
Definition 0.1 The bandwidth efficiency is defined as the ratio of the number
of successfully transmitted data packets to that of the actual transmitted packets.

By definition, the number of actual transmitted packets is always greater than or
equal to the number of data packets due to the addition of either retransmitted
packets. Thus, a scheme A is better than scheme B if it results in higher
bandwidth efficiency. Furthermore, no scheme can have a bandwidth efficiency
that is greater than 1.

1 Analysis of Transmission Techniques

In this section, we provide theoretical analysis for the ARQ, NC and RNC
techniques for the single-hop wireless unicast network. First, for the sake of
expository simplicity, we present the analysis for the case of one sender and two
receivers.

1.1 Automatic Repeat reQuest (ARQ)

Using the ARQ scheme, the sender sends packets in sequence. If a packet loss
occurs at some receiver, the receiver will send a NAK message to the sender
to signal the sender to rebroadcast that lost packet. Our goal is to compute
the bandwidth efficiency of this scheme, given the packet loss rates at different
receivers. In the unicast scenario, each receiver wants to receive M distinct pack-
ets, so, the unicast bandwidth efficiency ηUA can be obtained by the following
Proposition:

Proposition 1.1 The bandwidth efficiency when using ARQ technique for two
receivers with packet loss rates P1 and P2 is:

ηUA =
1∑2

i=1
1

2(1−Pi)

. (1)

Proof: The proof is straightforward. Since receiver Ri has a packet loss rate
Pi; therefore, to transmit M packet to Ri successfully, the AP needs at least

M
1−Pi

transmissions. Divide 2M , the total number of useful data packets, by
summation of the number of the required transmissions for all receivers, we
obtain the proof.

1.2 Network Coding (NC)

We now analyze the network performance using network coding technique. As-
sume that R1 wants to receive packet a1 while R2 wants to receive packet a2.
Clearly, if R1 is willing to cache packet a2 intended for R2, and R2 is willing to
cache packet a1 intended for R1, then the two unicast sessions are now equiv-
alent to a single broadcast session. Similarly, when there are K receivers that
want to receive different packets, a receiver may want to cache everyone else’s
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Figure 1: An example of packet loss pattern.

data in order to use network coding for higher bandwidth efficiency. However,
unlike the broadcast scenario with two receivers in which, a combined packet can
be an XORed packet of any lost packets, in the unicast scenario, the combined
packet must be a XOR combination of an even and an odd packet in order to
be advantageous. This is because each receiver is only interested in receiving its
own packets. For example, consider the loss patterns depicted in Fig. 1 where
R1 and R2 want to receive odd and even packets, respectively. In this case,
it is not advantageous to XOR packets a7 and a9 even though one successful
transmission of this combined packet may allow R1 to recover packet a9 and
R2 to recover a7. This is because R2 does not want a7, and a7 will never be
used in subsequent packet combining since R1 already had packet a7. Thus,
the sender may as well send packet a9 to avoid unnecessary coding. Using this
unicast scheme, we have the following proposition:

Proposition 1.2 The bandwidth efficiency when using network coding tech-
nique for two receivers with packet loss rates P1 and P2 is:

ηUN =
1

1 + P2
2(1−P2)

+ P1P2
2(1−P1)

, (2)

where P1 ≤ P2 and M , the number of packets destined for each receiver, is
sufficiently large.

