Adiabatic Markov Decision Process:
Convergence of Value lteration Algorithm

Thai Duong, Duong Nguyen-Huu and Thinh Nguyen
School of Electrical Engineering and Computer Science,
Oregon State University,

Corvallis, Oregon 97331, USA
Email:{duong, nguyendu,thinhq}@eecs.oregonstate.edu

ABSTRACT

Markov Decision Process (MDP) is a well-known framework for devising the optimal decision making strategies
under uncertainty. Typically, the decision maker assumes a stationary environment which is characterized by a
time-invariant transition probability matrix. However, in many real-world scenarios, this assumption is not justified,
thus the optimal strategy might not provide the expected performance. In this paper, we study the performance of the
classic Value Iteration algorithm for solving an MDP problem under non-stationary environments. Specifically, the
non-stationary environment is modeled as a sequence of time-variant transition probability matrices governed by
an adiabatic evolution inspired from quantum mechanics. We characterize the performance of the Value Iteration
algorithm subject to the rate of change of the underlying environment. The performance is measured in terms of the
convergence rate to the optimal average reward. We show two examples of queuing systems that make use of our
analysis framework.

1 Introduction
1.1 Markov Decision Process

The theory of Markov Decision Process (MDP) aims to study optimal decision making processes under uncertainty. It is
widely used in economics, engineering, operation research, and artificial intelligence. In an MDP setting, there is a controller
who interacts with its environment by taking actions based on its observations at every discrete time step. Each action by the
controller induces a change in the environment. Typically, the environment is described by a finite set of states. An action
will move the environment from the current state to some other states with certain probabilities. Associated with each action
in each state is a reward given to the controller. The goal of the controller is to maximize the expected cumulative reward
or average reward over some finite or infinite number of time steps by making sequential decisions based on its current
observations.

It is not difficult to find many applications of the MDP framework. A classic application of MDP is the warehouse
example in operation research. In this setup, a company’s business is to buy and sell a number of merchandises. To operate
smoothly, it uses a warehouse to store the merchandises that allows shipments to the buyers promptly. Everyday, it has to
make the decision on how many and which items it should buy and store in its warehouse subject to the uncertainty of the
market demands. Buying too many items would incur high storage costs while buying too little would run the risk of not
having the items ready for shipping, and thus reducing profits. The MDP framework enables the company to decide on the
optimal action, i.e., how many and which items it should buy on a given day in order to maximize the expected cumulative
reward, i.e., its profits over a month, a year, or indefinitely. Naturally, the optimal action should base on the environmental
states, i.e., the current status of different items in the stock and the current market demands.

A solution of an MDP problem is an optimal policy. A policy/decision rule is a mapping from the states to the action.
The optimal policy would produce the maximum expected cumulative reward. For the infinite-horizon MDP models, to be
discussed subsequently, there are a number of classic algorithms for finding such optimal policies. These algorithms include
Value Iteration [1], Policy Iteration [2], Linear Programming [3,4], which all are based on the Bellman equations [1,5]. All
also assume a stationary policy, i.e., a policy that does not change with time. This assumption is justified as it is well-known
that for a stationary environment, there exists an optimal policy that is also stationary. Fundamentally, the MDP framework
relies on the assumption that a given policy will induce a stationary dynamics on the states. Moreover, the state changes are
characterized by a time-invariant transition probability matrix P.

DS-14-1460, Duong 1

1.2 Non-stationary Environment

For many real-world scenarios, this assumption is not justified, thus the optimal policy might not provide the expected
performance. In this paper, we study the performance of the classic Value Iteration algorithm for solving an MDP problem
under non-stationary environments. Specifically, the non-stationary environment is modeled as a sequence of time-variant
transition probability matrices governed by an adiabatic evolution inspired from quantum mechanics [6-9]. Formally, the
transition probability matrix Pid at time step i induced by decision rule d is determined by:

Pl =(>i)P{ + (1—-®(i))P{, vd 40

where Pg and P;? are the transition probability matrices induced by the decision rule d at time step 0 and e, and ®(.)
characterizes the rate of change of the system with ®(0) = 1 and ®(c0) = 0. The decision rule will be formalized in the next
section.

The above transition model can be applied in two interesting scenarios. In the first scenario, Pf models the actual
dynamics of the underlying non-stationary environment under the decision rule d at step i. In other words, the environment
is initially characterized by P, then its dynamic is characterized by ®(-) and converges to P]‘Z according to ®(-). In the

second scenario, the environment is assumed to be stationary, and is characterized by Pf‘?. However the estimation of the

environmental parameters is initially inaccurate, and thought to be P(‘)l . Thus, the actions/decisions are made based on
inaccurate knowledge of the environment. Over time, the estimations of the environmental parameters become increasingly
more accurate, i.e., Pl-d getting closer to P}? . Therefore, using an MDP algorithm such as Value Iteration will eventually
produce the optimal solution due to increasing accuracy. Over time, the decisions are closer to the optimal ones, and
eventually converge to the optimal policy. That said, we characterize the performance of the Value Iteration algorithm
subject to the rate of change in the environment as characterized by ®(-). The performance is measured in terms of the
convergence rate to the optimal average reward. We present two queuing system examples illustrating the two scenarios
above that make use of our analysis framework.

