
Ensemble Methods in Machine Learning

Thomas G� Dietterich

Oregon State University� Corvallis� Oregon� USA�
tgd�cs�orst�edu�

WWW home page� http���www�cs�orst�edu��tgd

Abstract� Ensemble methods are learning algorithms that construct a
set of classi�ers and then classify new data points by taking a �weighted�
vote of their predictions� The original ensemble method is Bayesian aver�
aging� but more recent algorithms include error�correcting output coding�
Bagging� and boosting� This paper reviews these methods and explains
why ensembles can often perform better than any single classi�er� Some
previous studies comparing ensemble methods are reviewed� and some
new experiments are presented to uncover the reasons that Adaboost
does not over�t rapidly�

� Introduction

Consider the standard supervised learning problem� A learning program is given
training examples of the form f�x�� y��� � � � � �xm� ym�g for some unknown func�
tion y � f�x�� The xi values are typically vectors of the form hxi��� xi��� � � � � xi�ni
whose components are discrete� or real�valued such as height� weight� color� age�
and so on� These are also called the features of xi� Let us use the notation xij
to refer to the j�th feature of xi� In some situations� we will drop the i subscript
when it is implied by the context�

The y values are typically drawn from a discrete set of classes f�� � � � �Kg
in the case of classi�cation or from the real line in the case of regression� In
this chapter� we will consider only classi	cation� The training examples may be
corrupted by some random noise�

Given a set S of training examples� a learning algorithm outputs a classi�er�
The classi	er is an hypothesis about the true function f � Given new x values� it
predicts the corresponding y values� I will denote classi	ers by h�� � � � � hL�

An ensemble of classi	ers is a set of classi	ers whose individual decisions are
combined in some way �typically by weighted or unweighted voting� to classify
new examples� One of the most active areas of research in supervised learning has
been to study methods for constructing good ensembles of classi	ers� The main
discovery is that ensembles are often much more accurate than the individual
classi	ers that make them up�

A necessary and su
cient condition for an ensemble of classi	ers to be more
accurate than any of its individual members is if the classi	ers are accurate and
diverse �Hansen � Salamon� ����� An accurate classi	er is one that has an
error rate of better than random guessing on new x values� Two classi	ers are

	

diverse if they make di�erent errors on new data points� To see why accuracy
and diversity are good� imagine that we have an ensemble of three classi	ers�
fh�� h�� h�g and consider a new case x� If the three classi	ers are identical �i�e��
not diverse�� then when h��x� is wrong� h��x� and h��x� will also be wrong�
However� if the errors made by the classi	ers are uncorrelated� then when h��x�
is wrong� h��x� and h��x� may be correct� so that a majority vote will correctly
classify x� More precisely� if the error rates of L hypotheses h� are all equal to
p � ��� and if the errors are independent� then the probability that the majority
vote will be wrong will be the area under the binomial distribution where more
than L�� hypotheses are wrong� Figure � shows this for a simulated ensemble
of �� hypotheses� each having an error rate of ��� The area under the curve for
�� or more hypotheses being simultaneously wrong is ���� which is much less
than the error rate of the individual hypotheses�

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20

Pr
ob

ab
ili

ty

Number of classifiers in error

Fig� �� The probability that exactly � �of 	
� hypotheses will make an error� assuming
each hypothesis has an error rate of ��� and makes its errors independently of the other
hypotheses�

Of course� if the individual hypotheses make uncorrelated errors at rates ex�
ceeding ��� then the error rate of the voted ensemble will increase as a result of
the voting� Hence� one key to successful ensemble methods is to construct indi�
vidual classi	ers with error rates below �� whose errors are at least somewhat
uncorrelated�

This formal characterization of the problem is intriguing� but it does not
address the question of whether it is possible in practice to construct good en�
sembles� Fortunately� it is often possible to construct very good ensembles� There
are three fundamental reasons for this�

�

The 	rst reason is statistical� A learning algorithm can be viewed as search�
ing a space H of hypotheses to identify the best hypothesis in the space� The
statistical problem arises when the amount of training data available is too small
compared to the size of the hypothesis space� Without su
cient data� the learn�
ing algorithm can 	nd many di�erent hypotheses in H that all give the same
accuracy on the training data� By constructing an ensemble out of all of these
accurate classi	ers� the algorithm can �average� their votes and reduce the risk
of choosing the wrong classi	er� Figure ��top left� depicts this situation� The
outer curve denotes the hypothesis space H� The inner curve denotes the set of
hypotheses that all give good accuracy on the training data� The point labeled f
is the true hypothesis� and we can see that by averaging the accurate hypotheses�
we can 	nd a good approximation to f �

H H

H

Statistical Computational

Representational

h1

h3h4

h2

f f

f

h1

h2 h3

h1

h2

h3

Fig� �� Three fundamental reasons why an ensemble may work better than a single
classi�er

The second reason is computational� Many learning algorithms work by per�
forming some form of local search that may get stuck in local optima� For ex�
ample� neural network algorithms employ gradient descent to minimize an error
function over the training data� and decision tree algorithms employ a greedy
splitting rule to grow the decision tree� In cases where there is enough training
data �so that the statistical problem is absent�� it may still be very di
cult
computationally for the learning algorithm to 	nd the best hypothesis� Indeed�
optimal training of both neural networks and decisions trees is NP�hard �Hya	l
� Rivest� ����� Blum � Rivest� ������ An ensemble constructed by running the
local search from many di�erent starting points may provide a better approxi�
mation to the true unknown function than any of the individual classi	ers� as
shown in Figure � �top right��

The third reason is representational� In most applications of machine learn�
ing� the true function f cannot be represented by any of the hypotheses in H�
By forming weighted sums of hypotheses drawn from H� it may be possible
to expand the space of representable functions� Figure � �bottom� depicts this
situation�

The representational issue is somewhat subtle� because there are many learn�
ing algorithms for whichH is� in principle� the space of all possible classi	ers� For
example� neural networks and decision trees are both very �exible algorithms�
Given enough training data� they will explore the space of all possible classi	ers�
and several people have proved asymptotic representation theorems for them
�Hornik� Stinchcombe� � White� ����� Nonetheless� with a 	nite training sam�
ple� these algorithms will explore only a 	nite set of hypotheses and they will
stop searching when they 	nd an hypothesis that 	ts the training data� Hence�
in Figure �� we must consider the space H to be the e�ective space of hypotheses
searched by the learning algorithm for a given training data set�

These three fundamental issues are the three most important ways in which
existing learning algorithms fail� Hence� ensemble methods have the promise of
reducing �and perhaps even eliminating� these three key shortcomings of stan�
dard learning algorithms�

� Methods for Constructing Ensembles

Many methods for constructing ensembles have been developed� Here we will
review general purpose methods that can be applied to many di�erent learning
algorithms�

��� Bayesian Voting� Enumerating the Hypotheses

In a Bayesian probabilistic setting� each hypothesis h de	nes a conditional prob�
ability distribution� h�x� � P �f�x� � yjx� h�� Given a new data point x and a
training sample S� the problem of predicting the value of f�x� can be viewed
as the problem of computing P �f�x� � yjS�x�� We can rewrite this as weighted

�

sum over all hypotheses in H�

P �f�x� � yjS�x� �
X
h�H

h�x�P �hjS��

We can view this as an ensemble method in which the ensemble consists of all of
the hypotheses inH� each weighted by its posterior probability P �hjS�� By Bayes
rule� the posterior probability is proportional to the likelihood of the training
data times the prior probability of h�

P �hjS� � P �Sjh�P �h��

In some learning problems� it is possible to completely enumerate each h � H�
compute P �Sjh� and P �h�� and �after normalization�� evaluate this Bayesian
�committee�� Furthermore� if the true function f is drawn from H according to
P �h�� then the Bayesian voting scheme is optimal�

Bayesian voting primarily addresses the statistical component of ensem�
bles� When the training sample is small� many hypotheses h will have signif�
icantly large posterior probabilities� and the voting process can average these to
�marginalize away� the remaining uncertainty about f � When the training sam�
ple is large� typically only one hypothesis has substantial posterior probability�
and the �ensemble� e�ectively shrinks to contain only a single hypothesis�

In complex problems whereH cannot be enumerated� it is sometimes possible
to approximate Bayesian voting by drawing a random sample of hypotheses
distributed according to P �hjS�� Recent work on Markov chain Monte Carlo
methods �Neal� ����� seeks to develop a set of tools for this task�

The most idealized aspect of the Bayesian analysis is the prior belief P �h�� If
this prior completely captures all of the knowledge that we have about f before
we obtain S� then by de	nition we cannot do better� But in practice� it is often
di
cult to construct a space H and assign a prior P �h� that captures our prior
knowledge adequately� Indeed� often H and P �h� are chosen for computational
convenience� and they are known to be inadequate� In such cases� the Bayesian
committee is not optimal� and other ensemble methods may produce better
results� In particular� the Bayesian approach does not address the computational
and representational problems in any signi	cant way�

��� Manipulating the Training Examples

The second method for constructing ensembles manipulates the training exam�
ples to generate multiple hypotheses� The learning algorithm is run several times�
each time with a di�erent subset of the training examples� This technique works
especially well for unstable learning algorithms�algorithms whose output clas�
si	er undergoes major changes in response to small changes in the training data�
Decision�tree� neural network� and rule learning algorithms are all unstable� Lin�
ear regression� nearest neighbor� and linear threshold algorithms are generally
very stable�

�

The most straightforward way of manipulating the training set is called Bag�

ging� On each run� Bagging presents the learning algorithm with a training set
that consists of a sample of m training examples drawn randomly with replace�
ment from the original training set of m items� Such a training set is called a
bootstrap replicate of the original training set� and the technique is called boot�

strap aggregation �from which the term Bagging is derived� Breiman� ������ Each
bootstrap replicate contains� on the average� ����� of the original training set�
with several training examples appearing multiple times�

Another training set sampling method is to construct the training sets by
leaving out disjoint subsets of the training data� For example� the training set
can be randomly divided into � disjoint subsets� Then � overlapping training
sets can be constructed by dropping out a di�erent one of these � subsets�
This same procedure is employed to construct training sets for ��fold cross�
validation� so ensembles constructed in this way are sometimes called cross�

validated committees �Parmanto� Munro� � Doyle� ������

The third method for manipulating the training set is illustrated by the
AdaBoost algorithm� developed by Freund and Schapire ������ ����� �����
������ Like Bagging� AdaBoost manipulates the training examples to generate
multiple hypotheses� AdaBoost maintains a set of weights over the training
examples� In each iteration �� the learning algorithm is invoked to minimize
the weighted error on the training set� and it returns an hypothesis h�� The
weighted error of h� is computed and applied to update the weights on the
training examples� The e�ect of the change in weights is to place more weight
on training examples that were misclassi	ed by h� and less weight on examples
that were correctly classi	ed� In subsequent iterations� therefore� AdaBoost
constructs progressively more di
cult learning problems�

The 	nal classi	er� hf �x� �
P

� w�h��x�� is constructed by a weighted vote
of the individual classi	ers� Each classi	er is weighted �by w�� according to its
accuracy on the weighted training set that it was trained on�

Recent research �Schapire � Singer� ����� has shown that AdaBoost can be
viewed as a stage�wise algorithm for minimizing a particular error function� To
de	ne this error function� suppose that each training example is labeled as ��
or ��� corresponding to the positive and negative examples� Then the quantity
mi � yih�xi� is positive if h correctly classi	es xi and negative otherwise� This
quantity mi is called the margin of classi	er h on the training data� AdaBoost
can be seen as trying to minimize