Proof: Without loss of generality, assume that the receivers R1 and R2 want
to receive the M odd and M even packets, respectively. The bandwidth gain
of the network coding technique depends on how many pairs of lost packets
among the two receivers that one can find in order to generate the combined
packets. Furthermore, the average numbers of lost packets for R1 and R2

are MP1 and MP2, respectively. The retransmitted packets can be classi-
fied into two types: the combined and non-combined packets. As discussed
previously, the sender only combines odd and even lost packets. One very im-
portant condition that an odd and an even packet can be combined together
is the odd and even packets must be received correctly at R2 and R1, respec-
tively. This implies that on average the number of packets one can pair up
is m = min{MP1(1 − P2),MP2(1 − P1)} = MP1(1 − P2) since P1 ≤ P2 by
assumption. As a result, there are MP1 −m and MP2 −m lost packets from
R1 and R2 that need to be retransmitted as non-combined packets. Hence,
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the total number of transmissions needed to deliver M packets to each receiver
successfully is

T = 2M + m.E[X1] + (MP1 −m).E[X2] + (MP2 −m).E[X3] (3)

where X1, X2 and X3 are the random variables denoting the numbers of at-
tempts before a successful transmission for the combined packets and non-
combined packets for R1 and R2, respectively. X2 and X3 follow the geometric
distribution, E[X2] = 1

1−P1
and E[X3] = 1

1−P2
. Now, one can think of E[X1]

as the expected number of transmissions per successful transmission in the NC
broadcast scheme in which, the sender must transmit successfully a combined
packet to both receivers. Therefore, we have

E[X1] =
1

1−max{P1, P2} =
1

1− P2
(4)

Substituting E[X1], E[X2] and E[X3] into (3) and dividing it by M we have
the expected number of transmissions to successfully deliver two packets to R1

and R2

TUN = 2 +
P1P2

1− P1
+

P2

1− P2
(5)

Consequently, the bandwidth efficiency for NC unicast coding is

ηUN =
1

1 + P1P2
2(1−P1)

+ P2
2(1−P2)

(6)

We can generalize the above result to K-receiver scenario.

Corollary 1.1 The network bandwidth efficiency for K-receiver network and
sufficiently large M using ARQ is:

ηUA =
1

1
K

∑K
i=1

1
1−Pi

. (7)

Theorem 1.1 The network bandwidth efficiency for K-receiver network and
sufficiently large M using NC is:

ηUN =
1

1 + 1
K

∑K
i=1

∏K
j=i Pj

1−Pi

(8)

Proof: We prove it by induction. Without loss of generality we assume that
Pi ≤ Pj if i ≤ j, {i, j} ∈ {1, ..,K}. First, let K = 2, we have

ηUN =
1

1 + 1
2

∑2
i=1

∏2
j=i Pj

1−Pi

=
1

1 + 1
2

(
P1P2
1−P1

+ P2
1−P2

) (9)
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Figure 2: Error pattern for 3-receiver scenario. Packets numbered as 1, 2 and
3 denote time slots used for transmitting data for receiver R1, R2 and R3,
respectively. The circle patterns imply that the errors need to be retransmitted
either in combined packets or non-combined packets.

The theorem holds for K = 2 since (9) was proved in Proposition (1.2).
We now prove that the theorem holds for K = 3. Fig. 2(a) and Fig. 2(b),

(c) and (d), respectively, present the error pattern and its decomposed error
patterns. Let us first consider the error pattern shown in Fig. 2(b) presenting a
scenario in which the data destined to R1 or R2 and corrupted at R3. Therefore,
in the retransmission phase, the AP considers combining error packets, if pos-
sible, for R1 and R2 only and some non-combined packets will be transmitted
alone. In other words, the AP uses the same combining strategy as that of the
2-receiver scenario. Therefore, the number of transmissions required to deliver
the corrupted data which have error patterns as in Fig. 2(b) is

T 3
UN (1) = T 2

UNP3, (10)

where T 2
UN = MP1P2

1−P1
+ MP2

1−P2
denotes the number of retransmissions required to

deliver the corrupted data for two receivers R1 and R2.
For the second and the third decompositions in Fig. 2(c) and (d), the AP

combines corrupted data as 1 ⊕ 2 ⊕ 3, 1 ⊕ 3 and 2 ⊕ 3. The number of avail-
able ingredient packets for each type of the coded packets is dominated by
R3, the receiver has the largest packet error probability. For example, in the
combination for all receivers 1 ⊕ 2 ⊕ 3, the number of available packets at R1,
R2 and R3 are m1 = MP1(1 − P2)(1 − P3), m2 = MP2(1 − P1)(1 − P3) and
m3 = MP3(1−P1)(1−P2), respectively. We can prove that mi ≤ mj for ∀i ≤ j
based on the assumption Pi ≤ Pj . This implies that the ingredient packet
constructing the coded packets for all receivers is dominated by the receiver
with the highest packet error probability, m3. The remaining which can not be
combined will be transmitted to R3 alone. The combinations are illustrated in

4



Fig. 2(c) and (d). Note that P3 is the largest packet error probability; thus,
the number of transmissions for delivering all the combined packets successfully
depends only on P3. Hence, the total number of retransmissions required to
deliver all corrupted data for the second and the third decompositions is the
number of transmissions required to deliver all error packets for R3 only. That
is

T 3
UN (2) =

MP3

1− P3
, (11)

Adding up 3M time slots used for transmitting original packets with (10) and
(11) we obtain the total number of transmissions needed to deliver all intended
data. That is

T 3
UN = 3M + T 3

UN (1) + T 3
UN (2)

= 3M +
MP1P2P3

1− P1
+

MP2P3

1− P2
+

MP3

1− P3
(12)

Divided 3M , the total number of useful data packets, by T 3
UN we have the proof

for the theorem for K = 3.
Now, suppose the theorem holds for K = n− 1, n ∈ N , n ≥ 3. This implies

that the total number of required transmissions to deliver M packet for each
receiver is

Tn−1
UN = (n− 1)M + M

n−1∑

i=1

∏n−1
j=i Pj

1− Pi
(13)

We then prove that the theorem holds for K = n. Let Tn
UN denote the total

number of transmissions needed to deliver M packets for each receiver. There
are n receivers, therefore, the AP needs nM time slots to deliver the original
packets for each receiver. In the retransmission phase, the AP considers using
network coding to combine error packets. The error pattern is decomposed into
three subsets S1, S2 and S3. The set S1 and S2, respectively, present error
patterns of packets destined to {R1, ..., Rn−1} while corrupted and succeeded
at Rn; the set S3 denotes the error patterns of packets destined to Rn at all
receivers. Obviously, in the set S1, the AP considers combining error packets
for receivers {R1, ..., Rn−1} only since these packets are failure at Rn. Hence,
the total number of time slots required for retransmitting error packets in set
S1 is the same as that of the number of time slots required for retransmitting
error packets of the set n− 1 receivers {R1, ..., Rn−1} only. That is

Tn
UN (1) = M

(
n−1∑

i=1

∏n−1
j=i Pj

1− Pi

)
Pn

= M

n−1∑

i=1

∏n
j=i Pj

1− Pi
(14)

An arbitrary error pattern of the set S2 can be paired up with a pattern in
S3 to generate a coded packet. There are 2n−1 − 1 types a coded packet can
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be created. Note that in these combinations, every coded packet contains the
information of data destined to Rn. Since Pn = maxi∈{1,...,K}{Pi}, therefore,
the total number of time slots required to deliver all corrupted data for the
errors in the set S2 and S3 equals to the number of time slots needed to deliver
corrupted data for receiver Rn only. That is

Tn
UN (2) =

MPn

1− Pn
(15)

Adding up nM , the transmissions for original packets, with (14) and (15), the re-
transmissions for error packets, we obtain the total number of time slots needed
to deliver all M packets for each receiver.

Tn
UN = nM + M

n−1∑

i=1

∏n
j=i Pj

1− Pi
+

MPn

1− Pn

= nM + M

n∑

i=1

∏n
j=i Pj

1− Pi
(16)

Divided nM by Tn
UN we have the proof for the theorem for K = n. By induction,

the theorem holds for ∀K ∈ N , K ≥ 2. ¥
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