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Abstract We introduce an adiabatic framework to study adaptive queueing policies.
The adiabatic framework provides analytical tools for stability analysis of slowly
changing systems that can be modeled as time inhomogeneous Markov chains. We
apply this appproach to study an adaptive queueing policy, where service rate is adap-
tively changed based on the estimated arrival rates that tend to vary with time. This
makes the packet distribution in the queue over time behave like a time inhomoge-
neous reversible Markov chain. Our results provide an upperbound on the time for
an initial distribution of packets in the queue to converge to a stationary distribution
corresponding to some pre-specified queueing policy. This approach is useful to anal-
yse and design adaptive queueing policies and can be readilyextended to any system
that can be modeled as a time inhomogeneous reversible Markov chain. We provide
simulations that confirm our theoretical results.

Keywords Queueing policy· Adiabatic time· Continuous time Markov chain

1 Introduction

A Markov chain is a finite or countable state space random process where the proba-
bility of any particular future behavior of the process, when its present state is known
exactly, is not altered by additional knowledge concerningits past behavior [5]. If
these probabilities, called transition probabilities, are independent of time, it is called
a stationary or time homogeneous Markov chain or else, a nonstationary or time inho-
mogeneous Markov chain. A Markov chain can be discrete or continuous depending
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on whether the time index set is discrete or continuous. The theory of Markov chains
is extensively used in queueing theory [6] and consequentlyin communication net-
works [7], among other fields.

It is a well-known result that an irreducible, aperiodic Markov chain converges to
a unique stationary distribution [3]. The time taken to converge to this distribution is
of interest in applications like Monte Carlo Markov chain [3]. After a large number
of steps the Markov chain must be “ε-close” according to some distance notion to
its stationary distribution. This is the idea of Markov chain mixing and the time is
quantified by mixing time [9]. In the case of time inhomogeneous Markov chains, the
evolution must be slow enough such that the distribution is “ε-close” to the stationary
distribution of the final transition matrix. This is the so-called adiabatic approach and
this time is quantified by adiabatic time [8].

The adiabatic approach follows along the lines of the adiabatic evolution in quan-
tum mechanics [10]. The quantum adiabatic theorem studies the evolution of a sys-
tem from an initial Hamiltonian to a final Hamiltonian (operator corresponding to
total energy of the system) and says that if the evolution is slow enough, the system
will be “ε-close” inℓ2 norm to the ground state of the final Hamiltonian. We consider
ℓ1 norms in our study of Markov chains.

In this paper, we study the convergence, in adiabatic sense,of time inhomoge-
neous Markov chains, where the time inhomogeneity can be dueto an underlying
nonstationary process or uncertainties in measurement of an underlying stationary
process. We apply the above convergence results to a Markovian queueing model
where the time inhomogeneity arises due to the latter of the two conditions men-
tioned above.

1.1 Application to Queueing Models

A queue is typically defined by the arrival rate, service or departure rate, number of
servers and buffer size. In a finite buffer size queue, we are interested in maintaining
a distribution which is more biased towards smaller queue lengths, since otherwise
we will have high blocking probabilities. Such a stable queue is achieved by keeping
the departure rate strictly above the arrival rate. In a network situation for example,
there might be other constraints also on the departure rate.If the departure rate is
too large, it might cause congestion somewhere else in the network. Or in the case
of multiple queues of different kinds of traffic, each of which has to satisfy some
quality of service conditions, sending packets from just one queue will affect the
other queues. In wireless networks, we might require to maintain such a departure
rate and nothing more, due to power restrictions. Also, in a network of multiple such
nodes we might have problems of collision in the wireless medium. Hence it becomes
necessary to monitor the departure rate and keep it at such a level to keep our queue
stable and at the same time achieve the desired network objectives.

We consider a queue in which packets arrive at a fixed but unknown rate and we
use an estimate of this arrival rate to decide a queueing policy designed to ensure
stable queues. In particular, we let the departure rate be always higher than the es-
timated arrival rate by a fixed multiplicative constant, anticipating that the estimate
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will be correct in the long-run. Since the estimated arrivalrate changes and is more
accurate with time, the departure rate also changes. The packets in the queue evolve
according to a time inhomogeneous Markov chain dictated by this adaptive departure
policy. We study the time required for the queue to reach thisstable distribution us-
ing the above outlined adiabatic approach and under suitable estimation and departure
policies for the unknown arrival rate.

1.2 Related Work

The adiabatic theorem in quantum mechanics was first stated by Born and Fock [1].
A version of the adiabatic theorem [10] considers two Hamiltonians and the evolu-
tion of the system from the initial to final Hamiltonian. The theorem states that for
sufficiently large time, the final state of the system and the ground state of the final
Hamiltonian will beε-close inℓ2 norm. The lower bound on time was found to be
inversely proportional to the cube of the least spectral gapof the Hamiltonian over all
time.

The adiabatic theorem for Markov chains was studied by Kovchegov [8] where
the adiabatic evolution was studied for discrete time and continuous time Markov
chains. The linear evolution of a time inhomogeneous Markovchain from an initial
to a final probability transition matrix was studied and the adiabatic time was found
to be proportional to the square of the mixing time or inversely proportional to the
square of the spectral gap of the final transition matrix. This result was generalized to
a more general adiabatic dynamics in [2].

1.3 Overview

Section 2 gives the mathematical preliminaries including definitions and general re-
sults whcih we use in the analysis. Section 3 defines the evolution of continuous time
Markov chains with bounded generators where the changes happen at fixed time in-
tervals and gives an upper bound on the distance between its distribution with the
stationary distribution at large enough time. In section 4,we apply the upper bound
to an M/M/1/K queue with unknown but constant arrival rate. We also define an adap-
tive queueing policy where we estimate the arrival rate and decide the departure rate
to ensure an eventually stable queue. The main result gives the upper bound on time
needed for the queue to converge to the eventual stable distribution. Simulations are
also provided to compare the distance predicted by our upperbounds to the actual
distance.

