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Abstract We introduce an adiabatic framework to study adaptive gaguglicies.
The adiabatic framework provides analytical tools for siigbanalysis of slowly
changing systems that can be modeled as time inhomogeneatk®wchains. We
apply this appproach to study an adaptive queueing poliogre/service rate is adap-
tively changed based on the estimated arrival rates thdttterary with time. This
makes the packet distribution in the queue over time belikgealtime inhomoge-
neous reversible Markov chain. Our results provide an uppeand on the time for
an initial distribution of packets in the queue to convege stationary distribution
corresponding to some pre-specified queueing policy. Tgpsaach is useful to anal-
yse and design adaptive queueing policies and can be readidgded to any system
that can be modeled as a time inhomogeneous reversible Mahan. We provide
simulations that confirm our theoretical results.

Keywords Queueing policy Adiabatic time- Continuous time Markov chain

1 Introduction

A Markov chain is a finite or countable state space randomga®where the proba-
bility of any particular future behavior of the process, wilits present state is known
exactly, is not altered by additional knowledge concerritagpast behavior [5]. If
these probabilities, called transition probabilitieg sexdependent of time, it is called
a stationary or time homogeneous Markov chain or else, aatmsary or time inho-
mogeneous Markov chain. A Markov chain can be discrete atimoous depending
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on whether the time index set is discrete or continuous. fiderty of Markov chains
is extensively used in queueing theory [6] and consequémttypmmunication net-
works [7], among other fields.

Itis a well-known result that an irreducible, aperiodic Mar chain converges to
a unique stationary distribution [3]. The time taken to ange to this distribution is
of interest in applications like Monte Carlo Markov chaif.[Bfter a large number
of steps the Markov chain must be-tlose” according to some distance notion to
its stationary distribution. This is the idea of Markov ahanixing and the time is
guantified by mixing time [9]. In the case of time inhomogeme®arkov chains, the
evolution must be slow enough such that the distributiomislose” to the stationary
distribution of the final transition matrix. This is the salled adiabatic approach and
this time is quantified by adiabatic time [8].

The adiabatic approach follows along the lines of the adialeaolution in quan-
tum mechanics [10]. The quantum adiabatic theorem stutis\olution of a sys-
tem from an initial Hamiltonian to a final Hamiltonian (optracorresponding to
total energy of the system) and says that if the evolutiofow €nough, the system
will be “&-close” in¢? norm to the ground state of the final Hamiltonian. We consider
¢ norms in our study of Markov chains.

In this paper, we study the convergence, in adiabatic serfidane inhomoge-
neous Markov chains, where the time inhomogeneity can beaaa underlying
nonstationary process or uncertainties in measuremermn ohderlying stationary
process. We apply the above convergence results to a Markagieueing model
where the time inhomogeneity arises due to the latter of weedonditions men-
tioned above.

1.1 Application to Queueing Models

A queue is typically defined by the arrival rate, service quatéure rate, number of
servers and buffer size. In a finite buffer size queue, werdezasted in maintaining
a distribution which is more biased towards smaller quengthes, since otherwise
we will have high blocking probabilities. Such a stable quelachieved by keeping
the departure rate strictly above the arrival rate. In a ngtwituation for example,
there might be other constraints also on the departure Ifatee departure rate is
too large, it might cause congestion somewhere else in ttveonke Or in the case
of multiple queues of different kinds of traffic, each of whibas to satisfy some
quality of service conditions, sending packets from just gueue will affect the
other queues. In wireless networks, we might require to taairsuch a departure
rate and nothing more, due to power restrictions. Also, ietavark of multiple such
nodes we might have problems of collision in the wirelessiomadHence it becomes
necessary to monitor the departure rate and keep it at sukebtd keep our queue
stable and at the same time achieve the desired networktivbgec

We consider a queue in which packets arrive at a fixed but wmkmate and we
use an estimate of this arrival rate to decide a queueingypdkisigned to ensure
stable queues. In particular, we let the departure ratevbayal higher than the es-
timated arrival rate by a fixed multiplicative constant,ieipating that the estimate
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will be correct in the long-run. Since the estimated arriedé changes and is more
accurate with time, the departure rate also changes. The{io the queue evolve
according to a time inhomogeneous Markov chain dictatedhisyadaptive departure
policy. We study the time required for the queue to reachdtable distribution us-
ing the above outlined adiabatic approach and under seitsbimation and departure
policies for the unknown arrival rate.

1.2 Related Work

The adiabatic theorem in quantum mechanics was first stgt@&bin and Fock [1].