X
i

exp

�
�yi
X
�

w�h��xi�

�
� ���

which is the negative exponential of the margin of the weighted voted classi	er�
This can also be viewed as attempting to maximize the margin on the training
data�

�

��� Manipulating the Input Features

A third general technique for generating multiple classi	ers is to manipulate
the set of input features available to the learning algorithm� For example� in a
project to identify volcanoes on Venus� Cherkauer ������ trained an ensemble
of �� neural networks� The �� networks were based on � di�erent subsets of
the ��� available input features and � di�erent network sizes� The input feature
subsets were selected �by hand� to group together features that were based on
di�erent image processing operations �such as principal component analysis and
the fast fourier transform�� The resulting ensemble classi	er was able to match
the performance of human experts in identifying volcanoes� Tumer and Ghosh
������ applied a similar technique to a sonar dataset with �� input features�
However� they found that deleting even a few of the input features hurt the
performance of the individual classi	ers so much that the voted ensemble did
not perform very well� Obviously� this technique only works when the input
features are highly redundant�

��� Manipulating the Output Targets

A fourth general technique for constructing a good ensemble of classi	ers is to
manipulate the y values that are given to the learning algorithm� Dietterich �
Bakiri ������ describe a technique called error�correcting output coding� Suppose
that the number of classes� K� is large� Then new learning problems can be
constructed by randomly partioning the K classes into two subsets A� and B��
The input data can then be re�labeled so that any of the original classes in set
A� are given the derived label and the original classes in set B� are given
the derived label �� This relabeled data is then given to the learning algorithm�
which constructs a classi	er h�� By repeating this process L times �generating
di�erent subsets A� and B��� we obtain an ensemble of L classi	ers h�� � � � � hL�

Now given a new data point x� how should we classify it� The answer is to
have each h� classify x� If h��x� � � then each class in A� receives a vote� If
h��x� � �� then each class in B� receives a vote� After each of the L classi	ers
has voted� the class with the highest number of votes is selected as the prediction
of the ensemble�

An equivalent way of thinking about this method is that each class j is
encoded as an L�bit codeword Cj � where bit � is � if and only if j � B�� The
��th learned classi	er attempts to predict bit � of these codewords� When the L
classi	ers are applied to classify a new point x� their predictions are combined
into an L�bit string� We then choose the class j whose codeword Cj is closest �in
Hamming distance� to the L�bit output string� Methods for designing good error�
correcting codes can be applied to choose the codewords Cj �or equivalently�
subsets A� and B���

Dietterich and Bakiri report that this technique improves the performance of
both the C��� decision tree algorithm and the backpropagation neural network
algorithm on a variety of di
cult classi	cation problems� Recently� Schapire

�

������ has shown how AdaBoost can be combined with error�correcting out�
put coding to yield an excellent ensemble classi	cation method that he calls Ad�
aBoost�OC� The performance of the method is superior to the ECOC method
�and to Bagging�� but essentially the same as another �quite complex� algorithm�
called AdaBoost�M�� Hence� the main advantage of AdaBoost�OC is imple�
mentation simplicity� It can work with any learning algorithm for solving ��class
problems�

Ricci and Aha ������ applied a method that combines error�correcting out�
put coding with feature selection� When learning each classi	er� h�� they apply
feature selection techniques to choose the best features for learning that classi	er�
They obtained improvements in � out of � tasks with this approach�

��� Injecting Randomness

The last general purpose method for generating ensembles of classi	ers is to
inject randomness into the learning algorithm� In the backpropagation algorithm
for training neural networks� the initial weights of the network are set randomly�
If the algorithm is applied to the same training examples but with di�erent
initial weights� the resulting classi	er can be quite di�erent �Kolen � Pollack�
������

While this is perhaps the most common way of generating ensembles of neu�
ral networks� manipulating the training set may be more e�ective� A study by
Parmanto� Munro� and Doyle ������ compared this technique to Bagging and to
��fold cross�validated committees� They found that cross�validated committees
worked best� Bagging second best� and multiple random initial weights third
best on one synthetic data set and two medical diagnosis data sets�

For the C��� decision tree algorithm� it is also easy to inject randomness
�Kwok � Carter� ���� Dietterich� ��� The key decision of C��� is to choose a
feature to test at each internal node in the decision tree� At each internal node�
C��� applies a criterion known as the information gain ratio to rank�order the
various possible feature tests� It then chooses the top�ranked feature�value test�
For discrete�valued features with V values� the decision tree splits the data into
V subsets� depending on the value of the chosen feature� For real�valued features�
the decision tree splits the data into � subsets� depending on whether the value
of the chosen feature is above or below a chosen threshold� Dietterich ���
implemented a variant of C��� that chooses randomly �with equal probability�
among the top � best tests� Figure � compares the performance of a single
run of C��� to ensembles of � classi	ers over �� di�erent data sets� For each
data set� a point is plotted� If that point lies below the diagonal line� then the
ensemble has lower error rate than C���� We can see that nearly all of the points
lie below the line� A statistical analysis shows that the randomized trees do
statistically signi	cantly better than a single decision tree on �� of the data sets
and statistically the same in the remaining �� data sets�

Ali � Pazzani ������ injected randomness into the FOIL algorithm for learn�
ing Prolog�style rules� FOIL works somewhat like C��� in that it ranks possible
conditions to add to a rule using an information�gain criterion� Ali and Pazzani

�

0

10

20

30

40

50

60

0 10 20 30 40 50 60

20
0-

fo
ld

 R
an

do
m

iz
ed

 C
4.

5
(p

er
ce

nt
 e

rr
or

)

C4.5 (percent error)

Fig� �� Comparison of the error rate of C�� to an ensemble of 	�� decision trees
constructed by injecting randomness into C�� and then taking a uniform vote�

computed all candidate conditions that scored within �� of the top�ranked can�
didate� and then applied a weighted random choice algorithm to choose among
them� They compared ensembles of �� classi	ers to a single run of FOIL and
found statistically signi	cant improvements in �� out of �� tasks and statistically
signi	cant loss of performance in only one task� They obtained similar results
using ���fold cross�validation to construct the training sets�

Raviv and Intrator ������ combine bootstrap sampling of the training data
with injecting noise into the input features for the learning algorithm� To train
each member of an ensemble of neural networks� they draw training examples
with replacement from the original training data� The x values of each training
example are perturbed by adding Gaussian noise to the input features� They
report large improvements in a synthetic benchmark task and a medical diagnosis
task�

Finally� note that Markov chain Monte Carlo methods for constructing Bayesian
ensembles also work by injecting randomness into the learning process� However�
instead of taking a uniform vote� as we did with the randomized decision trees�
each hypothesis receives a vote proportional to its posterior probability�

� Comparing Di�erent Ensemble Methods

Several experimental studies have been performed to compare ensemble methods�
The largest of these are the studies by Bauer and Kohavi ������ and by Dietterich
���� Table � summarizes the results of Dietterich�s study� The table shows
that AdaBoost often gives the best results� Bagging and randomized trees give

�

similar performance� although randomization is able to do better in some cases
than Bagging on very large data sets�

Table �� All pairwise combinations of the four ensemble methods� Each cell contains
the number of wins� losses� and ties between the algorithm in that row and the algorithm
in that column�

C�� AdaBoost C�� Bagged C��
Random C��
 � � �
�
 � � � 	� � � � � 	
Bagged C��

 � � � 		
 � � � 	

AdaBoost C��
� � � �
�

Most of the data sets in this study had little or no noise� When �� arti	cial
classi	cation noise was added to the � domains where Bagging and AdaBoost
gave di�erent performance� the results shifted radically as shown in Table ��
Under these conditions� AdaBoost over	ts the data badly while Bagging is
shown to work very well in the presence of noise� Randomized trees did not do
very well�

Table �� All pairwise combinations of C��� AdaBoosted C��� Bagged C��� and
Randomized C�� on � domains with 	�� synthetic class label noise� Each cell contains
the number of wins� losses� and ties between the algorithm in that row and the algorithm
in that column�

C�� AdaBoost C�� Bagged C��
Random C�� � � 	 � 	 � � � � � � 	 � �
Bagged C�� � � � � 	 � � � � �

AdaBoost C�� � � � � �

The key to understanding these results is to return again to the three short�
comings of existing learning algorithms� statistical support� computation� and
representation� For the decision�tree algorithm C���� all three of these prob�
lems can arise� Decision trees essentially partition the input feature space into
rectangular regions whose sides are perpendicular to the coordinate axes� Each
rectangular region corresponds to one leaf node of the tree�

If the true function f can be represented by a small decision tree� then
C��� will work well without any ensemble� If the true function can be correctly
represented by a large decision tree� then C��� will need a very large training
data set in order to 	nd a good 	t� and the statistical problem will arise�

The computational problem arises because 	nding the best �i�e�� smallest�
decision tree consistent with the training data is computationally intractable� so
C��� makes a series of decisions greedily� If one of these decisions is made incor�
rectly� then the training data will be incorrectly partitioned� and all subsequent
decisions are likely to be a�ected� Hence� C��� is highly unstable� and small

changes in the training set can produce large changes in the resulting decision
tree�

The representational problem arises because of the use of rectangular parti�
tions of the input space� If the true decision boundaries are not orthogonal to
the coordinate axes� then C��� requires a tree of in	nite size to represent those
boundaries correctly� Interestingly� a voted combination of small decision trees
is equivalent to a much larger single tree� and hence� an ensemble method can
construct a good approximation to a diagonal decision boundary using several
small trees� Figure � shows an example of this� On the left side of the 	gure
are plotted three decision boundaries constructed by three decision trees� each
of which uses � internal nodes� On the right is the boundary that results from
a simple majority vote of these trees� It is equivalent to a single tree with ��
internal nodes� and it is much more accurate than any one of the three individual
trees�

Class 1

Class 2

Class 1

Class 2

Fig� �� The left �gure shows the true diagonal decision boundary and three staircase
approximations to it �of the kind that are created by decision tree algorithms�� The
right �gure shows the voted decision boundary� which is a much better approximation
to the diagonal boundary�

Now let us consider the three algorithms� AdaBoost� Bagging� and Ran�
domized trees� Bagging and Randomization both construct each decision tree
independently of the others� Bagging accomplishes this by manipulating the in�
put data� and Randomization directly alters the choices of C���� These methods
are acting somewhat like Bayesian voting� they are sampling from the space of
all possible hypotheses with a bias toward hypotheses that give good accuracy
on the training data� Consequently� their main e�ect will be to address the sta�
tistical problem and� to a lesser extent� the computational problem� But they do
not directly attempt to overcome the representational problem�

In contrast�AdaBoost constructs each new decision tree to eliminate �resid�
ual� errors that have not been properly handled by the weighted vote of the
previously�constructed trees�AdaBoost is directly trying to optimize the weighted
vote� Hence� it is making a direct assault on the representational problem� Di�

	

rectly optimizing an ensemble can increase the risk of over	tting� because the
space of ensembles is usually much larger than the hypothesis space of the orig�
inal algorithm�

This explanation is consistent with the experimental results given above� In
low�noise cases� AdaBoost gives good performance� because it is able to opti�
mize the ensemble without over	tting� However� in high�noise cases� AdaBoost
puts a large amount of weight on the mislabeled examples� and this leads it to
over	t very badly� Bagging and Randomization do well in both the noisy and
noise�free cases� because they are focusing on the statistical problem� and noise
increases this statistical problem�

Finally� we can understand that in very large datasets� Randomization can
be expected to do better than Bagging because bootstrap replicates of a large
training set are very similar to the training set itself� and hence� the learned
decision tree will not be very diverse� Randomization creates diversity under all
conditions� but at the risk of generating low�quality decision trees�

Despite the plausibility of this explanation� there is still one important open
question concerning AdaBoost� Given that AdaBoost aggressively attempts
to maximize the margins on the training set� why doesn�t it over	t more often�
Part of the explanation may lie in the �stage�wise� nature of AdaBoost� In
each iteration� it reweights the training examples� constructs a new hypothesis�
and chooses a weight w� for that hypothesis� It never �backs up� and modi	es
the previous choices of hypotheses or weights that it has made to compensate
for this new hypothesis�

To test this explanation� I conducted a series of simple experiments on syn�
thetic data� Let the true classi	er f be a simple decision rule that tests just one
feature �feature � and assigns the example to class �� if the feature is �� and
to class �� if the feature is � Now construct training �and testing� examples by
generating feature vectors of length � at random as follows� Generate feature
 �the important feature� at random� Then generate each of the other features
randomly to agree with feature with probability �� and to disagree otherwise�
Assign labels to each training example according to the true function f � but
with �� random classi	cation noise� This creates a di
cult learning problem
for simple decision rules of this kind �decision stumps�� because all � features
are correlated with the class� Still� a large ensemble should be able to do well on
this problem by voting separate decision stumps for each feature�

I constructed a version ofAdaBoost that works more aggressively than stan�
dard AdaBoost� After every new hypothesis h� is constructed and its weight
assigned� my version performs a gradient descent search to minimize the negative
exponential margin �equation ��� Hence� this algorithm reconsiders the weights
of all of the learned hypotheses after each new hypothesis is added� Then it
reweights the training examples to re�ect the revised hypothesis weights�

Figure � shows the results when training on a training set of size �� The plot
con	rms our explanation� The Aggressive AdaBoost initially has much higher
error rates on the test set than Standard AdaBoost� It then gradually im�
proves� Meanwhile� Standard AdaBoost initially obtains excellent performance

�

on the test set� but then it over	ts as more and more classi	ers are added to the
ensemble� In the limit� both ensembles should have the same representational
properties� because they are both minimizing the same function �equation ���
But we can see that the exceptionally good performance of StandardAdaBoost
on this problem is due to the stage�wise optimization process� which is slow to
	t the data�

160

165

170

175

180

185

190

195

200

205

210

1 10 100 1000

E
rr

or
s

(o
ut

 o
f

10
00

)
on

 th
e

te
st

 d
at

a
se

t

Iterations of Adaboost

Standard Adaboost

Aggressive Adaboost

Fig� �� Aggressive AdaBoost exhibits much worse performance than Standard Ad�

aBoost on a challenging synthetic problem

� Conclusions

Ensembles are well�established as a method for obtaining highly accurate classi�
	ers by combining less accurate ones� This paper has provided a brief survey of
methods for constructing ensembles and reviewed the three fundamental reasons
why ensemble methods are able to out�perform any single classi	er within the
ensemble� The paper has also provided some experimental results to elucidate
one of the reasons why AdaBoost performs so well�

One open question not discussed in this paper concerns the interaction be�
tween AdaBoost and the properties of the underlying learning algorithm� Most
of the learning algorithms that have been combined with AdaBoost have been
algorithms of a global character �i�e�� algorithms that learn a relatively low�
dimensional decision boundary�� It would be interesting to see whether local
algorithms �such as radial basis functions and nearest neighbor methods� can be
pro	tably combined viaAdaBoost to yield interesting new learning algorithms�

Bibliography

Ali� K� M�� � Pazzani� M� J� ������� Error reduction through learning multiple
descriptions� Machine Learning� �� ���� ��� ���

Bauer� E�� � Kohavi� R� ������� An empirical comparison of voting classi	cation
algorithms� Bagging� boosting� and variants� Machine Learning� �� ��!���
�� ����

Blum� A�� � Rivest� R� L� ������� Training a ��node neural network is NP�
Complete �Extended abstract�� In Proceedings of the �	