2 Preliminaries

Now we look at the main definitions and some results which willbe useful in the
rest of the paper. A vectorx is a column vector whoseith entry is denoted byx(i) and
transpose denoted byxT . A matrixP is a square matrix whose(i, j)th entry is denoted
by Pi j .
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– We use total variation distance to measure the distance between two probability
distributions.

Definition 1 (Total variation distance) For any two probability distributionsν
andπ on a finite state spaceΩ , we define

‖ν −π‖TV =
1
2 ∑

i∈Ω
|ν(i)−π(i)| .

⊓⊔

Note that the above function measures the distance on a scaleof 0 to 1.
– Define the following scalar products and the corresponding norms.

Definition 2 Let π be a strictly positive probability distribution on a finite state
spaceΩ and letℓ2(π) be the real vector spaceRr with the following scalar prod-
uct and norm,

〈x,y〉π = ∑
i∈Ω

x(i)y(i)π(i),

‖x‖π =

(

∑
i∈Ω

x(i)2π(i)

) 1
2

,

and letℓ2( 1
π ) be the real vector spaceRr with the following scalar product and

norm,

〈x,y〉 1
π
= ∑

i∈Ω

x(i)y(i)
π(i)

,

‖x‖ 1
π
=

(

∑
i∈Ω

x(i)2

π(i)

) 1
2

.

⊓⊔

– The following result is used to relate total variation distance to the above defined
norm and is proved in Chapter 6, Theorem 3.2 of [3, p. 209].

Proposition 1 For any two probability distributionsν andπ (strictly positive),

‖ν −π‖TV ≤ 1
2
‖ν −π‖ 1

π
.

⊓⊔

– Definition 3 (Reversibility) Let P be a transition matrix andπ a strictly positive
probability distribution onΩ . The pair(P,π) is reversible if the detailed balance
equations

π(i)Pi j = π( j)Pji

hold for all i, j ∈ Ω . ⊓⊔
If P is irreducible, thenπ is the unique stationary distribution ofP.
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– The following result is from [3, p. 202], Chapter 6, Theorem 2.1.

Proposition 2 (Necessary and sufficient condition of reversibility) The pair
(P,π) is reversible if and only if

P∗ = D
1
2 PD− 1

2 ,

is a symmetric matrix where

D = diag{π(1), . . . ,π(r)}.

Moreover, a reversible matrix P has real eigenvalues with right eigenvectors or-
thonormal inℓ2(π) and left eigenvectors orthonormal inℓ2( 1

π ). ⊓⊔

This proposition is used in the proof of the following result. See [3].
– The following result is from Chapter 6, Theorem 3.3 of [3, p. 209].

Proposition 3 Let P be a reversible irreducible transition matrix on the finite
state spaceΩ , with the stationary distributionπ and second largest eigenvalue
modulus|λ2(P)|. Then for any probability distributionν on Ω and for all n≥ 1

∥

∥νTPn−πT
∥

∥

1
π
≤ |λ2(P)|n‖ν −π‖ 1

π
.

⊓⊔

– For a continuous time Markov chain{Xt}t≥0 on a finite state spaceΩ with a
bounded generator matrixQ = [Qi j ]i, j∈Ω , andq = maxi∈Ω ∑ j: j 6=i Qi j , the upper
bound on the departure rates of all states, uniformization [11] gives transition
probabilities to be

P(t) =
∞

∑
n=0

e−qt (qt)n

n!
Pn = eQt, (1)

where the matrixP= I + 1
qQ. The matrixP(t) denotes the transition probabilities

in time t.
– The following result is used to bound the distance of the continuous chain in terms

of a discrete one and is based on [3, p. 364]. The proof followsalong similar lines
and can be found in [12].

Proposition 4 For a continuous time Markov chain on a finite state spaceΩ
with generator matrix Q= q(P− I) with reversible, irreducible P and stationary
distributionπ, for any probability distributionν on Ω ,

∥

∥νTeQt −πT
∥

∥

1
π
≤ ‖ν −π‖ 1

π
e−q(1−|λ2(P)|)t ,

where|λ2(P)| is the second largest eigenvalue modulus of P. ⊓⊔

– The matrix given below arises in the queueing example which we consider in
Section 4 and its eigenvalues are stated in the below result which is proved in [4].
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Proposition 5 The eigenvalues of an r× r matrix,

P=















1−β β 0 0 . . .
1−β 0 β 0 . . .

. ..
. ..

. . .
. . .

. . .
. . . 0 1−β 0 β
. . . 0 0 1−β β















,

where0< β < 1 are given by1,2
√

β (1−β )cos
(

π j
r

)

, j = 1, . . . , r−1 and there-

fore the second largest eigenvalue modulus is|λ2(P)|= 2
√

β (1−β )cos
(π

r

)

.
⊓⊔

– Mixing time of a Markov chain measures the time needed for theMarkov chain
to converge to its stationary distribution.

Definition 4 For a continuous time Markov chainP(t), with stationary distribu-
tion π, given anε > 0, the mixing timetmix(ε) is defined as

tmix(ε) = inf
{

t : ‖νTP(t)−πT‖TV ≤ ε , for all probability distributionsν
}

.

⊓⊔

– To define adiabatic time, consider a linear evolution [8] of generator matrices
described by

Q
( t

T

)

=
(

1− t
T

)

Qinitial +
t
T

Qf inal ,

for T > 0, 0≤ t ≤ T and bounded generatorsQinitial andQf inal . If π f is the unique
stationary distribution forQf inal , adiabatic time measures the time needed for the
chain to converge toπ f .

Definition 5 Given the above transitions generating a continuous time Markov
chainP(0,T) andε > 0, adiabatic time is defined as

Tε = inf
{

T : ‖νTP(0,T)−πT
f ‖TV ≤ ε , for all probability distributionsν

}

.

We will look at a different evolution of generator matrices in the next section. ⊓⊔

3 Adiabatic Framework

In this section we define an evolution of continuous time Markov generator matrices
and look at the convergence in Definition 5 in terms of this newevolution. Consider
the following evolution: time is divided into slots of size∆ t and the generator matrix
changes at these intervals. The bounded generator matrixQi determines the transition
probabilities in the time interval(i∆ t,(i+1)∆ t]. The method of uniformization gives
the corresponding transition probability matrixP(i∆ t,(i+1)∆ t) as in (1). The upper
bound on departure rates over all states isqi for eachQi . Therefore,

P(i∆ t,(i +1)∆ t) = eQi∆ t = eqi(Pi−I)∆ t ,
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whereP(t1, t2) denotes the matrix of transition probabilities from timet1 to t2. Let
the matrixPi be irreducible and reversible with stationary distribution πi and second
largest eigenvalue modulus|λ2(Pi)|. Note that this evolution can be the result of any
kind of time inhomogeneity in the system resulting in a changing Qi which is up-
dated at fixed intervals of time. As noted before, the time inhomogeneity can be due
to the nature of the underlying process or due to uncertainties in measurements of
parameters and the following theorem captures either kind.

Let νn be the distribution of the chain at timen∆ t. We are interested in the distance
betweenνn and the stationary distributionπn corresponding to matrixPn at timen∆ t.
The following theorem gives an upper bound on the distance attime n∆ t in terms of
the distance atn0∆ t for n0 < n.

Theorem 1 For the time inhomogeneous Markov chain generated by the matrices
{Qi}n

i=0 = {qi(Pi − I)}n
i=0 from time0 to n∆ t,

‖νn−πn‖TV ≤ 1
2
‖νn0 −πn0‖ 1

πn0

n−1

∏
i=n0

e−qi(1−|λ2(Pi)|)∆ t

√

max
k∈Ω

πi(k)
πi+1(k)

+
1
2

n−1

∑
i=n0

[

‖πi −πi+1‖ 1
πi+1

n−1

∏
j=i+1

e−q j(1−|λ2(Pj)|)∆ t

√

max
k∈Ω

π j(k)

π j+1(k)

]

,

whereνn is the distribution at time n∆ t, νn0 is the distribution at time n0∆ t for n0 < n
and {Pi}i are irreducible and reversible with stationary distribution πi and second
largest eigenvalue modulus|λ2(Pi)|.
Proof We start with the1

π norm so that we can use the result in Proposition 4.

‖νn−πn‖ 1
πn

= ‖νT
n−1eQn−1∆ t −πT

n ‖ 1
πn

≤ ‖νT
n−1eQn−1∆ t −πT

n−1‖ 1
πn
+‖πn−1−πn‖ 1

πn
(2)

≤ ‖νT
n−1eQn−1∆ t −πT

n−1‖ 1
πn−1

√

max
k∈Ω

πn−1(k)
πn(k)

+‖πn−1−πn‖ 1
πn

(3)

≤ ‖νn−1−πn−1‖ 1
πn−1

e−qn−1(1−|λ2(Pn−1)|)∆ t

√

max
k∈Ω

πn−1(k)
πn(k)

+‖πn−1−πn‖ 1
πn
, (4)

where (2) follows from triangle inequality, (3) follows from the definition of the norm
and (4) follows from Proposition 4. We can expand the above iteratively using triangle
inequality for every time step which gives us

‖νn−πn‖ 1
πn

≤ ‖νn0 −πn0‖ 1
πn0

n−1

∏
i=n0

e−qi(1−|λ2(Pi)|)∆ t

√

max
k∈Ω

πi(k)
πi+1(k)

+
n−1

∑
i=n0

[

‖πi −πi+1‖ 1
πi+1

n−1

∏
j=i+1

e−q j (1−|λ2(Pj )|)∆ t

√

max
k∈Ω

π j(k)

π j+1(k)

]

.

The result follows from Proposition 1. ⊓⊔
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4 Application to Queueing Model

In this section we apply the above defined adiabatic evolution model to a queueing
process. In particular, we consider time inhomogeneity dueto uncertainty in a param-
eter. Consider an M/M/1/K queue with unknown packet arrivalrateλ per unit time.
We estimateλ at timei∆ t denoted bŷλi and decide packet departure rate,µi = f (λ̂i)
based on this estimate.

Definition 6 Queueing policy is defined as the sequence{λ̂i ,µi = f (λ̂i)}i≥1 where
f : R+ → R+ andµi is applied for time from(i∆ t,(i +1)∆ t]. ⊓⊔

This decides the following generator matrix from(i∆ t,(i +1)∆ t]:

Qi =















−λ λ 0 0 . . .
µi −(µi +λ ) λ 0 . . .
. . .

.. .
.. .

. ..
.. .

. . . 0 µi −(µi +λ ) λ

. . . 0 0 µi −µi















. (5)

The corresponding transition probability matrixP(i∆ t,(i +1)∆ t) is obtained as in
(1). The upper bound on departure rates over all states isλ +µi . Therefore,

P(i∆ t,(i +1)∆ t) = eQi∆ t = e(λ+µi)(Pi−I)∆ t ,

where the matrix,Pi is

Pi =















1−βi βi 0 0 . . .
1−βi 0 βi 0 . . .

. . .
.. .

. . .
. . .

. ..
. . . 0 1−βi 0 βi

. . . 0 0 1−βi βi















, (6)

whereβi =
λ

µi+λ . ThePi ’s are reversible and irreducible with stationary distribution
given by

πi =
1

∑K
r=0 ρ r

i

[

1,ρi ,ρ2
i , . . . ,ρK−1

i ,ρK
i

]T
,

whereρi =
βi

1−βi
= λ

µi
. The second largest eigenvalue modulus is given by|λ2(Pi)|=

2
√ρi

(1+ρi)
cos( π

K+1). Also, the matrixQ0 could be decided from a random departure rate

and corresponds to the transition probability matrixP(0,∆ t).

4.1 Performance of an Adaptive Queueing Policy

Now we look at a specific queueing policy determined by the time average of number
of packets arrived.
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Definition 7

λ̂i =
1

i∆ t

i

∑
k=1

Xk,

µi = f (λ̂i) = (1+δ )λ̂i ,

whereXk ∼ Poisson(λ∆ t) is the number of packets in thekth slot of duration∆ t and
δ > 0 is a constant. ⊓⊔
This particular queueing policy ensures that the departurerate is always higher than
the estimated arrival rate and since the estimated arrival rate itself must approach the
actual one, should ensure a stable queue.

With this queueing policy, we have the adiabatic evolution generated by the ma-
tricesQi in (5). The correspondingPi ’s are given by (6). The ratioρi =

λ
µi
= λ

(1+δ )λ̂i
.

With full knowledge of the arrival rate, the above ratio becomesρ = 1
1+δ and let the

corresponding matrixP has stationary distributionπ. We redefine adibatic time in
this setting.

Definition 8 Given the above transitions generating a continuous time Markov chain
P(0,n∆ t) andε > 0, adiabatic time is defined as

Tε ,γ = ∆ t · inf
{

n : Pr{‖νTP(0,n∆ t)−πT‖TV < ε}> 1− γ ,

for all probability distributionsν} .

whereπ is the stationary distribution corresponding to the queueing policy{λ ,(1+
δ )λ}.

Theorem 2 (Main result) Given0< ε < 1, 0< γ < 1 andλ , the unknown arrival
rate, the queueing policy in Definition 7 withδ > 0 for an M/M/1/K queue has

Tε ,γ ≤
2log 2

γ1

λ (ε2
0 − ε3

0)
+

log
(

2
[

(1+ ε0)(1+δ )
]K

2 +1
)

− log(εδ )

1
2∆ t log

(

[

(1−ε0)(1+δ )
]K+1

−1
[

(1−ε0+ε1)(1+δ )
]K+1

−1

)

+λ (
√

(1+δ )(1− ε0)−1)2

,

whereε0 satisfies

e−λ∆ t(
√

(1+δ )(1−ε0)−1)2

√

√

√

√

[

(1− ε0+ ε1)(1+δ )
]K+1−1

[

(1− ε0)(1+δ )
]K+1−1

< 1,

√
(1−ε0)(1+δ )ε1

|(1−ε0)2(1+δ )−(1−ε0+ε1)|

1−e−λ∆ t(
√

(1+δ )(1−ε0)−1)2

√

[

(1−ε0+ε1)(1+δ )
]K+1

−1
[

(1−ε0)(1+δ )
]K+1

−1

≤ ε
2
,

ε0 ≤ δε
(1+δ )(1+ ε)

,

andε1 =
λ∆ t(ε2

0−ε3
0)

2log 2
γ1

( 1√
λ∆ tγ2

+ ε0), 0< γ1 < γ, γ2 = γ − γ1. ⊓⊔



10 Leena Zacharias et al.

The above theorem gives an upper bound on the time we must waitbefore the dis-
tribution of the queue length converges to the desired stationary distributionπ. Note
that π is decided byδ and can be designed to give a stable stationary distribution.
Hence, for given smallε andγ, the theorem gives the sufficient amount of time to
converge to a stable distribution withinε with high probability of 1− γ. The choice
of ε0 to be the largest which satisfies all three conditions will give the lowest lower
bound in the theorem. At large enough time the estimated arrival rate must approach
the actual arrival rate and the difference can be bounded byε0 with a high probability.
Furthermore two consecutive estimates, can differ only by amaximum ofε1.

4.2 Proof of Theorem 2

To prove Theorem 2, we need to bound the terms in Theorem 1. Note that Theorem 1
involves terms from timen0∆ t onwards. The motive behind this was, at large enough
n0 we can put an upper bound on all the terms in Theorem 1. Sinceλ̂i∆ t is an empir-
ical average ofi iid Poisson(λ∆ t) distributed random variables, it follows from the
law of large numbers that it must approach the actual value ofλ∆ t at large enough
i. Furthermore, two consecutive estimates must be very near to each other. We need

this fact to bound terms which have bothi and i +1 in them like
√

maxk∈Ω
πi(k)

πi+1(k)

and‖πi −πi+1‖ 1
πi+1

. The above facts are made precise in the following lemma.

Lemma 1 For 0< ε0 < 1 and0< γ1 < 1, there exists n0 =
2log 2

γ1
λ∆ t(ε2

0−ε3
0)

such that

– ∀i ≥ n0, with probability at least1− γ1

|λ̂i −λ | ≤ λε0, (7)

e−(λ+µi)(1−|λ2(Pi)|)∆ t < e−λ∆ t(
√

(1+δ )(1−ε0)−1)2, (8)

‖πi −π‖TV <
1
2

ε0(1+δ )
δ − ε0(1+δ )

. (9)

– For ε1 =
1
n0
( 1√

λ∆ tγ2
+ ε0) and0< γ2 < 1 and∀i ≥ n0, with probability at least

1− γ = 1− γ1− γ2

|λ̂i+1− λ̂i | < λε1, (10)
√

max
k∈{0,1,...,K}

πi(k)
πi+1(k)

<

√

√

√

√

[

(1− ε0+ ε1)(1+δ )
]K+1−1

[

(1− ε0)(1+δ )
]K+1−1

, (11)

‖πi −πi+1‖ 1
πi+1

<

√

(1− ε0)(1+δ )ε1

|(1− ε0)2(1+δ )− (1− ε0+ ε1)|
. (12)

– With probability at least1− γ1,

‖νn0 −πn0‖ 1
πn0

<

[

(1+ ε0)(1+δ )
]K

2 +1

δ
. (13)
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⊓⊔

Refer Appendix A for proof.
Rewriting Theorem 1 for the queueing model we have described,

‖νn−πn‖TV ≤ 1
2
‖νn0 −πn0‖ 1

πn0

n−1

∏
i=n0

e−(λ+µi)(1−|λ2(Pi)|)∆ t

√

max
k∈{0,1,...,K}

πi(k)
πi+1(k)

+
1
2

n−1

∑
i=n0

[

‖πi −πi+1‖ 1
πi+1

n−1

∏
j=i+1

e−(λ+µ j )(1−|λ2(Pj )|)∆ t

√

max
k∈{0,1,...,K}

π j(k)

π j+1(k)

]

.

According to Lemma 1, the above inequality can be bounded, with probability at least
1− γ1− γ2 = 1− γ.

‖νn−πn‖TV <
1
2

[

(1+ ε0)(1+δ )
]K

2 +1

δ

[

A·B
]n−n0

+
1
2

C
1−A·B ≤ ε

2
. (14)

We use the notation below for brevity.

A = e−λ∆ t(
√

(1+δ )(1−ε0)−1)2,

B =

√

√

√

√

[

(1− ε0+ ε1)(1+δ )
]K+1−1

[

(1− ε0)(1+δ )
]K+1−1

,

C =

√

(1− ε0)(1+δ )ε1

(1− ε0)2(1+δ )− (1− ε0+ ε1)
.

(14) holds ifε0 is chosen such thatA ·B < 1. Now the distance betweenνn andπ
which is the stationary distribution corresponding to the matrix P with full knowledge
of λ is given by

‖νn−π‖TV = ‖νn−πn+πn−π‖TV

≤ ‖νn−πn‖TV +‖πn−π‖TV ≤ ε , (15)

using triangle inequality.
Our aim is to find then such that‖νn−π‖TV < ε. (14) holds if both terms are

≤ ε
4 . For the first term we get,

[

(1+ ε0)(1+δ )
]K

2 +1

δ

[

A.B
]n−n0 ≤ ε

2

n−n0 ≥
log
(

2
[

(1+ ε0)(1+δ )
]K

2 +1
)

− log(εδ )

1
2 log

(

[

(1−ε0)(1+δ )
]K+1

−1
[

(1−ε0+ε1)(1+δ )
]K+1

−1

)

+λ∆ t(
√

(1+δ )(1− ε0)−1)2

,
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which gives a condition onn. Adding withn0 and multiplying by∆ t gives the adia-
batic time as defined in Definition (8). For the second term of (14),

√
(1−ε0)(1+δ )ε1

(1−ε0)2(1+δ )−(1−ε0+ε1)

1−e−λ∆ t(
√

(1+δ )(1−ε0)−1)2

√

[

(1−ε0+ε1)(1+δ )
]K+1

−1
[

(1−ε0)(1+δ )
]K+1

−1

≤ ε
2
,

which gives a second condition onε0.
From (15) and (9),

‖πn−π‖TV <
1
2

ε0(1+δ )
δ − ε0(1+δ )

≤ ε
2
, (16)

which gives

ε0 ≤
δε

(1+δ )(1+ ε)
,

and a third condition onε0. This completes the proof of Theorem 2.

4.3 Simulations

Now we look at the distance of the distribution of the queue from a stable distribution
with increasing time. This distance must be small for large enough time from the
discussions above. Here we look at distance as a function of time for a single sample
path to verify whether the distance at the adiabatic time predicted is indeed lower
thanε.

Simulation Setup 1 λ = 10,δ = 0.1,K = 100,∆ t = 0.5,ε = 0.1,γ = 0.05,γ1 = 0.04.

Theorem 2 predictsn0 = 174391 andn= 175438 forε0 = 0.003 (the highest which
satisfies all the conditions in Theorem 2) or adiabatic time for ε = 0.1,γ = 0.05,
T0.1,0.05 = 87719. Figure 1 shows the results of a simulation which measures the
distance at each time slot vs. the distance upper bound givenby triangle inequality
in Theorem 1. The triangle inequality upper bound very closely follows the actual
distance and both are much smaller than the distance upper bound predicted by (14)
and (16), which is 0.056. Note that this is only a sample path. This indicates thateven
though Theorem 2 givesT0.1,0.05 = 87719 as a sufficient condition, the distance of
ε = 0.1 is achieved much before. For example, Figure 2 shows the simulation results
for T = 5000 orn= 10000. (The upper bound starts fromn0 = 500.) This was also
found to be true for all 100 sample paths tested. The Figure 3 shows the histogram of
distances in these 100 sample paths. Note that all of them have distance< 0.1.

Notice the initial increase in the upper bound due to Theorem1 in both Figures
1 and 2. This is because of the second term of the bound which adds terms with
time. After a sufficient number of time slots, however, the decrease in the first term
overshadows the increase in the second and the overall boundstarts coming down.

Now we look at the effects of increasingδ which decides how fast the departures
are compared to the arrivals.
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Fig. 1 Comparison of distance upper bound in Theorem 1 with actual distance
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Fig. 2 Comparison of distance upper bound with actual distance at lesser time than predicted by Theorem
2

Simulation Setup 2 λ = 10,K = 100,∆ t = 0.5,ε = 0.1,γ = 0.05,γ1 = 0.04 with
differentδ = 0.1 : 0.1 : 0.9.

Note that increase inδ corresponds to emptying out the queue faster or in other
words, the stable distribution should be approached faster. Theorem 2 predictions are
as shown in Figure 4 which shows that the adiabatic time decreases with increases
in δ . Or, at the same time, the distance decreases with increasing δ . The distances at
T = 2500 averaged over 100 sample paths are shown in Figure 5 which confirms this.
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Another parameter of interest is the sampling time∆ t which decides how fre-
quently the estimates are done.

Simulation Setup 3 λ = 10,K = 100,δ = 0.1,ε = 0.1,γ = 0.05,γ1 = 0.04 with dif-
ferent∆ t = 1,5,10,20,25,50.

The increase in∆ t corresponds to applying the information gained from estimates
less frequently and must result in an increased distance at the same time. The dis-
tances at timeT = 100 averaged over 100 sample paths are shown in Figure 6 which
shows that this is true. This shows the benefits of updates which are more frequent
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and hence the system following a smoother path towards the stable distribution rather
than attempting to reach there at one go.

5 Conclusion

We considered a time inhomogeneous Markov chain with its evolution governed by
generator matrices which change at fixed time intervals. We followed the adiabatic
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approach to study this chain and bounded the distance to a stationary distribution.
This is a general theorem which is applicable to evolutions of the above kind.

We used this model of time inhomogeneous Markov chains to characterize a birth-
death chain in which the time inhomogeneity is due to uncertainty in parameters. We
considered a Markovian queue with an adaptive queueing policy and derived suffi-
cient conditions on time after which the distribution of thequeue can be considered
to be stable with high probability.

A Proof of Lemma 1

A.1 Proof of (7)

For a random variableX which is the empirical average ofi iid random variables{Xk}i
k=1, Chernoff bound

for tail probabilities gives,

Pr{X ≥ a} ≤ exp
(

− i sup
t>0

(

at− log(E[etXi ])
)

)

,

Pr{X ≤ a} ≤ exp
(

− i sup
t>0

(

−at− log(E[e−tXi ])
)

)

.

SinceXi is Poisson(λ∆ t) in our case log(E[etXi ]) = λ∆ t(et −1). Substituting this in the above, we get

Pr{λ̂i∆ t ≥ λ∆ t(1+ ε0)} ≤ exp
(

− iλ∆ t sup
t>0

(

(1+ ε0)t − (et −1)
)

)

.

The maximum above is attained att = log(1+ ε0)> 0. Similarly for

Pr{λ̂i∆ t ≤ λ∆ t(1− ε0)} ≤ exp
(

− iλ∆ t sup
t>0

(

− (1− ε0)t − (e−t −1)
)

)

.

The maximum here is attained att = log( 1
1−ε0

)> 0. Using the above bounds, we can bound the probability
of the complement of the event in (7).

Pr{|λ̂i −λ | ≥ λε0} = Pr{λ̂i∆ t ≥ λ∆ t(1+ ε0)}+Pr{λ̂i∆ t ≤ λ∆ t(1− ε0)}

≤ exp
(

− iλ∆ t
(

(1+ ε0) log(1+ ε0)− ε0
)

)

+exp
(

− iλ∆ t
(

(1− ε0) log(1− ε0)+ ε0
)

)

< 2exp
(

− iλ∆ t
(

(1+ ε0) log(1+ ε0)− ε0
)

)

(17)

< 2exp
(

− iλ∆ t
(

(1+ ε0)(ε0−
ε2

0

2
)− ε0

)

)

(18)

= 2exp
(

− iλ∆ t
( ε2

0 − ε3
0

2

)

)

≤ γ1. (19)

(17) holds since(1− ε0) log(1− ε0)+ ε0 > (1+ ε0) log(1+ ε0)− ε0 for 0< ε0 < 1 and (18) is true since

log(1+ ε0)> ε0− ε2
0
2 according to Taylor’s theorem for 0< ε0 < 1. From (19),

exp
(

− iλ∆ t
( ε2

0 − ε3
0

2

)

)

≤ γ1

2

i ≥
2log 2

γ1

λ∆ t
(

ε2
0 − ε3

0

) .

This implies (7) must hold for

n0 =
2log 2

γ1

λ∆ t(ε2
0 − ε3

0)
.
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A.2 Proof of (10)

We have the following equation from the estimation ofλ ,

λ̂i+1∆ t = λ̂i∆ t
i

i +1
+

1
i +1

Xi+1.

λ̂i+1∆ t − λ̂i∆ t =
1

i +1
(Xi+1− λ̂i∆ t)

<
1
n0

(Xi+1−λ∆ t(1− ε0)), (20)

with a probability of at least 1− γ1,∀i + 1 > n0 since we havêλi ≥ λ (1− ε0) by (7). SinceXi+1 is a
Poisson(λ∆ t) random variable, we can find a constantc such that Pr{|Xi+1−λ∆ t| ≥ cλ∆ t} ≤ γ2. From
Chebyshev’s inequality, for Poisson(λ∆ t) random variable

Pr{|Xi+1−λ∆ t| ≥ cλ∆ t} ≤ 1
c2λ∆ t

= γ2.

