisions to reflect changes in

cost parameters.  When the package cost

is increased, the system tests more to

avoid wasting resources by packaging

bad dice.  On the other hand, when the

functional test cost is increased, the

system tests less and packages more.  If

the test cost is set sufficiently low, then

the system tests all dice.  If the test cost

is set sufficiently high, then the system

tests none of the dice.  In none of the test

scenarios was it profitable to miss a

good die, so the number of true positives

was always equal to the total number of

good dice, and the number of false

negatives was always zero.  This

behavior is the result of two factors.

First, given the quality of the wafers in

the training set, all dice had a reasonable

prior probability of being good.  Second,

the value of a good package was

sufficient to justify packaging all dice

based on these prior probabilities.
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6. CONCLUDING REMARKS

The experiments in this paper have

demonstrated that manufacturing data

can be mined to produce effective

decision-theoretic control methods.

Furthermore, these methods can produce

substantial improvements in the die-level

functional test stage of VLSI IC

manufacturing.  Specifically, the

experiments have shown the following:

1. The decision-theoretic policy

produced more net profit than either

the exhaustive test policy or the a

policy of performing no die-level

testing.

2. The greedy VOI stopping criterion

produced near-optimal stopping

behavior.

3. The decision-theoretic policy is able

to detect abnormal wafers, and it

responds by testing them more

thoroughly.  Hence, although the

cost model does not reflect the value

of die-level test for detecting

fabrication problems, the decision-

theoretic policy still detects these

problems well.  Existing process

control statistics could be based on

the predictions of the stochastic

model.

4. The decision-theoretic policy is

robust to changes in testing costs and

packaging costs.

These experiments demonstrate that the

decision-theoretic approach to die-level

functional test has the potential to reduce

testing costs, increase wafer starts, and

improve the bottom line.  In addition, the

method is easy to implement – the EM

training was straightforward and

efficient, and the cost model can easily

be changed to reflect changes in market

conditions.  We believe that in this and

many other computer-integrated

manufacturing applications, data mining

and decision-theoretic methods have an

important role to play.
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