1.3 Related Work

A learning scheme in varying environment is presented by Szita et al. in [10]. This work introduces the concept of
£—MDP where at each step, the transition matrix is perturbed by small noise bounded by € around a base MDP. It shows that
the Value Iteration algorithm for e—MDP converges to a sub-optimal value which is §— close to the optimal value where
0 = €. In addtition, the paper shows that Q-learning can return a sub-optimal decision rule/policy in a varying environments.
On the other hand, in this paper we consider the change in transition matrix (environment) in adiabatic settings which is
characterized by a non-increasing function ®. Given the function ®, we show that the Value Iteration algorithm converges
to the optimal value of the final MDP (base MDP), derive bounds on the convergence rate of the Value Iteration algorithm
and therefore can predict its stopping time.

The adiabatic evolution was first studied in quantum mechanics by Born and Fock [6]. They provided a first important
adiabatic theorem for unitary matrices. Basically, the theorem shows that in the evolution from the initial Hamiltonian to
the final one, a system converges to the ground state of the final Hamiltonian after a large time. Recently, another type of
adiabatic theorem in Markov chain was presented for linear evolution by Kovchegov in [8] and for general evolution by
Bradford and Kovchegov in [9]. In [8], the adiabatic time of a time homogeneous Markov chain with linear evolution, which
is the chain’s mixing time, is shown as an order of the square of the mixing time of the final transition matrix. Generally,
Bradford et al. shows that the stable adiabatic time, which is a general concept of adiabatic time, is an order of the maximum
mixing time to the power of four [11]. The idea of applying adiabatic evolution to Partially Observable Markov Decision
Process is mentioned in [12].

For queuing application, an adiabatic approach to analysis of adaptive queuing policies was proposed in [13]. It shows
that for continuous-time queuing systems with arrival rate estimation, the queue converges to the final distribution after a
large time with high probability. It also evaluates the adiabatic time for the queueing system. In our work [14], a Markov
Decision Process in non-stationary environments is modeled as a sequence of time-variant transition matrices governed by
adiabatic evolution. The convergence rate of the Value Iteration Algorithm is partly evaluated.

1.4 Our Contribution

In this paper, we study the Markov Decision Process in non-stationary environment modeled as an adiabatic evolution.
Specifically, the convergence of Value Iteration Algorithm is evaluated by an upper bound on the distance between the actual
average reward in Value Iteration and the optimal average reward. As a result, we can derive the necessary time for the Value
Iteration Algorithm to get €—close to the optimal one. Application to an M/M/1/K continuous-time queue with estimated
arrival rate and a discrete-time queue with changing arrival rate are shown to verify the results.

The Section 2 provides some background on the theory of Markov Decision Process, Value Iteration which are necessary
for the development of our results. In Section 3, we formulate the problem in term of the distance from the average reward to
the optimal one using Value Iteration algorithm under changing environment. The theoretical results on the convergence rate

DS-14-1460, Duong 2

of Adiabatic Value Iteration Algorithm are also presented in this Section. Section 4 formulates Adiabatic Markov Decision
Process for two examples of queuing systems based on the theoretical results. Finally, some conclusions and future work on
noisy stochastic matrices are provided in the Section 5.

2 Mathematical Preliminaries
In this Section, we present some definitions, notations and some propositions for stationary environments.

2.1 Markov Decision Process
2.1.1 Definitions

A typical discrete-time MDP represents a dynamic system and is specified by a finite set of states S, representing the
possible states of the system, a set of control actions A for each state s € S, a transition probability matrix PISIXISIand a
reward function r. The transition probability specifies the dynamics of the system whose each entry P; L P(si1 = jlse =
i,a; = a) represents the conditional probability of the system moving to state s, | = j in the next time step after taking an
action a in the current state s, = i. The dynamics are Markovian in the sense that the probability of the next state j depends
only on the current state i and the action a, and not on any previous history. The reward function r(s,a) assigns a real number
to the state s the action a, so that r(s,a) represents the immediate reward of being in state s and taking action a. A policy
n ={dy,d,...} is a sequence of decision rules. Each decision rule d; is a mapping from states to actions at each time step:
d; 1§ — A, and induces a corresponding transition probability matrix where A = J,cgAs. The policy 7 is called stationary if
its actions depend only on the state s, independent of time, i.e., T = {d,d,d,...}. A stationary policy induces a time-invariant
transition probability matrix. Every policy 7 is associated with a value function V™ (s) such that V™ (s) gives the expected
cumulative reward achieved by 7 when starting in state s.