A choice ofc= 1√
λ∆ tγ2

will satisfy the above equation. Therefore, (20) can be written as

λ̂i+1− λ̂i <
1
n0

(λ (1+c)−λ (1− ε0))

=
λ
n0

(c+ ε0),

with a probability of at least 1− γ = (1− γ1)(1− γ2). Similarly we have

λ̂i−1− λ̂i <
λ
n0

(c+ ε0),

with a probability of at least 1− γ. Therefore (10) holds forε1 =
1
n0
(c+ ε0).

A.3 Proof of (8)

|λ2(Pi)| = 2cos

(

π
K+1

)

ρ1/2
i

1+ρi

= 2cos

(

π
K+1

)

√

1+δ

√

λ̂i/λ

1+ (1+δ )λ̂i
λ

.

e−(λ+µi )(1−|λ2(Pi )|)∆ t = e
λ∆ t

(

2cos( π
K+1)

√

(1+δ ) λ̂i
λ −1−(1+δ ) λ̂i

λ

)

< e
λ∆ t

(

2

√

(1+δ ) λ̂i
λ −1−(1+δ ) λ̂i

λ

)

(21)

= e
−λ∆ t

(√

(1+δ ) λ̂i
λ −1

)2

. (22)

(21) is an inequality since cos( π
K+1)< 1 for K > 1. From (7) it follows that∀i ≥ n0, with a probability at

least 1− γ1, 1− ε0 ≤ λ̂i
λ ≤ 1+ ε0. The RHS of (22) is maximized atλ̂i

λ = 1− ε0. Therefore (22) can be
bounded with a probability of at least 1− γ1 by

e−(λ+µi )(1−|λ2(Pi )|)∆ t < e
−λ∆ t

(√
(1+δ )(1−ε0)−1

)2

.
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A.4 Proof of (9)

‖πi −π‖TV =
1
2

K

∑
k=0

|πi(k)−π(k)|

=
1
2

K

∑
k=0

∣

∣

∣

∣

ρk
i

∑K
r=0 ρ r

i

− ρk

∑K
r=0 ρ r

∣

∣

∣

∣

=
1
2

K

∑
k=0

∣

∣

∣

∣

∣

∣

( λ
(1+δ )λ̂i

)k

∑K
r=0(

λ
(1+δ )λ̂i

)r
− ρk

∑K
r=0 ρ r

∣

∣

∣

∣

∣

∣

. (23)

The RHS of (23) is maximized atλ̂i
λ = 1− ε0 and therefore the above can be written as

‖πi −π‖TV ≤ 1
2

K

∑
k=0

∣

∣

∣

( ρ
1−ε0

)k

∑K
r=0(

ρ
1−ε0

)r
− ρk

∑K
r=0 ρ r

∣

∣

∣

=
1
2

K

∑
k=0

(1+δ )K−k
∣

∣

∣

(1− ε0)
K−k((1− ε0)(1+δ )−1)

[(1− ε0)(1+δ )]K+1−1
− δ

(1+δ )K+1−1

∣

∣

∣

<
1
2

K

∑
k=0

(1+δ )K−k
∣

∣

∣

(1− ε0)
K−kδ

[(1− ε0)(1+δ )]K+1−1
− δ

(1+δ )K+1−1

∣

∣

∣ (24)

=
δ
2

K

∑
k=0

(1+δ )K−k
[ (1− ε0)

K−k

[(1− ε0)(1+δ )]K+1−1
− 1

(1+δ )K+1−1

]

=
1
2

ε0(1+δ )
δ − ε0(1+δ )

,

(1−ε0)
K−k

[(1−ε0)(1+δ )]K+1−1
= 1

(1−ε0)
k+1(1+δ )K+1−(1−ε0)

k−K > 1
(1−ε0)

k+1(1+δ )K+1−1
> 1

(1+δ )K+1−1
and hence the quan-

tity inside the modulus in (24) is always positive.

A.5 Proof of (11)

max
k∈{0,1,...,K}

πi(k)
πi+1(k)

= max
k∈{0,1,...,K}

ρk
i

ρk
i+1

∑K
r=0 ρ r

i+1

∑K
r=0 ρ r

i

= max
k∈{0,1,...,K}

( λ̂i+1

λ̂i

)k ∑K
r=0(

λ
(1+δ )λ̂i+1

)r

∑K
r=0(

λ
(1+δ )λ̂i

)r
. (25)

From (7) it follows that∀i ≥ i0, with a probability at least 1− γ1, 1− ε0 ≤ λ̂i
λ ,

λ̂i+1
λ ≤ 1+ ε0. In addition

from (10), with a probability at least 1− γ, λ̂i
λ − ε1 <

λ̂i+1
λ < λ̂i

λ + ε1. The RHS of (25) is maximized at
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λ̂i
λ = 1− ε0, λ̂i+1

λ = 1− ε0+ ε1. Therefore (25) can be bounded with a probability of at least1− γ by

max
k∈{0,1,...,K}

πi(k)
πi+1(k)

≤ max
k∈{0,1,...,K}

(1− ε0+ ε1

1− ε0

)k ∑K
r=0(

ρ
1−ε0+ε1

)r

∑K
r=0(

ρ
1−ε0

)r

=
(1− ε0+ ε1

1− ε0

)K ∑K
r=0(

ρ
1−ε0+ε1

)r

∑K
r=0(

ρ
1−ε0

)r

=
(1− ε0+ ε1)

K+1−ρK+1

(1− ε0)K+1−ρK+1

1− ε0−ρ
1− ε0+ ε1−ρ

<
(1− ε0+ ε1)

K+1−ρK+1

(1− ε0)K+1−ρK+1 (26)

=

[

(1− ε0+ ε1)(1+δ )
]K+1−1

[

(1− ε0)(1+δ )
]K+1−1

,

where the inequality in (26) holds since 1− ε0 < 1− ε0+ ε1 for ε1 > 0.

A.6 Proof of (12)

‖πi −πi+1‖ 1
πi+1

=
( K

∑
k=0

(

πi(k)−πi+1(k)
)2

πi+1(k)

)1/2

=
( K

∑
k=0

( ρk
i

∑K
r=0 ρ r

i
− ρk

i+1

∑K
r=0 ρ r

i+1

)2

ρk
i+1

∑K
r=0 ρ r

i+1

)1/2

=

(

K

∑
k=0

(

(

λ
(1+δ )λ̂i

)k

∑K
r=0

(

λ
(1+δ )λ̂i

)r −
(

λ
(1+δ )λ̂i+1

)k

∑K
r=0

(

λ
(1+δ )λ̂i+1

)r

)2

(

λ
(1+δ )λ̂i+1

)k

∑K
r=0

(

λ
(1+δ )λ̂i+1

)r

)1/2

. (27)

As in the above, the RHS of (27) is maximized atλ̂i
λ = 1− ε0, λ̂i+1

λ = 1− ε0+ ε1. Therefore (27) can be
bounded with a probability of at least 1− γ by

‖πi −πi+1‖ 1
πi+1

≤
(

K

∑
k=0

(

(

ρ
1−ε0

)k

∑K
r=0

(

ρ
1−ε0

)r −
(

ρ
1−ε0+ε1

)k

∑K
r=0

(

ρ
1−ε0+ε1

)r

)2

(

ρ
1−ε0+ε1

)k

∑K
r=0

(

ρ
1−ε0+ε1

)r

)1/2

=
( K

∑
k=0

( (
ρ

1−ε0
)k

a −
(

ρ
1−ε0+ε1

)k

b

)2

(
ρ

1−ε0+ε1
)k

b

)1/2

=
(bc

a2 −1
)1/2

, (28)
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where we define

a =
K

∑
k=0

( ρ
1− ε0

)k

=
(1− ε0)

K+1−ρK+1

(1− ε0)K(1− ε0−ρ)
,

b =
K

∑
k=0

( ρ
1− ε0+ ε1

)k

=
(1− ε0+ ε1)

K+1−ρK+1

(1− ε0+ ε1)K(1− ε0+ ε1−ρ)
,

c =
K

∑
k=0

(ρ(1− ε0+ ε1)

(1− ε0)2

)k

=
(1− ε0)

2K+2−ρK+1(1− ε0+ ε1)
K+1

(1− ε0)2K
(

(1− ε0)2−ρ(1− ε0+ ε1)
) .

Therefore, we can write usingx= 1− ε0, y= 1− ε0+ ε1 for ease of notation

bc
a2 =

[

yK+1−ρK+1
][

x2K+2−ρK+1yK+1
]

(

xK+1−ρK+1
)2

yK

(x−ρ)2

(y−ρ)
(

x2−ρy
)

=
x2K+2yK+1+ρ2K+2yK+1−ρK+1[x2K+2+y2K+2]

x2K+2yK+1+ρ2K+2yK+1−2ρK+1xK+1yK+1

(x−ρ)2y

(y−ρ)
(

x2−ρy
)

<
(x−ρ)2y

(y−ρ)
(

x2−ρy
) (29)

=
x2y+ρ2y−2ρxy

x2y+ρ2y−ρ(x2+y2)
,

where (29) is true sincex2K+2+y2K+2 > 2xK+1yK+1. Therefore (28) can be written as

‖πi −πi+1‖ 1
πi+1

<
( x2y+ρ2y−2ρxy

x2y+ρ2y−ρ(x2+y2)
−1
)1/2

=

√ρε1
√

(y−ρ)
(

x2−ρy
)

<

√ρε1
√

(x−ρ)
(

x2−ρy
)

(30)

=

√ρxε1
√

(x2−ρx)
(

x2−ρy
)

<

√ρxε1

|x2−ρy| (31)

=

√

(1− ε0)(1+δ )ε1

|(1− ε0)2(1+δ )− (1− ε0+ ε1)|
,

where (30) and (31) are true sincey> x.
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A.7 Proof of (13)

‖νn0 −πn0‖ 1
πn0

=
[ K

∑
k=0

ν2
n0
(k)

πn0(k)
−1
]1/2

=
[ K

∑
r=0

ρ r
n0

K

∑
k=0

ν2
n0
(k)

ρk
n0

−1
]1/2

<
[ K

∑
r=0

ρ r
n0

K

∑
k=0

1
ρk

n0

]1/2
(32)

=
[ K

∑
r=0

( λ
(1+δ )λ̂n0

)r
K

∑
k=0

( (1+δ )λ̂n0

λ
)k
]1/2

, (33)

where (32) is true sinceνn0(k) is a probability. The RHS of (33) is maximized at
λ̂n0
λ = 1+ ε0. Therefore

(33) can be bounded with a probability of at least 1− γ1 by

‖νn0 −πn0‖ 1
πn0

≤
[ K

∑
r=0

( ρ
1+ ε0

)r
K

∑
k=0

(1+ ε0

ρ
)k
]1/2

=
[

(

(1+ ε0)
K+1−ρK+1

)2

(1+ ε0)KρK(1+ ε0−ρ)2

]1/2

=
(1+ ε0)

K+1−ρK+1

(1+ ε0)
K
2 ρ

K
2 (1+ ε0−ρ)

<
(1+ ε0)

K+1

(1+ ε0)
K
2 ρ

K
2 (1+ ε0−ρ)

=
(1+ ε0)

K
2 +1(1+δ )

K
2 +1

(1+ ε0)(1+δ )−1

<

[

(1+ ε0)(1+δ )
] K

2 +1

δ
.

This completes the proof of Lemma 7.
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