A version of the adiabatic theorem [10] considers two Hammikins and the evolu-
tion of the system from the initial to final Hamiltonian. THeebrem states that for
sufficiently large time, the final state of the system and ttoeigd state of the final
Hamiltonian will bee-close in¢? norm. The lower bound on time was found to be
inversely proportional to the cube of the least spectralajalpe Hamiltonian over all
time.

The adiabatic theorem for Markov chains was studied by Kegol [8] where
the adiabatic evolution was studied for discrete time andticoous time Markov
chains. The linear evolution of a time inhomogeneous Maxkwain from an initial
to a final probability transition matrix was studied and tligbatic time was found
to be proportional to the square of the mixing time or invrgzoportional to the
square of the spectral gap of the final transition matrixsTasult was generalized to
a more general adiabatic dynamics in [2].

1.3 Overview

Section 2 gives the mathematical preliminaries includiafjnitions and general re-
sults whcih we use in the analysis. Section 3 defines the tonlaf continuous time
Markov chains with bounded generators where the changgsehagt fixed time in-
tervals and gives an upper bound on the distance betweersitidtion with the
stationary distribution at large enough time. In sectiowd,apply the upper bound
to an M/M/1/K queue with unknown but constant arrival rate &so define an adap-
tive queueing policy where we estimate the arrival rate awid® the departure rate
to ensure an eventually stable queue. The main result digesgper bound on time
needed for the queue to converge to the eventual stablédistn. Simulations are
also provided to compare the distance predicted by our uppends to the actual
distance.

2 Preliminaries

Now we look at the main definitions and some results which kalluseful in the
rest of the paper. A vectoris a column vector whosi¢h entry is denoted by(i) and
transpose denoted By . A matrix P is a square matrix whosgg j)th entry is denoted
by P,j .
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— We use total variation distance to measure the distanceeleetiwo probability
distributions.

Definition 1 (Total variation distance) For any two probability distributiong
andrron a finite state spad@, we define

vy = 5 3 1v(0) ().

Note that the above function measures the distance on acfdale 1.
— Define the following scalar products and the correspondorgns.

Definition 2 Let 17 be a strictly positive probability distribution on a finiteate
spaceR and let/?() be the real vector spa@® with the following scalar prod-
uct and norm,

XY= Y XY

X[l = (_%X(i)zﬂ(i)> :

and Ietéz(%) be the real vector spad® with the following scalar product and
norm,

O

— The following result is used to relate total variation dista to the above defined
norm and is proved in Chapter 6, Theorem 3.2 of [3, p. 209].

Proposition 1 For any two probability distributions and 77 (strictly positive),
1
lv—milrv < Sllv—Tif1.

O

— Definition 3 (Reversibility) Let P be a transition matrix ant a strictly positive
probability distribution onQ. The pair(P, i) is reversible if the detailed balance
equations

m(i)Rj = 71(j)P;

hold for alli, j € Q. O
If Pisirreducible, thentis the unique stationary distribution Bf
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— The following result is from [3, p. 202], Chapter 6, Theorerh.2

Proposition 2 (Necessary and sufficient condition of reveibility) The pair
(P, m) is reversible if and only if

1 1
P*=DZPD 2,
is a symmetric matrix where
D =diag{m(1),...,7(r)}.

Moreover, a reversible matrix P has real eigenvalues witihtieigenvectors or-
thonormal in¢?(m) and left eigenvectors orthonormal (). O

This proposition is used in the proof of the following res@ee [3].
— The following result is from Chapter 6, Theorem 3.3 of [3, P9R

Proposition 3 Let P be a reversible irreducible transition matrix on theitén
state space?, with the stationary distributiont and second largest eigenvalue
modulus|A2(P)|. Then for any probability distributior on Q and foralln> 1

TP =1 < [A2(P)|"[lv — 5.
a

— For a continuous time Markov chaif¥: },., on a finite state spac@ with a
bounded generator matri@ = [Qjj]i jeq, andgq = maxco Y i:j+ Qij, the upper
bound on the departure rates of all states, uniformizatidj §ives transition
probabilities to be

[e9)

P(t) = n;e—qt((:]t!)npn =e?, (1)

where the matriP = | + %Q. The matrixP(t) denotes the transition probabilities
in timet.

— The following result is used to bound the distance of theioowus chain in terms
of a discrete one and is based on [3, p. 364]. The proof folllasg similar lines
and can be found in [12].

Proposition 4 For a continuous time Markov chain on a finite state sp&re
with generator matrix Q= q(P — ) with reversible, irreducible P and stationary
distribution T, for any probability distributiorv on Q,

HVTth _ n-T H 1 < ||V _ 7'[”l e7q<17M2(P)Dt7
m m

where|A,(P)| is the second largest eigenvalue modulus of P. O

— The matrix given below arises in the queueing example whiehcansider in
Section 4 and its eigenvalues are stated in the below rebidtwvis proved in [4].
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Proposition 5 The eigenvalues of an<r matrix,

1-BB 0 O

1-B0 B O
01-B 0 pB
0 0 1-Bp

where0 < 8 < 1are given byL,ZN/B(l—B)cos("Tj) ,j=1,...,r—1andthere-

fore the second largest eigenvalue modulugi$P)| = 2/B(1— B)cos(F).
O

— Mixing time of a Markov chain measures the time needed foMlagkov chain
to converge to its stationary distribution.

Definition 4 For a continuous time Markov chaR(t), with stationary distribu-
tion 17, given ane > 0, the mixing timemix(€) is defined as

tmix(€) = inf {t : [VTP(t) — " ||rv < &,for all probability distributions/} .
(]

— To define adiabatic time, consider a linear evolution [8] ehgrator matrices
described by

Q (%) = (1* %) Qinitial + %innalv

forT >0, 0<t <T and bounded generatd@itiai andQsinal. If 777 is the unique

stationary distribution foQsi,4, adiabatic time measures the time needed for the

chain to converge tar;.

Definition 5 Given the above transitions generating a continuous timekda
chainP(0,T) ande > 0, adiabatic time is defined as

Te =inf{T:|vTP(0,T) - 1if ||rv < &,for all probability distributions/} .

We will look at a different evolution of generator matricaghe next section. O

3 Adiabatic Framework

In this section we define an evolution of continuous time Margenerator matrices
and look at the convergence in Definition 5 in terms of this eealution. Consider

the following evolution: time is divided into slots of siZ¢ and the generator matrix
changes at these intervals. The bounded generator izitietermines the transition
probabilities in the time intervaiAt, (i + 1)At]. The method of uniformization gives
the corresponding transition probability matRxiAt, (i + 1)At) as in (1). The upper

bound on departure rates over all stateg for eachQ;. Therefore,

P(iAt, (i + 1)At) = g4t = h(R-1At
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whereP(ty,t2) denotes the matrix of transition probabilities from titaeto t,. Let
the matrixP be irreducible and reversible with stationary distribatig and second
largest eigenvalue modullis,(R,)|. Note that this evolution can be the result of any
kind of time inhomogeneity in the system resulting in a chag®; which is up-
dated at fixed intervals of time. As noted before, the tim@mhbgeneity can be due
to the nature of the underlying process or due to uncerésiriti measurements of
parameters and the following theorem captures either kind.

Let v, be the distribution of the chain at tinmét. We are interested in the distance
betweerv, and the stationary distributiam, corresponding to matrik, at timenAt.
The following theorem gives an upper bound on the distantienatnAt in terms of
the distance atigAt for ng < n.

Theorem 1 For the time inhomogeneous Markov chain generated by theicaat
{QH o= {a(R —1)}, from time0 to nAt,

n-1
V= Talrv < 2llvn — Tholl s [ & 0024, Jmax T
2 0 i L1 keQ TEi1(K)

1[’]71
A5 -,

-1 .
X n|_| o (1-PaP)DAt, [y T80 7
i=np M+l jSiq ke@ 1541(K)

wherev, is the distribution at time At, vy, is the distribution at time gt for ng < n
and {R} are irreducible and reversible with stationary distriboiti 77 and second
largest eigenvalue moduliia,(R)|.

Proof We start with the}T norm so that we can use the result in Proposition 4.

T _Qunidt T
Vo= Tl 1+ = ||vy €922 — g7 || 2
T Ul
< v € =l 4 [T — TR 1 @)
T T
Th-1(k)
< ||yl ,en-18t _ 7t max - 3
< Va1 "41—1“ﬁ (k) + -1 7ﬂ1||% 3

< ey — Mg 1 e 1= RaPr-nDAt [mg Th-1(k)
- o1 ke@ Th(k)

HITh-1 =T 1, 4)
where (2) follows from triangle inequality, (3) follows fmothe definition of the norm

and (4) follows from Proposition 4. We can expand the abarafively using triangle
inequality for every time step which gives us

(1l aR)a 75 (K)
Vo= Thll 2 < [[vng — Tholl 1 [T] g G(1-(RIDAL, [max
T

™o iZng keQ T511(K)
n—1 n—1
g (1A (P; 1 (K)
+ TE—Th 1 e di(1-1A2(P)DAt [ gy '
i:zno | " ”'m jﬂl keQ Th41(K)

The result follows from Proposition 1. O
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4 Application to Queueing Model

In this section we apply the above defined adiabatic evailutiodel to a queueing
process. In particular, we consider time inhomogeneitytdusmcertainty in a param-
eter. Consider an M/M/1/K queue with unknown packet arrmed A per unit time.
We estimatel at timeiAt denoted by\; and decide packet departure rate= f(A;)
based on this estimate.

Definition 6 Queueing policy is defined as the seque{ﬁtgui = f(j\i)}izl where
f:R; — Ry andy; is applied for time fron(iAt, (i + 1)At]. O

This decides the following generator matrix frqidt, (i + 1)At]:

—A A 0 0
M —(Hi+A) A 0
Q=" - (6)
0 Hi —(Hi+A) A
0 0 Hi — Ui
The corresponding transition probability matiXiAt, (i +1)At) is obtained as in
(1). The upper bound on departure rates over all statesHig;. Therefore,

P(iAt, (i + 1)At) — €94t — g +H)R-DAL

where the matrixPR is

1-B6 B O 0
1-B 0 B 0
R=| -~ - - - (6)
01-B 0 B
0 0 1-B 5B

wheref; = u./\ﬁ TheR'’s are reversible and irreducible with stationary disttibo
given by

1 2 K-1 KT
= 1ap'ap'7"'7p' ) Pi )
Py S ' ']
wherep; = —15‘& = ﬁ The second largest eigenvalue modulus is givefbiR, )| =

2(1{2) cog g1 )- Also, the matrixQo could be decided from a random departure rate

and corresponds to the transition probability maR{g, At).

4.1 Performance of an Adaptive Queueing Policy

Now we look at a specific queueing policy determined by thetiverage of number
of packets arrived.
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Definition 7

1 i
Ai - mkzlxio
u = f(A) = (1+8)A;,

whereX, ~ PoissofiA At) is the number of packets in theh slot of duratiorAt and
0 > 0 is a constant. O

This particular queueing policy ensures that the deparateeis always higher than
the estimated arrival rate and since the estimated aratlitself must approach the
actual one, should ensure a stable queue.

With this queueing policy, we have the adiabatic evolutieneyated by tr}e ma-

tricesQ; in (5). The corresponding’s are given by (6). The ratip; = ﬁ = Ton-

With full knowledge of the arrival rate, the above ratio beesp = 5 and let the
corresponding matri® has stationary distribution. We redefine adibatic time in
this setting.

Definition 8 Given the above transitions generating a continuous timekdWechain
P(0,nAt) ande > 0, adiabatic time is defined as

Tey = At-inf {n: Pr{||vTP(O,nAt) — 1T |ty < €} > 1—,
for all probability distributions/} .

wherertis the stationary distribution corresponding to the quegdiolicy {A, (1+
0)A}.

Theorem 2 (Main result) Given0< € < 1,0< y< 1landA, the unknown arrival
rate, the queueing policy in Definition 7 with> 0 for an M/M/1/K queue has

K
2o} log (2[(1-+&)(1+8)] ***) ~log(£3)
&Yy = 2 3 K+1 ’
A(g5—¢€3) 1-£)(1+6 -1
e -

whereg, satisfies

K+1
-1

<1

)

AT )12 | [(L-go+e)(1+9)]
[(1—&0)(1403)] -

vV (1-&)(1+9)g;

|(1-£0)2(1+06)—(1-go+é1)|

1 — e Mt(/(149)(1-g0)—1)? [(1—£o+£1)(1+6)
K+1
[1-e)td)] -1

1

&
Kl = 2’
[

& < 758
0=T1+o)(1+e)
)\At(eg—sg)( 1

ande; =
1 2logZ  \/Adty,

+&),0<y <y, o=yY— V. a
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The above theorem gives an upper bound on the time we mudbefaite the dis-
tribution of the queue length converges to the desiredostaty distributioryt. Note
that it is decided byd and can be designed to give a stable stationary distrihution
Hence, for given smalt andy, the theorem gives the sufficient amount of time to
converge to a stable distribution withnwith high probability of 1— y. The choice
of & to be the largest which satisfies all three conditions wileghe lowest lower
bound in the theorem. At large enough time the estimatedeunate must approach
the actual arrival rate and the difference can be boundeyg Wjth a high probability.
Furthermore two consecutive estimates, can differ only magimum ofe;.

4.2 Proof of Theorem 2

To prove Theorem 2, we need to bound the terms in Theorem &.tNat Theorem 1
involves terms from timepAt onwards. The motive behind this was, at large enough
Np we can put an upper bound on all the terms in Theorem 1. Sideis an empir-
ical average of iid Poissonf At) distributed random variables, it follows from the
law of large numbers that it must approach the actual valueAdfat large enough

i. Furthermore, two consecutive estimates must be very nezach other. We need

this fact to bound terms which have bathndi + 1 in them like  / maXco mlj(ll&)

and||75 — m5.1||_1 . The above facts are made precise in the following lemma.
Ti+1
. 2log 2
Lemmal ForO< g < 1land0< y < 1, there exists fi= ﬁ such that
t(so—eo)
— Vi > ng, with probability at leastL — y;
Ai—A] < Aeo, (7)
e (A+H)(1-22(R)DAt - g=AAY (1+5)(1*50)*1)2, (8)
1 &(1+9)
Im=mliry < 3 3 g1 r0) ©)
— For e = n—lo(m + &) and0 < y» < 1 andVi > ng, with probability at least
l-y=1-yn—¥

‘;\i+1—3i| < A&, (10)
(k) [(1-eot+e)(1+8)] -1
\/ké{gllé.).(,K} n{+l(k) < \l [(1_ 80)(1+ 5)} K+1 1 ’ (11)

\/(1750)(1+ 6)81 (12)

(1—80)2(l—|— 5) — (1—£0+£1)| '

17— Tl 1 <
Ti41 ‘

— With probability at leastL — y;,

[(1+80)(1+8)] 2

5 (13)

ano_monio <
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Refer Appendix A for proof.
Rewriting Theorem 1 for the queueing model we have described

n_
B (A1) (1— A2 (R) )4 (k)
Iva = Th[lTv < ||vnO ool 1 I|'nloe \/kg{H‘f‘..’.‘,K} T

i=To T+l =it

(A1) (1 Ao (P) 75 (K)
e j ] ma .
25 |in- Ml L n \/ke{o,l,.imm“(k)

According to Lemma 1, the above inequality can be boundeti,probability at least
l-yi—yp=1-vy.

(14)

5+ -
[Vn = ThllTv < 1[(1+0)(1+9)] [A-B}n n0+ 1 ¢

2 5

=
|
>
(o9)
N[ ™

We use the notation below for brevity.

— oAt/ (1+0)(1-&)~ 1)2
)

\l [(1—eo+&)(1+8)] -1

)

(1-&0)(1+0)) "t -1

B (1-—&)(14+0)&
(l 80) (l—|—5) (l—£0+£1)'

(14) holds ifg is chosen such tha- B < 1. Now the distance between and it
which is the stationary distribution corresponding to theni P with full knowledge
of A is given by

lva = Ttllrv = [[Vn — Th + Th — 7| 7v
< |Vn—1llrv +I% — v < ¢, (15)
using triangle inequality.

Our aim is to find then such that|v, — 1|7y < €. (14) holds if both terms are
< £. For the first term we get,

(- a)1+o) g " <

NI ™

log (2[(1+&)(1+ )] ’5*“) ~log(&d)

K+1

%Iog( [(1750)(“5)] ]Kﬂll) +AAL( /(1+ 5)(1— &) — 1)2

[(1-gote1)(1+)
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which gives a condition on. Adding with np and multiplying byAt gives the adia-
batic time as defined in Definition (8). For the second ternid),(

vV (1—£0)(1+0)€1

(1-£0)?(1+8)—(1-€o+¢1)

£
R+1 27
1 — e MAt(/(1+0)(1-e0)-1)? [(1*€o+€1)<1+6>} -1
K+1

[(1-e)a+0)] -1

which gives a second condition @g.
From (15) and (9),

1 &(1+9) €

25— &(1+0) ~ 2 4o

[T — 1|1y <

which gives
g < L
0= 1+0)(1+e)’
and a third condition oiy. This completes the proof of Theorem 2.

4.3 Simulations

Now we look at the distance of the distribution of the quewetfa stable distribution
with increasing time. This distance must be small for largeugh time from the
discussions above. Here we look at distance as a functiomeffor a single sample
path to verify whether the distance at the adiabatic timelipted is indeed lower
thane.

Simulation Setup 1 A = 10,6 = 0.1,K = 100,At = 0.5,& = 0.1, y = 0.05, y4 = 0.04.