 Workshop on

Computational Learning Theory� pp� � �� San Francisco� CA� Morgan
Kaufmann�

Breiman� L� ������� Bagging predictors� Machine Learning� �� ���� ��� ���

Cherkauer� K� J� ������� Human expert�level performance on a scienti	c
image analysis task by a system using combined arti	cial neural net�
works� In Chan� P� �Ed��� Working Notes of the AAAI Workshop

on Integrating Multiple Learned Models� pp� �� ��� Available from
http���www�cs�fit�edu��imlm��

Dietterich� T� G� ���� An experimental comparison of three methods for
constructing ensembles of decision trees� Bagging� boosting� and random�
ization� Machine Learning�

Dietterich� T� G�� � Bakiri� G� ������� Solving multiclass learning problems via
error�correcting output codes� Journal of Arti�cial Intelligence Research�
�� ��� ����

Freund� Y�� � Schapire� R� E� ������� A decision�theoretic generalization of
on�line learning and an application to boosting� Tech� rep�� AT�T Bell
Laboratories� Murray Hill� NJ�

Freund� Y�� � Schapire� R� E� ������� Experiments with a new boosting algo�
rithm� In Proc� ��th International Conference on Machine Learning� pp�
��� ���� Morgan Kaufmann�

Hansen� L�� � Salamon� P� ������ Neural network ensembles� IEEE Trans�

Pattern Analysis and Machine Intell�� ��� ��� ���

Hornik� K�� Stinchcombe� M�� � White� H� ������ Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward
networks� Neural Networks� �� ��� ���

Hya	l� L�� � Rivest� R� L� ������� Constructing optimal binary decision trees is
NP�Complete� Information Processing Letters� � ���� �� ���

Kolen� J� F�� � Pollack� J� B� ������� Back propagation is sensitive to initial
conditions� In Advances in Neural Information Processing Systems� Vol� ��
pp� �� ��� San Francisco� CA� Morgan Kaufmann�

Kwok� S� W�� � Carter� C� ������ Multiple decision trees� In Schachter� R� D��
Levitt� T� S�� Kannal� L� N�� � Lemmer� J� F� �Eds��� Uncertainty in Ar�

ti�cial Intelligence �� pp� ��� ���� Elsevier Science� Amsterdam�

�

Neal� R� ������� Probabilistic inference using Markov chain Monte Carlo meth�
ods� Tech� rep� CRG�TR������ Department of Computer Science� Univer�
sity of Toronto� Toronto� CA�

Parmanto� B�� Munro� P� W�� � Doyle� H� R� ������� Improving committee
diagnosis with resampling techniques� In Touretzky� D� S�� Mozer� M� C��
� Hesselmo� M� E� �Eds��� Advances in Neural Information Processing

Systems� Vol� �� pp� ��� ��� Cambridge� MA� MIT Press�
Raviv� Y�� � Intrator� N� ������� Bootstrapping with noise� An e�ective regu�

larization technique� Connection Science�
 �� ��� ��� ����
Ricci� F�� � Aha� D� W� ������� Extending local learners with error�correcting

output codes� Tech� rep�� Naval Center for Applied Research in Arti	cial
Intelligence� Washington� D�C�

Schapire� R� E� ������� Using output codes to boost multiclass learning prob�
lems� In Proceedings of the Fourteenth International Conference on Ma�

chine Learning� pp� ��� ��� San Francisco� CA� Morgan Kaufmann�
Schapire� R� E�� Freund� Y�� Bartlett� P�� � Lee� W� S� ������� Boosting the mar�

gin� A new explanation for the e�ectiveness of voting methods� In Fisher�
D� �Ed��� Machine Learning Proceedings of the Fourteenth International

Conference� Morgan Kaufmann�
Schapire� R� E�� � Singer� Y� ������� Improved boosting algorithms using

con	dence�rated predictions� In Proc� ��th Annu� Conf� on Comput� Learn�

ing Theory� pp� � ��� ACM Press� New York� NY�
Tumer� K�� � Ghosh� J� ������� Error correlation and error reduction in ensemble

classi	ers� Connection Science�
 �� ��� ��� ���

