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Abstract

In this paper we continue our work on adiabatic time of time-inhomogeneous
Markov chains first introduced in [9] and [3]. Our study is an analog to the
well-known Quantum Adiabatic (QA) theorem which characterizes the quantum
adiabatic time for the evolution of a quantum system as a result of applying of
a series of Hamilton operators, each is a linear combination of two given initial
and final Hamilton operators, i.e. H(s) = (1 − s)H0 + sH1. Informally, the
quantum adiabatic time of a quantum system specifies the speed at which the
Hamiltonian operators changes so that the ground state of the system at any
time s will always remain ǫ-close to that induced by the Hamilton operatorH(s)
at time s. Analogously, we derive a sufficient condition for the stable adiabatic
time of a time-inhomogeneous Markov evolution specified by applying a series
of transition probability matrices, each is a linear combination of two given
irreducible and aperiodic transition probability matrices, i.e., Pt = (1− t)P0 +
tP1. In particular we show that the stable adiabatic time tsad(P0,P1, ǫ) =
O
(

t4mix(ǫ/2)/ǫ
3
)

, where tmix denotes the maximum mixing time over all Pt for
0 ≤ t ≤ 1.

Keywords: time-inhomogeneous Markov chain, mixing time, stability,

adiabatic time

1. Introduction

In this paper we study the stability of time-inhomogeneous Markov chains
via the notion of stable adiabatic time, an extension of the adiabatic time first
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introduced in [9] and [3]. Our study is motivated in part by the well-known
Quantum Adiabatic (QA) theorem which characterizes the quantum adiabatic
time for the evolution of a quantum system as a result of applying of a series of
Hamiltonian operators, each is a linear combination of two pre-specified initial
and final Hamilton operators, i.e., H(s) = (1−s)H0+sH1. Quantum adiabatic
time of a quantum system, to be discussed in detail shortly, specifies the rate at
which Hamiltonian operators change so that the ground state of the system at
any time s will always remain ǫ-close to that induced by the Hamilton operator
H(s) at time s. The first Quantum Adiabatic theorem was stated in the 1920s
by M. Born and V.A. Fock [5], and have been subsequently studied in [8] among
others. Recently, the quantum adiabatic time plays an important role in the
development of quantum adiabatic computing. Specifically, quantum adiabatic
algorithms are constructed as a sequence of Hamilton operators applied to a
quantum system in such a way that drives the system to the desirable state or
output, see for example [10]. Thus, the quantum adiabatic time is a natural
choice for characterizing the running times of adiabatic quantum algorithms.

We analogously derive a sufficient condition for the stable adiabatic time
of a time-inhomogeneous Markov evolution specified by applying a series of
transition probability matrices, each is a linear combination of two given irre-
ducible and aperiodic transition probability matrices, i.e., Pt = (1 − t)P0 +
tP1. In particular we show that the stable adiabatic time tsad(P0,P1, ǫ) =
O
(

t4mix(ǫ/2)/ǫ
3
)

, where tmix denotes the maximum mixing time induced over
all the transition probability matrices during the evolution. We note the sta-
ble adiabatic time for time-inhomogeneous Markov has recently found practical
applications in network design. We refer to the recent work of Rajagoplan
et al. [12] where adiabatic time were used to design optimal medium access
protocols in wireless networks. Recently, the time-inhomogeneous evolution
Pt = (1− t)P0 + tP1 has also been used to describe the performance of queue-
ing models [17] for networks. Specifically, in this setting, the arrival rate of
packet at the queue is assumed to be unknown and is estimated progressively.
Appropriate sending rate is then determined based on this estimation. As a re-
sult, Pt describes the a queuing policy (or sending rate) which varies with time
based on the new statistics. The adiabatic time is then used to characterize the
performance of the queuing model under uncertainty due error in estimation. To
motivate our work, we now provide a short overview of the Quantum Adiabatic
theorem as discussed in [2].

1.1. Quantum Adiabatic Theorem

Let H0 and H1 be two given Hamiltonian operators. Let T > 0 be a positive
integer. For t ∈ [0, T ], denote H(s) = (1 − s)H0 + sH1, then H(s) is also a
Hamiltonian operator dependent on a time parameter s = t/T . In general, a
Hamiltonian operator described above, is not required to have a finite number
of physical pure states. In this paper we only consider transition probability
matrices of finite dimension, which are analogous the Hamiltonian operators
with a finite number of n physical pure states.
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The ground state in quantum mechanics refers to the lowest-energy state.
The quantum adiabatic theorem concerns one eigenstate of the energy function,
the ground state. Here we denote Φ(s) as the ground state of H(s) and we
let γ(s) be the eigenvalue associated with it. For a given T > 0, when we say
that we apply the adiabatic evolution given by H and Φ for time T we mean to
initialize the system in the state Φ(0) and then apply the continuously varying
Hamiltonian H(t/T ) for time t ∈ [0, T ].