Theorem 2 predictay = 174391 anch = 175438 forgg = 0.003 (the highest which
satisfies all the conditions in Theorem 2) or adiabatic times = 0.1,y = 0.05,
To1,005 = 87719. Figure 1 shows the results of a simulation which nreastne
distance at each time slot vs. the distance upper bound givénangle inequality
in Theorem 1. The triangle inequality upper bound very dip$allows the actual
distance and both are much smaller than the distance uppadipredicted by (14)
and (16), which is @56. Note that this is only a sample path. This indicatesdhan
though Theorem 2 give$ 1005 = 87719 as a sufficient condition, the distance of
€ = 0.1 is achieved much before. For example, Figure 2 shows thdaion results
for T = 5000 orn = 10000. (The upper bound starts fragn= 500.) This was also
found to be true for all 100 sample paths tested. The Figuh®®s the histogram of
distances in these 100 sample paths. Note that all of themdiatance< 0.1.

Notice the initial increase in the upper bound due to Theatamboth Figures
1 and 2. This is because of the second term of the bound whids &dms with
time. After a sufficient number of time slots, however, therdase in the first term
overshadows the increase in the second and the overall tsvarisl coming down.

Now we look at the effects of increasidgwhich decides how fast the departures
are compared to the arrivals.
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10° Distance vs time for a single sample path
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Fig. 1 Comparison of distance upper bound in Theorem 1 with actstduice
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Fig. 2 Comparison of distance upper bound with actual distancessg¢idime than predicted by Theorem
2

Simulation Setup 2 A = 10,K = 100,At = 0.5, = 0.1,y = 0.05, ;3 = 0.04 with
differentd =0.1:0.1:0.9.

Note that increase id corresponds to emptying out the queue faster or in other
words, the stable distribution should be approached faBteiorem 2 predictions are
as shown in Figure 4 which shows that the adiabatic time dsesewith increases

in 8. Or, at the same time, the distance decreases with incgedsirhe distances at

T = 2500 averaged over 100 sample paths are shown in Figure & whidirms this.



14

Leena Zacharias et al.

Histogram of distance at T = 5000 for 100 sample paths

30y T T
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i o
& 3

i
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Fig. 3 Histogram of distances of 100 sample path$ at 5000

Adiabatic time for different &

Ml Actual distance
Ml Distance upper bound from Theorem 1
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To1.008

Fig. 4 Adiabatic time for differend

0.9

Another parameter of interest is the sampling tidtewhich decides how fre-

guently the estimates are done.

Simulation Setup 3 A =10,K =100,6 = 0.1, = 0.1, y = 0.05, 5 = 0.04 with dif-

ferentAt = 1,5, 10,20, 25, 50.

The increase iM\t corresponds to applying the information gained from edima
less frequently and must result in an increased distandeeatame time. The dis-
tances at timd& = 100 averaged over 100 sample paths are shown in Figure 6 which
shows that this is true. This shows the benefits of updateshadrie more frequent
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Fig. 5 Comparison of distance for differedt

Distance vs At
0.4 .

0351 4

=100

0.3 —

0.25 —

TV distance with tat T

Fig. 6 Comparison of distance for differeat.

and hence the system following a smoother path towardsahéedistribution rather
than attempting to reach there at one go.

5 Conclusion

We considered a time inhomogeneous Markov chain with ittuiem governed by
generator matrices which change at fixed time intervals. dfevied the adiabatic
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approach to study this chain and bounded the distance tdianstey distribution.
This is a general theorem which is applicable to evolutidrite® above kind.

We used this model of time inhomogeneous Markov chains tackherize a birth-
death chain in which the time inhomogeneity is due to unagstén parameters. We
considered a Markovian queue with an adaptive queueingypald derived suffi-
cient conditions on time after which the distribution of tpgeue can be considered
to be stable with high probability.

A Proof of Lemma 1

A.1 Proof of (7)

For a random variabl¥ which is the empirical average biid random variables{Xk}L:l, Chernoff bound
for tail probabilities gives,

Pr{X >a} < exp(—isup(at— Iog(IE[etX']))),
t>0
PH{X <a} < exp(fisup(fatf Iog(E[e“X‘})))
t>0
SinceX; is Poisson{ At) in our case logE[€%]) = AAt(d — 1). Substituting this in the above, we get
PHAIAL > AAt(1+ &)} < exp( —iAAtsup((1+ &)t — (¢ — 1))).
t>0
The maximum above is attainedtat log(1+ &) > 0. Similarly for
PHAAL < AAt(1—go)} < exp( —iAAtsup(—(1—g)t—(e" - 1))).
t>0