Let IT be the policy space. It can be MD (Markovian and Deterministic), HD (History Dependent and Deterministic),
MR (Markovian and Randomized) or HR (History Dependent and Randomized) [5]. Clearly, ITM? ¢ TIMR C IT7R and,
IMD T1HD TTHR . Moreover, for each & € TTHP ,s € S, there exists a 1’ € IIMD guch that their transition matrices are the
same [15]. Therefore, we only consider Markovian Deterministic policy.

Definition 1 (Unichain Markov Decision Process). A MDP is unichain if the transition matrix corresponding to every
deterministic stationary policy consists of a single recurrent class plus a possibly empty set of transient states.

The solution to an MDP problem is an optimal policy 7* that maximizes the expected cumulative reward over some
finite or infinite number of time steps. The former and latter are termed finite-horizon MDP and infinite-horizon MDP,
respectively. An infinite-horizon model has two typical forms of reward functions: the discounted and the average reward
functions. The discounted reward function is defined as:

Viis(s) = ES {Z Ot’r,(sl,a,)}) 2)

=1
where 0 < o < 1 denotes a given discount factor that provides convergence of V”(s), but also carries the notion of discounting
the future reward, i.e., putting less emphasis on the rewards in the far future than those in the near future. The average reward
function is defined as:

(s) = lim -~ 3)

T
V. N—oo N

ave
where v (s) = EF [¥N r(si,ar)] -
For discounted reward function with discount factor 0 < @ < 1, [5] shows that the convergence of value iteration for

discounted reward function is controlled by function & which we can easily find the convergence rate. Therefore, in this
paper, we only consider the average reward function criteria presented in Appendix A.

2.1.2 Span Seminorm

The span seminorm sp(v) of a vector v is used to evaluate the convergence rate of value iteration for MDP using Average
Reward Criterion ([5]). See Appendix B for definition and properties of span seminorm.

Proposition 1 ([5]). Letv €V and d € D where D is the set of decision rule, then:
sp(P%v) < 8;5p(v)

where delta coefficient 8; = 1 — ming yegxs ¥ jesmin{P?(j|s),P*(jlu)}, P is the transition matrix corresponding to the
decision rule d
Furthermore, 0 < §; < 1, and there exists a v € V such that sp(Pv) = §;sp(v)

DS-14-1460, Duong 3

2.1.3 Value Iteration

The Value Iteration algorithm is an iterative algorithm for finding an €-optimal policy for the infinite-horizon MDP.
More precisely, given an €, the Value Iteration algorithm guarantees to produce a reward value within an € of the optimal
value. The key to the Value Iteration algorithm is that each step of the algorithm can be viewed as applying a contracting
operator L on v. Running the algorithm iteratively, or equivalently, applying the operator L repeatedly, will guarantee that
v will converge to the optimal value based on Bellman equation. Specifically, for a unichain MDP, at each iteration n, we
have: v, 11 = Lv,, where L is defined as Lv = max ¢ D{r" + P4 v}, r? and P4 denote the reward and the transition probability
matrix induced by the decision rule d. The pseudo-code for the Value Iteration algorithm with average reward objective is
shown below.

Definition 2 (The Value Iteration, [5]). . The algorithm for the Value Iteration with Average Reward Criteria is shown
below:

1) Choose any initial reward vector vy, for a given € > 0. Let n = 0.
2) For each s € S, we have: v,y 1(s) = max,ea{r(s,a) + ¥ jcs P(jls,a)va(j)}-
3) Increasing n until sp(vyy1 —vy) < €, then choose: de € argmax{r(s,a)+ Y cs p(jls,a)va(j)}.

where sp(v) is the span seminorm of vector v.

We note that the €-optimal policy approaches to an optimal policy as € reduces to zero when the number of iterations
goes to infinity.

Definition 3 (Gamma coefficient). The gamma coefficient is defined as follows [5]:

= max 1—) min is,a), p(jls',a
Y sES,achy s €S,a' €Ay Jg {p(Jls.a) p(J])

Easily, we can see that the gamma coefficient is an upper bound of the delta coefficient &, for all decision rule d.
Therefore, from Proposition 1, we have the following Proposition:

Proposition 2. Letv €V and d € D where D is the set of decision rule, then:
sp(P1v) < ysp(v)
Proposition 3 (Convergence of Value lteration, [5]). For unichain MDPs, we have:
sp(vn+2 _ Vn+1) < ,},Sp(vn+l _ vn)7
where Y = MaXycs aea, ses.dcA, [1—-Y esmin{p(jls,a), p(j|s',a’)}]. Then if y < 1, the Value Iteration algorithm will stop
after a finite step n.
3 Adiabatic Markov Decision Process

This Section formalizes the adiabatic evolution and provides the necessary background for performance study of Value
Iteration algorithm in non-stationary setting.

3.1 Preliminaries on Adiabatic-Time Evolution

We introduce Adiabatic-time framework to model non-stationary environments. The initial adiabatic setting was first
described in quantum mechanics by Born and Fock in 1928 [6]. Recently, the adiabatic setting for both discrete-time and
continuous-time Markov chain was proposed by Kovchegov [8] which is shown below:

P = (i)Py+ (1 - 0(0))P;
= Py + (i) (P — Fy) @
where Fy, Py are the initial transition matrix and the final transition matrix, respectively. F; is the transition matrix at time i.
®(-) is a function to characterize the adiabatic evolution such that ®(i) : [0, 4o0) — [0, 1], @(0) = 1 and lim; . P (i) = 0.
Because of the properties of ®(-), we have: lim;_,.. P, = Py. For each applications, we have different ®(-) function. In
this paper, we suppose that the & is given.
The following propositions and corollaries are needed for the development of convergence of Value Iteration with
Adiabatic Setting.
Proposition 4 (The bound on gamma coefficients). Given P, = ®(i)Py+ (1 — ®(i))Pr, P(i) € [0,1]:
%< @)+ (1-20)1

Proof. See Appendix C for details.

DS-14-1460, Duong 4

Corollary 1. Given P, = ®(i)Py+ (1 — ®(i)) Py with non-increasing function ®(i) > 0,®(i) € [0, 1] for any ny < i
% < max (Y ¥r) ®)

Proof. See Appendix C for details.

Note that one way to ensure that 0 < y < 1 is that for each decision rule d, there exists a column of the corresponding P
having all positive entries.

3.2 Problem Formulation
3.2.1 Adiabatic MDP Model

Typically, the Value Iteration algorithm is used to find an €-optimal stationary policy in an offline manner using a number
of iterations, assuming a stationary environment such that every stationary policy 7 induces a time-invariant transition
probability matrix. The resulting policy is then used in an online manner with the assumption that the environment is
stationary and governed by the time-invariant transition probability matrices in the Value Iteration algorithm. In this paper,
we study an adiabatic MDP setting in which, we assume that the “environment” is no longer stationary. Instead, it might
change at every iteration of the Value Iteration algorithm, resulting in a sequence of time-variant transition probability
matrices under a stationary policy. The precise meaning of the ’environment” will be clear shortly.

Instead of running the Value Iteration algorithm offline to find an €-optimal policy, we apply the decision rule found
after each iteration immediately and repeatedly in an online manner. Our goal is to determine how good the reward is for
such a scheme. The analysis of such a setting is useful in the rapidly-changing environments where decisions must be made
quickly. Unlike the classic MDP setting where for each decision rule d, there is a time-invariant transition probability matrix
P, in our setting, for a fixed decision rule d, there is sequence of time-variant transition probability matrices:

P = ()P + (1 - ®(i)) P
= P} +@(i)(P{ - Pf), Vd 6)
where @ is a function such that:
®(i) : [0,+) — [0,1],2(0) = 1, lim P(i) = 0. @)

®(-) characterizes the change in the environment at the iteration i of the Value Iteration algorithm, and Pl-d is the induced
transition probability matrix due to the decision rule found at the iteration i of the Value Iteration algorithm. A slowly
changing ®(i) implies a slow change in the environment. We note that the notion of optimal reward is not well defined if
the environment fluctuates arbitrarily. Thus in the model above, we assume that the environment will approach to a final
stationary environment characterized by Pj‘f to ensure a well-defined reward. This can be seen as lim;_,. Pid = P;’. In this
paper, we also assume that the function ®(-) is the same for all decision rules d as seen in the example below.

A Simple Example. Consider a discrete-time queue with size K = 2. Let p, g be the probabilities that a packet arrives
and departs the queue, respectively. The state space is S = {0, 1,2}. The action is the value of g. For this queue, the transition
matrix is:

1-p(1—q) p(1—¢q) 0
P=| q(l—p) pg+(1—p)(1—q) p(l1—q)
0 q(1—p) 1—¢g(1-p)

If we let p change over time following the rule: p; = ¢(i)po + (1 — ¢(i))py Where po, py are the initial and final arrival
probabilities, respectively. Since each entry in the transition matrix is a linear function of p, for any decision rule d which
is a mapping from state space S to a set of values of g, the transition matrix is changing follow the rule Pl»d = CID(i)Pél +(1—
CD(i))PjZ" where ®(-) = ¢(-). Note that the function ®(-) is the same for all decision rule d.

We now articulate a bit more on the meaning of the “environment.” Note that the induced Pid depends on both actions
and environments. Therefore, a change in the environment implies possible changes in the underlying environments, or the
set of actions, or the combination of both over time. For example, let us consider a queuing system in which the controller
attempts to send packets (actions) at some varying rates based on the number of packets in the queue in order to maximize
a given reward. In one scenario, we assume the traffic arrival rate at the queue increases steadily from a initial rate of Ay
to a final rate of Af. As a result, Pld varies as the underlying environment changes over time. In another scenario, the
arrival rate of the packets remains the same, however, the controller has inaccurate estimation of the arrival rate initially due
to few observations. Consequently, it makes the decision on what rate it should send based on an inaccurate arrival rates,
and Pl-d characterizes the change based on its decision rule d at iteration i. However, over time with more observations, its
estimation of the arrival rate becomes more accurate. Therefore, its decision rule approaches the optimal one for which, the
state dynamic is characterized by P,‘? . We will discuss these two examples in more detail in the later section.

DS-14-1460, Duong 5

Set of P’s Set of P’s Setof P’s Setof P’s

| | | |
Operator L Operator L Operator L Operator L
4 4 4 4

—vo»| P1(d1) bvid P2d2) vew| P3(d3) —........ —| Pndn) v

Fig. 1. The classic Value lteration

Set of P’s Set of P’s Set of P’s Set of P’s
at time at time at time at time
step 1 step 2 step 3 step n
I
Operator L1 Operator L2 Operator L3 Operator Ln
—v0-»{ P1(d1) p=vi»| P2(d2) v2» P3(d3) p—......... —»1 Pn(dn) =vn-

Fig. 2. The Value lteration in an adiabatic setting

3.2.2 Convergence Rate of Adiabatic MDP

It is important to emphasize again that the environment will be asymptotically stationary corresponding to an induced
transition probability matrix P)‘Z for any decision rule d. In addition, there exists an optimal decision rule d* corresponding

to a transition probability matrix P]‘Z* which can be obtained when running the Value Iteration algorithm under a stationary
environment [5]. Importantly, running the Value Iteration algorithm in an adiabatic setting for a sufficiently large number
of steps would produce the same optimal decision rule d; as that of the classic Value Iteration algorithm, and also the same
average reward g* (see Appendix A):
g =Pl = n,‘ff* e,
d*
i
Tp
N . ar & &
where by Cesaro mean, P2 = lim — Y (Pf)""! = lim (P{')" = | ™/ |, m/ is the stationary distribution for P;, and

N—oo N = n—oo

e=[11...1]T.

However, the convergence rates to this final reward g* are quite different for the classic MDP and adiabatic MDP settings.
One would expect that the rate in the former setting would be faster since the environment does not change, thus the Value
Iteration algorithm can learn faster than that of the latter. Therefore, our primary focus of this paper is to characterize the
convergence rate of the Value Iteration algorithm in an adiabatic setting given the dynamics specified by ®(-). Specifically,
we want to find an integer N such that Vn > N,

Vn

7_g*
n

<eg (3)

oo

E:’

Note that the index 7 is both the step index in Value Iteration algorithm and the time step. In other words, we run the
Value Iteration algorithm while the environment is changing. The reason for this on-line manner is that it might take a long
time to wait until the environment is stable then run the classic Value Iteration algorithm or the environment keeps changing.

The difference between the classic Value Iteration and the Value Iteration in adiabatic setting is illustrated in Figures 1
and 2. We can see that, compared to the classic Value Iteration algorithm, the set of transition matrix P, where we are looking
for the optimal one, is changing at every time step, i.e. also the step in Value Iteration algorithm. In the Value Iteration in
adiabatic setting, we apply the same operator on different set of matrices at each step. Denote L; as the operator L applied on
the set of matrices at step i.

Finding N is not trivial. Therefore, we will provide a lower a bound on N which depends on ®(-) as well as the set of
all possible matrices P{.

DS-14-1460, Duong 6

3.3 Main Results

Theorem 1 (Main Result 1). Consider a unichain adiabatic-time MDP with S and A, both finite, |r(s,a)| bounded by a
number M. Suppose 0 <y = max(Ys,Yn,) < 1, then

i i i1
KH Yk> SP(Vig+1 = Vny) +¥YM <6i+2 Yy SP(Vj)IA‘I’j—ll(HVk))] ;

k=nq Jj=no+1 k=j

_ o lnfl
E< |[vny — 08| 4= Z
n n iz

0
for any no, where TT,_,(-) = 1ifv<u, e; =Y 7 ;11 (sp(v;)|A®;-1]),2Y = maxaep [Py — Py/|e-

Proof. From (6), for any d € D we have:
P! —PLy| < |@(i) — @i — 1)||F] — Pf| < |@(i) — @(i — 1)||F§ — Pf],

< 2Y|AD;_;|,where fixed 2Y = max |Py — Py|.)
Consider E = ||*» —g*”w:
E=|™-g_. (10)
_ v, —ng* _ ”i:l (vi+1—v,~—g*>+vno—nog*
n o | n n .
2y i —vi— gl L [[Viy — 08"l

i =ngp n n

First, we bound ||vi+1 — v; — g*||... Letx; = argmaxgegs (vit1 — v;) = argmaxges (Liv; — Li—1vi—1), and y; = argminges (vig1 — v;) =
argminges (L;v; — Li—1v;—1). Let d; be the optimal decision rule corresponding to the operator L;. Let d;_; be the optimal
decision rule corresponding to the operator L;_;. Let LY be the operator that we apply the decision rule d: LYy = r¢ + P4v.
Since Li—1vi—1(xi) > L{ vi_1 (x;),
Livi(xi) = Licvie1 (%) < L¥vi(x) — LY vic1 (61) = (rg, (6) + PEvi(xi)) — (ra, () + PO vicr (),

= Plvix) = P vica (x),

= (P =PI vil) + B (v = vien) ().
Let o; = argmax,es (vi(s)), Bi = argminges (vi(s)), AP" = P — P | We have: a = AP v;(x;) = (AP (x;,))vi = (AP (x;,-)) (vi —
vi(Bi)e) where e = [11...1]7 since Pf’,Pfﬁl are transition matrices, then):seS(APid’ (xi,5)) = 0. Then,

a=Y AP (i) (vils) = vilB) < X, AP (xi,s)) (vils) = vilBy),

ses AP (31.5))>0
< (o) —wilB) X AP (xi.s),
AP (x1,5))>0
i di
< () (g =Pl
< Y|AD;_;|sp(v;) since (9).
Then, we have:
Livi(xi) = Li1vi1 (%) < YMsp(v)|AD;]| + P (v —vi1) (%) (11)
Similarly,
Livi(yi) = Li—1vi—1(yi) > =Y Msp(v;)|A®P;_| +P,-‘ﬁ]1(vi —vie1)(vi)- (12)

Consider b = Pﬁl (vilxi)—vic1(x:)) = I'Dl.d_"l (vi—vi—1)(xi) <wi(xi—1) —vi—1(x;—1) since x;_; = argmaxges (v; — vi—1). Therefore,
Livi(x;) = Li—1vi—1(x;) S YMsp(v;)|AD; 1| +v;(x;—1) — vi—1(xi—1). Similarly, Lyv;(y;) = Li—1vi-1(yi) > =Y Msp(v;)|AD; 1|+
vi(yio1) = vie1(yi-1)-
Now, by keep expanding, we have: vi1(x;) —vi (%) = Live(x¢) — Li—1vi—1 (%) S YMY_; (sp(j)|AD; 1) + (vig1 (x;) —
vi(x;)). Lett — oo, when t = oo, we know exactly Py and run Value Iteration algorithm for it, we will have a reward received
at one time step limy_yo (V11 (x;) — v¢(x;)) = g which is the optimal average reward [5].

Therefore, g* <YMY7 ;. (sp(v))|ADP;_1]) + (Vi1 (x;) — vi(x;)) for any i.

Similarly, we have: g* > -YM Y7, (sp(v))|ADP;_1]) + (vit1(yi) — vi(yi)) for any i.

Denote ¢; = .7 ;. (sp(v;)|A®;_1|) represents the total error from the time step i to c. This error comes from the fact

DS-14-1460, Duong 7

that we use the inaccurate matrix at each time step instead of the true one. Now, for any s € S:
—YMe; — (vig1(xi) = vi(xi)) + (vie1 (i) = vi(yi)) < (i1 (s) = vils)) — 8" < YMei+ (vigr (i) —vi(xi)) — (Vi1 (vi) = vi(yi))-
Hence, if we use co—norm, we have
[Vitr =vi— 8"l < YMei+ (vig1 (x:) —vilxi)) — (Vi1 (1) —vi(yi)),
< sp(vit1 —vi) +YMe;.

Now, we bound sp(vi+1 —v;). Since (11), (12), we have:
sp(vier —vi) = (Livi(xi) — Limvie1(x:)) — (Livi(yi) — Lic1vie1 (3)).
< 2V Msp(vi)|AD;_1| + P (vi = vim) () — B (v = vim) ().
< 2¥Misp(v))|[APiy |+ max P, (vi—vio1)(s) —min P (v —viet) (s),

. i—1
< 2YMsp(vi)|AD;—1 | +sp([PL /PE L 1 (vi—vic1),
< 2YMsp(vi)|AD;_1| + Yi—1sp(vi—vi—1) (Proposition 2). (13)

where [P1/P2] denotes the stacked matrix in which the rows of P1 follow the rows of P2. Based on the Definition 3, the
gamma coefficient of the set of stacked matrices at time step i — 1 is at most %;_;. (13) is similar to Proposition 3 except there
is an error 2Y Msp(v;)|AD;_1|.

Since 0 < %; < ¥ =max (Y, Yr) < 1,Vi > ng (Corollary 1), we have:

i— i i—1
sp(vig1 —vi) < H}/k SP(Vng+1 —Vny) +2YM Z sp(vj)|A<I>j_1|(H}/k) for all i > ng. (14)
k=no J=ng+1 k=j
Then,
Virl —V 1<
Z M Z sp(vis1 —vi) +YMei,
i= =ngp n
i —vi-gll 15[f o
y P =gl < IS (T s (g =) +70 (42 8 sptsplae T)] |-
i=ng ni:no L k=ng Jj=no+1 k=j

Therefore, we have a upper bound of A which is as follows:

Vo — 102" || 1n—l i—1 i—1
E§M+EZ <H)/k>sp Vgl — vnO)JrYM(e,JrZ Z sp(vj)|A®;_| Hyk (15)

i=ng k=ny J=no+1

Comments on the Theorem 1. From Theorem 1, if we want to get an integer N so that for n > N, E < g, we have to
find out an ng so that we can bound the last term in the right hand side of (15). If we can run Value Iteration algorithm until
time steps ng, we have some more information about the value vector v. Therefore, we can get a good bound as shown in
Theorem 2. Whereas, if we are not able to run Value Iteration algorithm for some steps, we have to find a general bound on
all the terms in the right hand side of (15) as described in Theorem 3. As a consequence, we obtain a looser bound on the
left hand side. We will see this in Section 4.

Note that, in Theorem 1, we consider general function @ while in Theorem 2 and Theorem 3, we consider positive
non-increasing function ®.

r(s,a)| bounded by a
number M. Suppose 0 <y =max(Ys, Yn,) < 1 and ®(i) is a positive non-increasing function on [ny,+o), then for

2 sp(v -V e
n > max (nov (lvn0||°°+p(no+1n0)+2YMno>> , o
€ -y 1=y
we guarantee: E — —g"|| <ewheree;=Y7 i\ (sp(vj)|AP;-1]),2Y = maxep || Po — Pfllw, 1o is the smallest integer
~ sP(Vpy+1—"ng)
sp(vn)+01f>¢(n0)
satisfying M <1and . (1 zym:(yno)> < W

DS-14-1460, Duong 8

Proof. By applying the Theorem 1 with ng, we have:

Vg — 108" || oo 1 "= 1 i—1
E< [[vag —n0g™[[42 Z TT 7)sp(ngs1 — i) +YM | €i 42 Z sp(vj)|AD;_ Hi’k
n= ny k=ngy J=no+1 =J

Vo — 108" || sp(Vigr1 — v
< |[Vng | (Vg1 = Vo) ZYM ei+2 Z (Y Tsp(vj)|ad; 1))
n ”(1*}/) ni=
0 Jj=no+1

since 0 < % < y=max (Y, ¥r) < 1,Vi > ng (Corollary 1).

(Vng+1 — Vi) are fixed. Let y; = Z;:n0+l (Y sp(v;)|A®;_1|)). We have:
Yng = 0
Yngr1 = SP(Vig41)APy,
Vngt2 = Vngt1 +SP(Vig+2) ALy 1
VWno+2 + P (Vng+3) APy 12

Yng+3

Yn = Yyn—1+SP(Vn)A¢‘i—1

=)

Then, (Z yi = Z (sp(v;)|A®;_|) or Z yi = o

i=n Jj=np+1 i=n 1=y

Now, we find conditions on g so that e,y = X7, 1 (sp(v;)|A®;-1]) < 57;. In order to do that, we need to bound sp(v;)
because we do not know sp(v;) ahead of time when j > ng. By the triangle property of seminorm, we get:

sp(vjt1) < sp(vj) +sp(vjs1 —v;))
< sp(vj—1) +sp(vi—vj-1) +sp(vjt1—v;))

J
< sp(vng) + Y, sp(vie1 —vi) (17

i:n()
From (14), we have:

i

sp(vier —vi) < 2YM< Y SP(V,/‘)|A<D]'1|YI'_I> + 7 05p(Vig 1 = Viny)

Jj=np+1
< 2YMy;+ ¥ "5p(Vig+1 — Vig)
Then, for all j > ny,

p(vj+l) < Sp(vn0)+2YM Z YI+SP Vng+1 — Vn() Z /},l "o

i=ng i=ng
< SP(VnO) +2YM Z Yi +Sp(vn0+1 _Vno) Z ’}/7”0
i=ng i=ng
en Sp(Vpg+1—V
SSP(Vn0)+2YM1_Oy+ il Tr_ly no)
By plugging back into e,,, we get:
€ny = Z (SP(V1)|A¢J71)
Jj=np+1
e sp(v - —
< (sp(vm))HYM1 m_ Sp(”;’*‘ "")> x), ladj)
-Y —-Y Jj=no+1
S (Sp(vno) i 2YM lei()/y + SP(Vn(l)+_1 ; Vﬂ()) > qD(”O)
since ®(i) is non-increasing, i > no, then |[A®;_| = ®(j— 1) — P(). In other words,

(2Y M®(n > < <SP(VHO)+W) D (o)

DS-14-1460, Duong 9

Since lim;_, P (i) = 0, then there exists ng so that:
2YM®(ng)
1=y
Then, we only need to run the Value Iteration until the following condition is satisfied.
(sp(rag) + P20 D)
(1 _ 2YM<I>(no>> = 2vm

<1 (18)

ey < (19)
1=y

Now, for n > ny,

|[Vig — 108" |-~ lsP(Vno-‘rl_Vno) YMY.i no l+12YM €ny
n n 11—y n n 1—-vy

* SP(Vig+1 = Vinp) Cno YM(n—no) Z;M
— o SO0 oy M
(|v,,0 108" [[e + 1y + —7y + "

E<

<

S|—= S|

<

* P (Vng+1 = Vnp) €no £
- TR ALU R R EANTS,) ¢/ Sl U s
(|vn0 nog” |+ T T M)

sp(vy, —Vng) €n sp(vy, ~Vng) €n
Let (ano — 108" || + % +2YMﬁ/) <forn>2 (||Vno —nog*Hw—F% +2YM]7°Y) . Then, for all

n > max(no, 2(||[vay — 108" || + w +2YM fioy)), we guarantee E < €.

Comments on the Theorem 2. From Theorem 2, if we run Value Iteration algorithm until step ng satisfying the
conditions in the theorem, then we can predict that number of steps necessary for Value Iteration algorithm to ensure that
E < e. If running Value Iteration algorithm to find ng is not satisfactory then in that case, we provide an alternative on the
upper bound without ng as shown in the Theorem 3. However, this bound is looser then the bound in Theorem 2.

r(s,a)| bounded by a
number M. Suppose 0 <y =max (¥, %,),Y = max(¥s, %) < 1 and ®(i) is a positive non-increasing function on [ng,+oo),
then for

M+ (1+7) MU 4 (y)yo (sp(ro))|

2 £
> — | 2noM o , 20
nz_ (2 +[voll +1_y+ 1y (20)
we guarantee: E = || 22 — g* ||w < € where 2Y = maxyep ||Py — Py||e, 1o is the smallest integer satisfying
M " €
— 0 P < — 21
[l_y+}/ SPVO)] (n0) < 5537 1)

Proof. By applying the Theorem 1 with ng, we have:

Ivng =08l 150 [(] T
E < f Z Hyk P(Vigt1 = Vng) +YM | €;+2 Z sp(v;)|AD;1(H?’k

n.

i=ng k=ng J=no+1
Vg — 108" ||e 1 8p(Vigr1 —V lnl
Moy’ Lsplmes—vm) Uy (o 8 (tgppupiae i)
n n -Y n,- =ng Jj=no+1

We have: 0 0
[1Vig =108 1o < 1y, B Vag—t —108" oo < ||(ray -y =8+ 1B (vng—1 = (10 = 1)g") oo < |7ty —8")leo +
H(anl — (n0—1)g") e < X3y 17y — 87 [loo + [[volloo < 210M + [V |oo- since 0 < |ry, ,|.8" <M
an
SP(Vng+1 = Vng) = SP(¥dyy + Pay Vg — Ving) < 5P(ra,) +5D(Pay Vo) + 5P (Vig) < M+ (147)sp(vig).
Consider

sp(v) = sp(r 4+ P2 vicy),

< [sp(rd") —&-sp(Pﬁ’llv,-_l)} < [M+%-1sp(vi-1)] (Proposition 2),

i—1
< |1+ % [Ts| + TTsp0)
j=lk=1 k=1
< MEZ O 4 7y spton), where ¥ = max (. 1) 22

DS-14-1460, Duong 10

u

—(O) —

Fig. 3. Queuing Systems
Then,
sP(Vg+1 = Vng) < M+ (1+7)sp(vay),
M1 —(r)")
-y

as shown in Theorem 2’s proof. Now, we find conditions on ny

<M+ [+)spu)|. 23)

Let i = Y 1(Y /sp(v))|A®;_1])). Then Z yi=

i=ng
s0 that e,y = Y7, 11 (sp(v)) AP 1) < 5737
Since sp(v;) < M(ll%(;,/m +(Y) sp(vo) < L’/ + 70 sp(vy), for all j > no,

oo

LS Y (pr))Ia®;) []‘ﬂﬁwwp@o)} Y (A).

Jj=no+1 Jj=no+1
M n
< W—H/ Vsp(vo) | D(no). (24)
since ®(i) is non-increasing, i > no, then |[AD;_1| = P(j— 1) — P(j). Easily, we can see % + 70 sp(vp) is bounded.
Therefore, there exists ng so that e,, < [% +7/(”0>sp(vo)} D(ng) < 5w . Then for all i > nog, e; < e,, < 2YM Now, for
n 2 no,
E < ||Vno_n0g*||°° lSP(VnoH—VnO) M i= no € 12YM €ny
- n 11—y n n 1—
M(1—(¥)"0
M+ (L+y) [MOED g (ryosp00))] e\ vM(n—no) ot
< — | 2noM + |[vo||e + + +)
11—y 11—y n
1-(y)"
| M+ (1+7) B 4 (ryosplo))] ¢ | e
< — | 2noM +||vol|e + + +-.
n 11—y 11—y 2
M) | MU o spt)| o
Let . (— +2noM + [[vo[| + 755) < 5, or
1-(¥)"
2 bt ot +M+<1+y>[%1ﬁ”+<a/>"o<sp<m>>])
g 0 VOl 1—y 1—y '

Then, E < €.

Comments on the Theorem 3. From Theorem 3, we can predict that number of steps necessary for the Value Iteration
algorithm to ensure that E < € witho