Given ǫ > 0 the quantum adiabatic theorem informally says that if, by se-
lecting a large enough value of T , we assume that the change in the Hamiltonian
happens slowly enough, then when we apply the adiabatic evolution given by
H(s) and Φ for time T we will be in an ǫ-ball around Φ(1) with respect to the
l2(Cn)-norm. This leads us to the following definition.

Definition 1. Given ǫ > 0 the quantum adiabatic time, denoted as tqad(H,Φ, ǫ),
is equal to the smallest positive time, T, required to make the application of the

adiabatic evolution given by H and Φ for time T arrive in an ǫ-ball around Φ(1)
with respect to the l2(Cn)-norm.

The quantum adiabatic theorem gives a sufficient condition for the quantum
adiabatic time. The version of quantum adiabatic theorem as proved in [2]
motivated our work in [9] and [3]. Supposing that all eigenvalues of H(s) are
either smaller than γ(s)−∆ or larger than γ(s)+∆ (i.e. there is a spectral gap
of ∆ around W1(s)), then [2] tells us that

tqad(H,Φ, ǫ) = O

(

1

ǫ2∆4

)

.

In [5] the authors suggest that the quantum adiabatic theorem can be de-
scribed as follows: for an infinitely slow change of the system, i.e., at an infinitely
large value of T , the probability of a quantum state changing energy levels re-
mains infinitely small, even for finite values of s = t/T so that s ∈ [0, 1].

While the result in [2] was used to motivate the work in [9] and [3], the latter
notion in [5] is what motivated the work in this paper. We describe an ana-
logue to this quantum system in the context of the classical time-inhomogeneous
Markov chains.

1.2. Main Result

Markov chains over a finite number of n states are l1(Rn
+)-norm preserving

processes. We denote ‖·‖1 as the l1(Rn) norm throughout the paper. We assume
that the reader has a prior understanding of basic types of Markov chains, such
as irreducible, aperiodic, time-homogeneous and time-inhomogeneous Markov
chains (see [6], [7] and [11]). Throughout the paper we focus on discrete-time
Markov chains and use ‖ · ‖TV to denote the total variation norm. We begin
with the definition of mixing time.
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Definition 2. For ǫ > 0 the mixing time of a time-homogeneous, irreducible

and aperiodic Markov chain governed by a probability transition matrix P, which

has unique stationary distribution π, is defined as:

tmix(P, ǫ) = inf{T ∈ N : ‖νPT − π‖TV ≤ ǫ} (1)

over all distributions ν.

Mixing times of time-homogeneous irreducible and aperiodic Markov chains
have been well studied, see for example [1] and [11]. Mixing time character-
izes how fast a chain converges to its stationary distribution. It is particularly
important for bounding the running times of many randomized algorithms, for
example the simulated annealing algorithm and metropolis-hasting algorithm
as explained in [13]. There have also been recent studies on mixing times for
time-inhomogeneous Markov chain [14], [15] and [16] which is more closely re-
lated to our work. For example, Saloff-Coste and Zúñiga [14] consider spectral
bounds of the mixing time for time-inhomogeneous Markov chains on a finite
state space when each step in transition corresponds to an ergodic Markov
kernel with the same stationary measure. In their subsequent work [15], Saloff-
Coste and Zúñiga employed spectral techniques to obtain asymptotic behavior
of time-inhomogeneous Markov chains. In this work, the concept of c-stability
is introduced, which is an abstraction of requiring all Markov kernels to have
the same stationary measure, and bounds for this kind of stability are obtained.

Our work, on the other hand, studies a specific class of discrete-time, time-
inhomogeneous Markov chains that was first constructed in [9]. Specifically,
we consider the probability transition matrices for two discrete-time, time-
homogeneous, irreducible and aperiodic Markov chains over n states. We denote
these matrices as P0 and P1 throughout the paper and call these the initial and
the final transition matrices respectively. We define for t ∈ [0, 1] a class of prob-
ability transition matrices {Pt}t∈[0,1] such that

Pt = (1− t)P0 + tP1.

For t ∈ [0, 1] we also define πt to be the stationary distribution of Pt. Given
T ∈ N, the specific time-inhomogeneous Markov chain being considered in our
paper is the one such that the probability transition matrix at time k is P k

T

for 0 ≤ k ≤ T . We consider the class of all time-inhomogeneous Markov chains
of this type over all T ∈ N. We will say that any Markov chain in this class is
governed by an adiabatic evolution between P0 and P1.

Stability of these kinds of Markov chains were described in [9] and [3] using
the notion of adiabatic time defined as follows:

Definition 3. For ǫ > 0 the adiabatic time of a time-inhomogeneous, discrete-

time Markov chain governed by an adiabatic evolution between P0 and P1, is

defined as:

tad(P0,P1, ǫ) = inf{T ∗ ∈ N : max
ν

‖νP0P 1
T
P 2

T
· · ·P1−π1‖TV ≤ ǫ for T ∈ N, T ≥ T ∗},

(2)
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where ν is a probability distribution.

Next, we recall a result from [9] that compares the adiabatic time of a time-
inhomogeneous Markov chain and the mixing time of the time-homogeneous
Markov chain governed by the final transition matrix.

Theorem 1.

Given a time-inhomogeneous, discrete-time Markov chain governed by an adia-

batic evolution between the two irreducible and aperiodic P0 and P1, for ǫ > 0

tad(P0,P1, ǫ) = O

(

t2mix(P1, ǫ/2)

ǫ

)

. (3)

We showed that this bound is tight in [3] by finding a pair of matrices, P0

and P1, with the following property: as ǫ → 0, there exists a positive constant
C such that

tad(P0,P1, ǫ) =
Ct2mix(P1, ǫ/2)

ǫ
.

In the following Proposition, we provide an upper bound on the adiabatic
time using the square of the mixing time. Although this is a minor improvement,
it is necessary for our main result. The proof of this Proposition is given in
Section 4.

Proposition 1. Given a time-inhomogeneous, discrete-time Markov chain gov-

erned by an adiabatic evolution between the two irreducible and aperiodic P0 and

P1, for ǫ > 0

tad(P0,P1, ǫ) ≤
2t2mix(P1, ǫ/2)

ǫ
. (4)

Definition 3 suggests that for ǫ > 0 and any T ≥ tad(P0,P1, ǫ) any proba-
bility distribution will evolve under consecutive applications of P k

T
to an ǫ-ball

around π1 in the space of probability distributions with respect to the total
variation norm. We desire a stronger notion of stability in this paper to match
the description of the quantum adiabatic theorem mentioned in [5]. We want to
select T large enough so that starting at π0, the distribution will evolve under
consecutive applications of P k

T
within an ǫ-corridor of π k

T
for 1 ≤ k ≤ T . This

leads us to the following definition.

Definition 4. For ǫ > 0 the stable adiabatic time of a time-inhomogeneous,

discrete-time Markov chain governed by an adiabatic evolution between the ir-

reducible and aperiodic P0 and P1, written as tsad(P0,P1, ǫ), is defined as

follows:

tsad(P0,P1, ǫ) = inf{T ∈ N : ‖π0P 1
T
· · ·P k

T
−π k

T
‖TV < ǫ for 1 ≤ k ≤ T }. (5)
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The main goal of this paper is finding a bound for the stable adiabatic time
with respect to the maximum mixing time over all the transition probability
matrices. For ǫ > 0 we let

tmix(ǫ) = sup
s∈[0,1]

{tmix(Ps, ǫ)}

and we seek our bound in terms of this tmix(ǫ).
We divide our result into two main theorems to highlight the nature of this

bound. Our first theorem gives us insight into the nature of the stable adiabatic
time. Its proof is given in Section 4.

Theorem 2. Given a time-inhomogeneous, discrete-time Markov chain gov-

erned by an adiabatic evolution between the irreducible and aperiodic P0 and

P1 and given δ ∈ (0, 1], for any ǫ > 0,

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ǫ

for

T ≥ 2t2mix(ǫ/2)

ǫδ
,

and δ ≤ k/T ≤ 1.

We now state our main result. The proof is given in Section 3.

Theorem 3. Given a time-inhomogeneous, discrete-time Markov chain gov-

erned by an adiabatic evolution between two time-homogeneous, discrete-time,

n-state, irreducible and aperiodic Markov chains with probability transition ma-

trices P0 and P1, for any ǫ > 0 ,

tsad(P0,P1, ǫ) = O

(

t4mix(ǫ/2)

ǫ3

)

. (6)

The remaining sections of the paper are organized as follows: in Section 2
we state the necessary tools for the proof of our main theorem, in Section 3 we
prove our main theorem, and Section 4 is dedicated to proofs.

2. Preliminaries

We begin this section with a result on the stability of time-homogeneous
Markov chains. We will find a lower bound for the mixing time of a time-
homogeneous, discrete-time, irreducible and aperiodic Markov chain governed
by the probability transition matrix P in terms of the inverse of the smallest
nonzero singular value of I−P. There are similar results in [11], where the lower
bound for the mixing time of a time-homogeneous, discrete-time, irreducible,
aperiodic and reversible Markov chain governed by the probability transition
matrix P is found in terms of the inverse smallest nonzero eigenvalue of I−P,
or rather in terms of the relaxation time for P. One should note that our work
is not limited to reversible Markov chains. Our work applies to a much larger
class of Markov chains. The proof of the following Proposition is in Section 4.
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Proposition 2. For a time-homogeneous, discrete-time, n-state, irreducible and
aperiodic Markov chain, if we are given ǫ > 0, then if σ is the smallest nonzero

singular value of I−P,

1− 2
√
nǫ

σ
≤ tmix(P, ǫ). (7)

This Proposition will be vital for proving Theorem 3 and it gives us some
intuition about the mixing time. There have been many results bounding the
relaxation time for reversible Markov chains on weighted graphs for example
conductance bounds and weighted path upper bounds. In both [1] and [4] the
authors introduce the necessary spectral structure to find these bounds. They
also define a Dirichlet form to help derive the well-known Rayleigh Theorem and
the Perron-Frobenius Theorem, which also describe bounds on the relaxation
time. Our work, however, does not employ these techniques directly.

We now find a bound of ‖π0P 1
T
· · ·P k

T
− π k

T
‖TV in terms of ‖π0 − π k

T
‖TV .

We devote the following Proposition to this endeavor and its proof is in Section 4.

Proposition 3. For 1 ≤ k ≤ T

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ‖π k

T
− π0‖TV +

(k + 1)2

2T
. (8)

Now we can use the continuity of πs at s = 0 to find an appropriate bound for
‖π0P 1

T
· · ·P k

T
− π k

T
‖TV for 0 ≤ k/T ≤ δ. We devote the following Proposition

to the discovery of how πs is continuous at s = 0. The spectral structure of P0

is crucial to this development. The proof is in Section 4.

Proposition 4. πs is continuous with respect to the total variation norm at

s = 0. In particular, for ǫ > 0 if we let σ be the smallest nonzero singular value

of I−P0, then if

δ =
ǫσ

2n3/2
(9)

we have for all s ≤ δ, ‖πs − π0‖TV ≤ ǫ.

Now we can use Proposition 2 along with the fact that tmix(P0, ǫ) ≤ tmix(ǫ)
to derive the following Corollary to Proposition 4.

Corollary 1. πs is continuous with respect to the total variation norm at s = 0.
In particular, for 0 < ǫ < 1/

√
n if

δ =
ǫ(1−√

nǫ)

4n3/2tmix(ǫ/2)
(10)

we have for all s ≤ δ, ‖πs − π0‖TV ≤ ǫ/2.

We now have all the necessary tools to find a bound for the stable adiabatic
time. We find our result and conclude our paper in the following section.
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3. A Bound for the Stable Adiabatic Time

We devote this section to finding a bound for the stable adiabatic time
entirely in terms of the largest mixing time. We state our main result in the
following theorem.

Theorem 4. Given a time-inhomogeneous, discrete-time Markov chain gov-

erned by adiabatic evolution between the irreducible and aperiodic P0 and P1,

for any ǫ > 0,

tsad(P0,P1, ǫ) = O

(

t4mix(ǫ/2)

ǫ3

)

. (11)

Proof.

We first provide a sketch of the proof followed by the technical details. Our
proof is based on the results of Theorem 2, Proposition 3, and Corollary 1.
Specifically, we divide our proof into two cases. In the first case, we will show
how to select T and δ in order to satisfy the two conditions in Theorem 2,
namely:

T ≥ 2t2mix(ǫ/2)

ǫδ
,

and
δ ≤ k/T ≤ 1.

Therefore, by Theorem 2, we have

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ǫ.

However, the selected T is not yet tsad(P0,P1, ǫ) since this only holds for k
such that

δ ≤ k/T ≤ 1.

In the second case, we will use the results of Proposition 3 and Corollary 1 to
show that for the same selected T and δ,

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ǫ,

even in the case when
k/T ≤ δ < 1.

Therefore, we conclude that the selected T is a sufficient condition for tsad(P0,P1, ǫ).
We now proceed with the details of the proof, starting with the first case.

Let ǫ > 0. For this fixed ǫ, we choose T be an integer such that

T ≥ 4t4mix(ǫ/2)

ǫ3
+

4t2mix(ǫ/2)

ǫ2
+

1

ǫ

=

(

2t2mix(ǫ/2)

ǫ
√
ǫ

+
1√
ǫ

)2

.
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This implies

√
T ≥ 2t2mix(ǫ/2)

ǫ
√
ǫ

+
1√
ǫ
.

Multiplying either side by
√
ǫ and subtracting 1 from either side, we obtain

√
ǫ
√
T − 1 ≥ 2t2mix(ǫ/2)

ǫ
.

Notice that
√
ǫ
√
T − 1 > 0 because

2t2mix(ǫ/2)

ǫ
> 0.

Dividing either side of the above inequality by
√
ǫ
√
T − 1, we obtain

1 ≥ 2t2mix(ǫ/2)

ǫ
(√

ǫ
√
T − 1

) .

Multiplying either side by T , we obtain

T ≥ 2t2mix(ǫ/2)

ǫ
(√

ǫ
T − 1

T

) .

Now, let

δ =

√

ǫ

T
− 1

T
,

then clearly

T ≥ 2t2mix(ǫ/2)

ǫδ
.

Next, let k be an integer such that

δ =

√

ǫ

T
− 1

T
≤ k

T
≤ 1.

Then by Theorem 2, we conclude that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ǫ.

Now in the second (complementary) case, i.e., when k/T ≤ δ < 1, we will
show that for the same selected δ =

√

ǫ
T − 1

T , and T , it is still true that:

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ǫ,

Let k be an integer such that

0 ≤ k

T
≤
√

ǫ

T
− 1

T
= δ.

9



Then,
k + 1

T
≤
√

ǫ

T
.

Using Proposition 3, we have

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ‖π k

T
− π0‖TV +

(k + 1)2

2T

= ‖π k
T
− π0‖TV +

T

2

(

k + 1

T

)2

≤ ‖π k
T
− π0‖TV +

T

2

(√

ǫ

T

)2

= ‖π k
T
− π0‖TV +

ǫ

2
.

Next, from Corollary 1, as long as ǫ < 1/
√
n and

√

ǫ
T − 1

T ≤ ǫ(1−
√
nǫ)

4n3/2tmix(ǫ/2)
,

we have
‖π0P 1

T
· · ·P k

T
− π k

T
‖TV ≤ ǫ

for

0 ≤ k

T
≤
√

ǫ

T
− 1

T
.

It should be clear that as ǫ → 0,

√

ǫ

T
− 1

T
≤ ǫ(1−√

nǫ)

4n3/2tmix(ǫ/2)

when

T ≥ 4t4mix(ǫ/2)

ǫ3
+

4t2mix(ǫ/2)

ǫ2
+

1

ǫ
.

This tells us that as ǫ → 0,

tsad(P0,P1, ǫ) ≤
4t4mix(ǫ/2)

ǫ3
+

4t2mix(ǫ/2)

ǫ2
+

1

ǫ
.

We conclude that

tsad(P0,P1, ǫ) = O

(

t4mix(ǫ/2)

ǫ3

)

.

We see that this result somewhat reaffirms what has been shown in the
Quantum Adiabatic Theorem in [2], but a main difference is that the inverse
spectral gap bound for the quantum system is replaced with a mixing time
bound in our result. Our result also has an extra multiple of 1/ǫ. Notice that the
inverse spectral gap was a natural choice for the Quantum Adiabatic Theorem
due to the Hamiltonian matrix being self-adjoint. For general, not necessarily
reversible, Markov Chains, the Adiabatic Theorem is expressed using mixing
times.
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4. Proofs

4.1. Proof of Proposition 1

Recall the proof of Theorem 1 in [9]. We notice that

tad(P0,P1, ǫ) ≤ Ktmix(P1, ǫ/2)

where

1 +







(

1 + 1
K−1

)K−1

e







tmix(P1,ǫ/2)

≤ ǫ/2.

After performing some basic algebra and taking the natural logarithm of either
side of the equation, we see that

ln (1− ǫ/2) ≤ tmix (P1, ǫ/2)

(

ln

(

(

1 +
1

K − 1

)K−1
)

− 1

)

= tmix (P1, ǫ/2)

(

(K − 1) ln

(

1 +
1

K − 1

)

− 1

)

= tmix (P1, ǫ/2)



(K − 1)





∞
∑

j=1

(−1)j+1 1

j(K − 1)j



− 1





= tmix (P1, ǫ/2)





∞
∑

j=2

(−1)j+1 1

j(K − 1)j−1





= tmix (P1, ǫ/2)





∞
∑

j=1

(−1)j+1 1

j(K − 1)j

( −j

j + 1

)



 .

It is clear now that if we select K large enough so that

ln (1− ǫ/2) ≤ −tmix (P1, ǫ/2)





∞
∑

j=1

(−1)j+1 1

j(K − 1)j





= −tmix (P1, ǫ/2) ln

(

1 +
1

K − 1

)

then K will be large enough to satisfy the previous inequality.

Exponentiating either side of the equation and performing the basic algebra
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required to solve for K we see that

K ≥ 1 +

(

e

(

− ln(1−ǫ/2)
tmix(P1,ǫ/2)

)

− 1

)−1

= 1 +





∞
∑

j=0

(

1

j!

(− ln(1 − ǫ/2)

tmix(P1, ǫ/2)

)j
)

− 1





−1

= 1 +





− ln(1− ǫ/2)

tmix(P1, ǫ/2)

∞
∑

j=1

1

j!

(− ln(1− ǫ/2)

tmix(P1, ǫ/2)

)j−1




−1

= 1 +
tmix(P1, ǫ/2)

− ln(1 − ǫ/2)





∞
∑

j=1

1

j!

(− ln(1− ǫ/2)

tmix(P1, ǫ/2)

)j−1




−1

.

Notice that the infinite sum that we have is the sum of positive terms and the
first term in the sum is 1. This tells us that

1 ≤
∞
∑

j=1

1

j!

(− ln(1 − ǫ/2)

tmix(P1, ǫ/2)

)j−1

therefore

1 ≥





∞
∑

j=1

1

j!

(− ln(1 − ǫ/2)

tmix(P1, ǫ/2)

)j−1




−1

.

This tells us that if we select K such that

K ≥ 1 +
tmix(P1, ǫ/2)

− ln(1− ǫ/2)

then the above inequality will be satisfied.

Finally we can expand ln(1− ǫ/2) to find that

K ≥ 1 +
2tmix(P1, ǫ/2)

ǫ





∞
∑

j=1

1

j

( ǫ

2

)j−1





−1

.

Again the infinite sum is the sum of positive terms, and the first term in the
sum is 1. This tells us that

1 ≥





∞
∑

j=1

1

j

( ǫ

2

)j−1





−1

.

We conclude that if we select K such that

K ≥ 2tmix(P1, ǫ/2)

ǫ

12



then

1 +







(

1 + 1
K−1

)K−1

e







tmix(P1,ǫ/2)

≤ ǫ/2.

Therefore, we see that

tad(P0,P1, ǫ) ≤
2t2mix(P1, ǫ/2)

ǫ
.

4.2. Proof of Theorem 2

To develop the tools for this theorem, we consider the following treatment of
our probability transition matrices. If we are given s ∈ (0, 1], then we see that

Pt =

(

1− t

s

)

P0 +
t

s
Ps

for all t ∈ [0, s].

Defining P
(s)
t = Pst, we see that

P
(s)
t = (1− t)P

(s)
0 + tP

(s)
1

for all t ∈ [0, 1]. We also define πt
(s) = πst.

We see that {P(s)
t }t∈[0,1] is a class of probability transition matrices where P0 =

P
(s)
0 and Ps = P

(s)
1 .

Since the time-homogeneous Markov chains determined by P0 and Ps are
irreducible and aperiodic, we can consider a time-inhomogeneous, discrete-
time Markov chain governed by adiabatic evolution between these two time-
homogeneous Markov chains. We can apply Theorem 1 to show that

tad(P
(s)
0 ,P

(s)
1 , ǫ) = O

(

t2mix(P
(s)
1 , ǫ/2)

ǫ

)

.

Now let ǫ > 0 and δ ∈ (0, 1].

For s ∈ [δ, 1] we have that T ∗ = tad(P
(s)
0 ,P

(s)
1 , ǫ) is the adiabatic time between

P
(s)
0 and P

(s)
1 .

This tells us that

max
ν

‖νP(s)
1

T∗

P
(s)
2

T∗

· · ·P(s)
1 − π1

(s)‖TV ≤ ǫ.

Because π0
(s) is a specific distribution, we have that

13



ǫ ≥ ‖π0
(s)P

(s)
1

T∗

P
(s)
2

T∗

· · ·P(s)
1 − π1

(s)‖TV

= ‖π0
(s)P

(s)
(1/s)

(T∗/s)

P
(s)
(2/s)

(T∗/s)

· · ·P(s)
(T∗/s)
(T∗/s)

− π
(s)
1 ‖TV

= ‖π0P 1
(T∗/s)

P 2
(T∗/s)

· · ·P s(T∗/s)
(T∗/s)

− π s(T∗/s)
(T∗/s)

‖TV .

Clearly if T = tad(P
(s)
0 ,P

(s)
1 , ǫ)/s, then

‖π0P 1
T
P 2

T
· · ·P sT

T
− π sT

T
‖TV ≤ ǫ.

We showed in Proposition 1 that for ǫ > 0

tad(P
(s)
0 ,P

(s)
1 , ǫ) ≤ 2t2mix(Ps, ǫ/2)

ǫ
.

It follows that for ǫ > 0

tad(P
(s)
0 ,P

(s)
1 , ǫ) ≤ 2t2mix(ǫ/2)

ǫ
.

For ǫ > 0 if we let T any integer such that

T ≥ 2t2mix(ǫ/2)

ǫδ

we have
‖π0P 1

T
P 2

T
· · ·P k

T
− π k

T
‖TV ≤ ǫ

for all δ ≤ k/T ≤ 1.

4.3. Proof of Proposition 2

We know that an irreducible, aperiodic time-homogeneous Markov chain gov-
erned by a probability transition matrix P has a unique stationary distribution,
making the nullity of (Iλ−P) equal to one when λ = 1. This would necessarily
imply that the rank of (I−P) is n− 1.
Let σ1 ≥ · · · ≥ σn−1 = σ be the positive singular values of (I−P) with respect
to the Euclidean inner product, which we will denote ‖ · ‖2 throughout this
paper. This implies that there exists an orthonormal basis {v1, · · · ,vn} such
that vj(I−P)(I −P)T = σ2

jvj for 1 ≤ j ≤ n− 1 and vn(I−P)(I−P)T = 0.
Clearly vn = π/‖π‖2.

For t ∈ N define Mt−1 = I+P+P2 + · · ·+Pt−1.

Also define π to be the stationary distribution of P.

14



Notice that I−Pt = (I−P)Mt−1.

For irreducible, aperiodic Markov chains we have that if λ1, · · ·λn are the eigen-
values of P such that 1 = λ1 > |λ2| ≥ · · · ≥ |λn|, then

t,
1− λt

2

1− λ2
, · · · , 1− λt

n

1− λn

are the eigenvalues of Mt−1. Notice that Mt−1 must be invertible because all
eigenvalues are nonzero and also notice that t is the largest eigenvalue in mod-
ulus.

This implies that I−P = (I−Pt)Mt−1
−1 and we see that

σ = ‖vn−1(I−P)‖2 = ‖vn−1(I−Pt)Mt−1
−1‖2.

We see that if ‖ · ‖∗ is the standard matrix norm, then

‖vn−1(I−Pt)‖2 = ‖vn−1(I−Pt)Mt−1
−1Mt−1‖2

≤ ‖vn−1(I−Pt)Mt−1
−1‖2‖Mt−1‖∗

≤ t‖vn−1(I−Pt)Mt−1
−1‖2

= tσ.

If we let u be a vector such that for 1 ≤ i ≤ n, u(i) = 0 whenever vn−1(i) ≥ 0
and u(i) = −vn−1(i) whenever vn−1(i) < 0, then we have that ν1 = u/‖u‖1
and ν2 = (vn−1 + u)/‖vn−1 + u‖1 are probability distributions and

vn−1(I−Pt) = vn−1 + (‖u‖1 − ‖vn−1 + u‖1)π
−
(

‖vn−1 + u‖1 (ν2 − π)Pt − ‖u‖1 (ν1 − π)Pt
)

.

For x,y ∈ Rn such that x and y are probability measures, we see that

1

2
‖x− y‖2 ≤ ‖x− y‖TV ≤

√
n

2
‖x− y‖2.

Through the triangle inequality we see that if we select t = tmix(P, ǫ), then
∥

∥

(

‖vn−1 + u‖1 (ν2 − π)Pt − ‖u‖1 (ν1 − π)Pt
) ∥

∥

2
≤ ‖vn−1 + u‖1 · ‖ (ν2 − π)Pt‖2

+ ‖u‖1 · ‖ (ν1 − π)Pt‖2
≤ 2‖vn−1 + u‖1 · ‖ (ν2 − π)Pt‖TV

+ 2‖u‖1 · ‖ (ν1 − π)Pt‖TV

≤ 2(‖vn−1 + u‖1 + ‖u‖1)ǫ
= 2‖vn−1‖1ǫ
≤ 2

√
n‖vn−1‖2ǫ

= 2
√
nǫ.

15



Because vn−1 and π are orthogonal, we see that

∥

∥vn−1 + (‖u‖1 − ‖vn−1 − u‖1)π
∥

∥

2
=

√

1 + (‖u‖1 − ‖vn−1 + u‖1)2 (‖π‖2)2

≥ 1.

Now through the reverse triangle inequality, meaning that for vectors x and y,
‖x− y‖2 ≥ ‖x‖2 − ‖y‖2, we see that if t = tmix(P, ǫ), then

‖vn−1(I−Pt)‖2 ≥ 1− 2
√
nǫ.

This now implies that
1− 2

√
nǫ

σ
≤ tmix(P, ǫ).

4.4. Proof of Proposition 3

Because π0P j

T

= π0 + j
T π0(P1 −P0) for 1 ≤ j ≤ k we notice that

π0P j

T

· · ·P k
T
− π k

T
= π0P j+1

T

· · ·P k
T
− π k

T
+

j

T
π0(P1 −P0)P j+1

T

· · ·P k
T

for 1 ≤ j ≤ k − 1 and

π0P k
T
− π k

T
= (π0 − π k

T
) +

k

T
π0(P1 −P0).

Using the convention Pj+1 · · ·Pk = I when j ≥ k, we would see that

π0P 1
T
· · ·P k

T
− π k

T
= (π0 − π k

T
) +

k
∑

j=1

j

T
π0(P1 −P0)P j+1

T

· · ·P k
T
.

Taking the total variation norm to either side of the inequality, using the triangle
inequality and pulling out constants, we see that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV = ‖(π0 − π k

T
) +

k
∑

j=1

j

T
π0(P1 −P0)P j+1

T

· · ·P k
T
‖TV

≤ ‖π0 − π k
T
‖TV +

k
∑

j=1

j

T
‖π0(P1 −P0)P j+1

T

· · ·P k
T
‖TV .

Notice that for 1 ≤ j ≤ k − 1

π0(P1 −P0)P j+1

T

· · ·P k
T
= π0P1P j+1

T

· · ·P k
T
− π0P0P j+1

T

· · ·P k
T

is the difference between two probability distributions and

π0(P1 −P0) = π0P1 − π0P0

16



is also the difference between two probability distributions.

Because we are taking the total variation norm to the difference of two proba-
bility distributions we see that ‖ · ‖TV = 1

2‖ · ‖1 where ‖ · ‖1 is the l1-norm.

We have that for probability distributions µ and ν, ‖µ− ν‖TV = 1
2‖µ− ν‖1 ≤

1
2 (‖µ‖1 + ‖ν‖1) ≤ 1.

This tells us that ‖π0(P1 −P0)P j+1

T

· · ·P k
T
‖TV ≤ 1 for 1 ≤ j ≤ k.

We see then that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ‖π k

T
− π0‖TV +

k
∑

j=1

j

T

= ‖π k
T
− π0‖TV +

1

T

k
∑

j=1

j

= ‖π k
T
− π0‖TV +

k(k + 1)

2T

≤ ‖π k
T
− π0‖TV +

(k + 1)2

2T
.

4.5. Proof of Proposition 4

We begin with the creation of an orthonormal basis of eigenvectors associated
with (I−P0)(I−P0)

T by a singular value decomposition similar to the process
we mentioned in Proposition 2.
Here we let σ1 ≥ · · · ≥ σn−1 = σ be the positive singular values of (I − P0)
with respect to the Euclidean inner product. This implies that there exists
an orthonormal basis {v1, · · · ,vn} such that vj(I − P0)(I − P0)

T = σ2
jvj for

1 ≤ j ≤ n− 1 and vn(I−P0)(I−P0)
T = 0.

Here vn = π0/‖π0‖2.

To show continuity at s = 0 let ǫ > 0 and first notice that for any s ∈ [0, 1],
(πs − π0)(I−P0) = sπs(P1 −P0).

Using the Euclidean norm, we see that if P0 6= P1 and s 6= 0, then

‖(πs − π0)(I −P0)‖2
‖πs − π0‖2

= s
‖πs(P1 −P0)‖2

‖πs − π0‖2
.

Throughout this proof we will use < ·, · > as the Euclidean inner product.

For 1 ≤ j ≤ n let cj =< πs − π0,vj >. Then we see that πs − π0 =
∑n

j=1 cjvj.
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We have that

‖(πs − π0)(I −P0)‖22
‖πs − π0‖22

=
< (πs − π0)(I−P0), (πs − π0)(I−P0) >

< πs − π0, πs − π0 >

=
< πs − π0, (πs − π0)(I−P0)(I−P0)

T >

< πs − π0, πs − π0 >

=
<
∑n

j=1 cjvj,
∑n−1

j=1 σ2
j cjvj >

<
∑n

j=1 cjvj,
∑n

j=1 cjvj >

=

∑n−1
j=1 σ2

j c
2
j

∑n
j=1 c

2
j

≥ σ2
n−1

∑n−1
j=1 c2j

∑n
j=1 c

2
j

= σ2
n−1

(

1− c2n
∑n

j=1 c
2
j

)

= σ2
n−1

(

1−
(

< πs − π0,vn >

‖πs − π0‖2

)2
)

.

If we let w(s) = (πs − π0)/‖πs − π0‖2 then we see that

σ2
n−1

(

1− (< w(s),vn >)
2
)

≤ s2
‖πs(P1 −P0)‖22

‖πs − π0‖22
.

Because w(s) and vn are unit vectors, we can use the fact that

‖w(s)‖22 − 2 < w(s),vn > +‖vn‖22 = ‖w(s)− vn‖22
to show that

1− < w(s),vn >=
1

2
‖w(s)− vn‖22

and we can use the fact that

‖w(s)‖22 + 2 < w(s),vn > +‖vn‖22 = ‖w(s) + vn‖22
to show that

1+ < w(s),vn >=
1

2
‖w(s) + vn‖22.

From this we see that 1 − (< w(s),vn >)
2
= ‖w(s) − vn‖22 · ‖w(s) + vn‖22/4.

Plugging this into our previous equation, we can see that

σ2
n−1

4
‖w(s)− vn‖22 · ‖w(s) + vn‖22 ≤ s2

‖πs(P1 −P0)‖22
‖πs − π0‖22

.

After performing some basic algebra we see that

‖πs − π0‖2 ≤ 2s‖πs(P1 −P0)‖2
σn−1‖w(s)− vn‖2 · ‖w(s) + vn‖2

.

18



Notice that < w(s),1 > /
√
n = 0 and < vn,1 > /

√
n = 1/ (

√
n‖π0‖2) for

all s ∈ [0, 1]. Because these are the scalar components of the projections of
w(s) and vn onto 1 respectively, we see that the minimum possible value for
‖w(s)− vn‖2 and ‖w(s) + vn‖2 is at least 1/ (

√
n‖π0‖2) .

We now have that

‖πs − π0‖2 ≤ 2sn‖π0‖22 · ‖πs(P1 −P0)‖2
σn−1

≤ 2sn‖πs(P1 −P0)‖2
σn−1

=
2sn‖πs(P1 −P0)‖2

σ
.

Again for x,y ∈ Rn such that x and y are probability measures, we see that

1

2
‖x− y‖2 ≤ ‖x− y‖TV ≤

√
n

2
‖x− y‖2.

This will imply that

‖πs − π0‖TV ≤ 2sn3/2‖πs(P1 −P0)‖TV

σn−1
.

Because πs(P1 −P0) = πsP1 − πsP0 is the difference of two probability distri-
butions, we see that ‖ · ‖TV = 1

2‖ · ‖1 where ‖ · ‖1 is the l1-norm. This implies
that

‖πs(P1 −P0)‖TV =
1

2
‖πsP1 − πsP0‖1 ≤ 1

2
(‖πsP1‖1 + ‖πsP0‖1) ≤ 1.

This shows that

‖πs − π0‖TV ≤ 2sn3/2

σ
.

Clearly if ǫ > 0, then

s ≤ δ =
ǫσ

2n3/2

implies ‖πs − π0‖TV ≤ ǫ.

This shows that πs is continuous at s = 0.
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