The maximum here is attainedtat Iog(rlqj) > 0. Using the above bounds, we can bound the probability
of the complement of the event in (7).
Pr{Ai—A| > A&} = PHAAL > AAt(1+ )} + Pr{AiAt < AAt(1— o)}
< exp( —iAAt((1+ &) log(1+ &) — 20))

+exp( —iAAt((1— &) log(1— &) +80)>

< 2exp(7i/\At((l+ &) log(1+ &) feo)) 17)
< 2exp<7i/\At((l+£0)(s - S—Zg)feo)) (18)
— 2exp(fi/\At(£g;£g)> <w. (19)

(17) holds sincél — &) log(1— &) + &0 > (1+ &) log(1+ &) — & for 0 < &5 < 1 and (18) is true since
2
log(1+ &) > & — %0 according to Taylor's theorem forQ & < 1. From (19),
) g2—¢3 Vi
— L — < =
exp( iAAt( : )) <3
2
s 209y
T AAt(gf - €)
This implies (7) must hold for
2Iog%

np=-———"—.
0 AAt(e2—€f)
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A.2 Proof of (10)

We have the following equation from the estimatiomof

2 ~ i 1
A1t = AAt—— + —— X1

i+1 i+1
A A 1
Ai14t — AiAt = I+1(X.+17/\ iAt)
< FO(K+17AAt(17£O))7 (20)

with a probability of at least + y1,Vi +1 > ng since we have; > A(1— &) by (7). SinceX;11 is a
Poissonf At) random variable, we can find a constarguch that P§|Xi;1 — AAt] > cAAt} < y». From
Chebyshev’s inequality, for Poissamit) random variable

_1
c2A At

Pr{|Xi+1 — AAt| > cAAt}

INA

A choice ofc = will satisfy the above equation. Therefore, (20) can betamitis

1
VAAty,
" 5 1
A1 — A < I’T()()\ (1+C)7)\(lf€o))
A
- FO(C+£0)7
with a probability of at least + y = (1— y1)(1— y2). Similarly we have
N A A
Aii1—Ai < —(c+ &),
No

with a probability of at least % y. Therefore (10) holds fog; = %(c—s— £)-

A.3 Proof of (8)

1/2
_ n b
[A2(R)| = 2cos<K 1) 1ip

) L

(1+8)A;

(140 A _1-(146) A
o ORIt _ e/\m <2cos( 751\ (14+8) 5E—1—(1+) A)
AAt<2\1(1+5)§\—‘717(1+5)1i>

<e

= 2
7/\4\1( (1+5);471>
—e . (22)

(21) is an inequality since coﬁ < 1forK > 1. From (7) it follows that/i > ng, with a probability at

least 1-y1, 1— g < ’\' < 1+ &. The RHS of (22) is maximized a{} = 1— g&. Therefore (22) can be
bounded with a probablllty of at least-1y; by

(1)

2
e +m-a@)at _ g AB (VA8 -1)
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A.4 Proof of (9)

1 K
17 —rmlrv = 5 Y [7(k) — (k)|
2
K=o
1K ok Pk
-2 Z I K or
k=0 Zr 0p| Zrzop
K| (52K K
_ % z (1+3)A - KP r 23)
k=0 zr 0( l+6)/\) Zrzop
The RHS of (23) is maximized é = 1— g and therefore the above can be written as
1K () pX
|15 -ty < 5 -
2 kzo‘ Sholrfs)  Irop"
“lsas 5 (- (1-8)1+8)-1) &
2.5 [(1—&)(1+0)Kt1-1 (1+0)K+1-1
1X Kk (1—g)K*s 5
<2 2 a1 @rera =
5 X «k (1— )< 1
=22170 [[(1_50)(1+5)]K+1_1_ (1+5)K+1_1]
_ 1 &(1+9)
20—¢&(1+9)’
(1—gg)K X

> and hence the quan-

1 1
[(I—g0)(1+6)<FI—1 — (1— eo)k+1(1+5)*<+1 (1—gg)k—K > (1—go)kHL(14+0)K+1—_1 7 (14+5)K+1-1

tity inside the modulus in (24) is always positive.

A.5 Proof of (11)

max Tﬂ(k) = max Zr 0p|+1
ke{0L..K} Th41(K)  ke{0.L..K} p,+1 Sroh!
A r
kol 25—)
- () “
T ke{0L K} ol sy 1+6 )r

From (7) it follows thatvi > ip, with a probabilily at Ieast 1 yl, l-g<H ;‘ '*1 < 1+ &. In addition
from (10), with a probability at least 2 y, F—e< '“ <A T +ée1. The RHS of (25) is maximized at
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>

7‘ =1-—¢&, ’\',\41 =1-— g+ &. Therefore (25) can be bounded with a probability of at I&ast/ by

o AR (1—eo+el)k25:o(ﬁ)'
ke{0.1..K} TE+1(K) ~ ke{ol..K}\ 1—& Zt(:o(l%o)r
B (1—£o+81)K SFolrarg)
1-& Sro(rfs)

_ (A-eo+e)t—pt 1-g-p
- (1_£O)K+l_pK+l l-g+e—p
(1— g0+ £1)K+1 — pK+t

(17 EO)K+1 _ pK+l
[(1-g+81)(1+0)]

[(1-e0)(1+8)] -1

(26)

K+1
S|

where the inequality in (26) holds since-Ip < 1— g9+ &3 for &1 > 0.

A.6 Proof of (12)

K () - M)\ 12
Im=msal s = (3 mmi0 )

k
K ( Kplk _ Kp\+1 )2
,(Z ol SKoPl )1/2
- k
k=0 Pii1

K r
Zr:OpiJrl

K k
( (1 ;is)/\i ) ( (1+5);Ai+1) 2

L T
B < K\ so () Zf:o(ﬁm) )1/2

k
(a3

@7

v 7/ 1 \r
o (ﬁm)

As in the above, the RHS of (27) is maximizedé\g'alt: 1- ¢, ’\')\41 =1— g+ &. Therefore (27) can be
bounded with a probability of at least-1y by

( (%) _ (o) )2

T T 1/2
K 25:0(1—’)70) 25:0(1#)
17—l 2 < Zo Y
RS (=)
v [/ o AT
ZF:D(%)
Pk bk
(ke
k; (17£§b+£1)k

-(5-9" e
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where we define

K
Pk
a= P
kZO(l_EO)
(1_ 80)K+1 _ pK+1

T (1-e)f(1l-&-p)’
K

p k
b= k;(l—é'o-‘r&'l)
(1_£O+£1)K+1_pK+l

- (1f£o+sl)K(1fso+£17p)

p(1— £0+£1

€= Z) 1- 80 )

7 (1780)2K+27pK+1(17£0+£l)K+l
T (1-e0)X((1-e)2—p(l-e+&1))

)

Therefore, we can write using=1— &, y = 1— & + &; for ease of notation

bc [yK+1 —pKH} [X2K+2 _pK+1yK+l] (X— p)2
a2 (XL 1) 2K (y—p) (% - py)
WAL | pKI2RIT pRHKE2 |\ 2KH2] (¢ p)2y
X2K+2yK+1 + p2K+2yK+1 _ 2pK+1XK+1yK+1 (y_ p) (x2 _ py)
(x—p)%y
(y—p) (¢ —py)
X2y + p%y — 2pxy
x2y+p%y—p(P+y?)’

(29)

where (29) is true sincg<+2 4 y2K+2 > oxK+1yK+1 Therefore (28) can be written as

A

X2y+ p?y — 2pxy 12
(o= PY—P(@+y?) )
VPEL
(y—p) (% - py)
S/ S (30)
(x—p) (¥~ py)
\/WSJ_
(X2 — px) (x2 — py)
/PXEL
X2 —py] (1)
(17 Eo)(1+ 5)81
(1= €0)2(1+0)— (1— o+ €1)]

178 — 7ol _o_
T+l

where (30) and (31) are true singe> X.
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A.7 Proof of (13)

anof Tho””%o =

[k: Thy (K)
0T
= [éop'q‘) : Ftk()]l/z (32)
B [ri((1+;)ﬁno)éo((l+f oo % (33)

where (32) is true sincey, (K) is a probability. The RHS of (33) is maximizedi‘é{tl = 1+ &. Therefore
(33) can be bounded with a probability of at least {4 by

K K
B [N 1+6\k]1/2
ano nhol‘mio = [,;(1-1-80) k;( p )]
- [ ((l+€0)K+17PK+1)2 ]1/2
- LA+e)fpR(A+e—p)?
(1+ o)<t —pkt
(1+£o)%p%(1+£ofp)
(1+£0)K+1
(1+&)2p% (1+&—p)
 (1te)?ti(1+8)2tL
T (14e&)(1+9)-1

3 [(1-&-80)(2—&— 3] ’Kﬁf

A

This completes the proof of Lemma 7.
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