
Adiabatic Markov Decision Process with Application

to Queuing Systems

Thai Duong, Duong Nguyen-Huu, Thinh Nguyen

School of Electrical Engineering and Computer Science

Oregon State University

Abstract—Markov Decision Process (MDP) is a well-known
framework for devising the optimal decision making strate-
gies under uncertainty. Typically, the decision maker assumes
a stationary environment which is characterized by a time-
invariant transition probability matrix. However, in many real-
world scenarios, this assumption is not justified, thus the optimal
strategy might not provide the expected performance. In this
paper, we study the performance of the classic Value Iteration
(VI) algorithm for solving an MDP problem under non-stationary
environments. Specifically, the non-stationary environment is
modeled as a sequence of time-variant transition probability ma-
trices governed by an adiabatic evolution inspired from quantum
mechanics. We characterize the performance of the VI algorithm
subject to the rate of change of the underlying environment. The
performance is measured in terms of the convergence rate to
the optimal average reward. We show two examples of queuing
systems that make use of our analysis framework.

Keywords—Markov Decision Process, Adiabatic, Value Itera-
tion.

I. INTRODUCTION

The theory of Markov Decision Process (MDP) aims to
study optimal decision making processes under uncertainty. It
is widely used in economics, engineering, operation research,
and artificial intelligence. In an MDP setting, there is a
controller who interacts with its environment by taking actions
based on its observations at every discrete time step. Each
action by the controller induces a change in the environment.
Typically, the environment is described by a finite set of states.
An action will move the environment from the current state
to some other states with certain probabilities. Associated with
each action in each state is a reward given to the controller. The
goal of the controller is to maximize the expected cumulative
reward or average reward over some finite or infinite number of
time steps by making sequential decisions based on its current
observations.

It is not difficult to find many applications of the MDP
framework. A classic application of MDP is the warehouse
example in operation research. In this setup, a company’s
business is to buy and sell a number of merchandises. To
operate smoothly, it uses a warehouse to store the merchandises
that allows shipments to the buyers promptly. Everyday, it has
to make the decision on how many and which items it should
buy and store in its warehouse subject to the uncertainty of the
market demands. Buying too many items would incur high
storage costs while buying too little would run the risk of
not having the items ready for shipping, and thus reducing
profits. The MDP framework enables the company to decide
on the optimal action, i.e., how many and which items it

should buy on a given day in order to maximize the expected
cumulative reward, i.e., its profits over a month, a year, or
indefinitely. Naturally, the optimal action should based on the
environmental states, i.e., the current status of different items
in the stock and the current market demands.

A solution of an MDP problem is an optimal policy. A
policy/decision rule is a mapping from the states to the action.
The optimal policy would produce the maximum expected
cumulative reward. For the infinite-horizon MDP models, to be
discussed subsequently, there is a number of classic algorithms
for finding such optimal policies. These algorithms include
Value Iteration, Policy Iteration, Linear Programming, all are
based on the Bellman equations [1][2]. All also assume a
stationary policy, i.e., a policy that does not change with
time. This assumption is justified as it is well-known that
for a stationary environment, there exists an optimal policy
that is also stationary. Fundamentally, the MDP framework
relies on the assumption that a given policy will induce a
stationary dynamic on the states. Moreover, the state changes
are characterized by a time-invariant transition probability
matrix P .

For many real-world scenarios, this assumption is not
justified, thus the optimal policy might not provide the ex-
pected performance. In this paper, we study the performance
of the classic Value Iteration (VI) algorithm for solving an
MDP problem under non-stationary environments. Specifically,
the non-stationary environment is modeled as a sequence of
time-variant transition probability matrices governed by an
adiabatic evolution inspired from quantum mechanics [3] [4]
[5]. Formally, the transition probability matrix P d

i at time step
i induced by decision rule d is determined by:

P d
i = Φ(i)P d

0 + (1− Φ(i))P d
f , (1)

where P d
0 and P d

f are the transition probability matrices

induced by the decision rule d at time step 0 and ∞, and Φ(.)
characterizes the rate of change of the system with Φ(0) = 1
and Φ(∞) = 0.

The above transition model can be applied in two inter-
esting scenarios. In the first scenario, P d

i model the actual
dynamics of the underlying non-stationary environment. In
other words, the environment is initially characterized by P0,
then over time it converges to Pf . In the second scenario,
the environment is always stationary, and is characterized by
Pf . However the estimation of the environmental parameters
is initially inaccurate, and thought to be P0. Thus, the ac-
tions/decisions are made based on inaccurate knowledge of the
environment. However, over time, the estimations of the envi-
ronmental parameters become increasingly more accurate, i.e.,



Pi getting closer to Pf . Thus, the decisions are closer to the
optimal ones, and eventually converge to the optimal policy.
That said, we characterize the performance of the VI algorithm
subject to the rate of change of the environment (Φ(.)). The
performance is measured in terms of the convergence rate to
the optimal average reward. We present two queuing system
examples illustrating the two scenarios above that make use of
our analysis framework.

This paper is organized as follows. The Section II provides
some background on the theory of Markov Decision Process,
Value Iteration and Adiabatic Settings which are necessary for
the next Sections. In Section III, we formulate the problem in
term of the distance from the average reward to the optimal
one. In Section IV, the theoretical results on the convergence
rate of Adiabatic Value Iteration Algorithm are presented. Sec-
tion V formulates Markov Decision Process for two examples
of queuing system and applies the theoretical results to them.
Finally, some conclusions are provided in the Section VI.

II. PRELIMINARIES

A. Markov Decision Process

A typical discrete-time MDP represents a dynamic system
and is specified by a finite set of states S, representing the
possible states of the system, a set of control actions A, a
transition probability matrix P |S|×|S|, and a reward function
r. The transition probability specifies the dynamics of the

system whose each entry Pij , P (st+1 = j|st = i, at = a)
represents the conditional probability of the system moving to
state st+1 = j in the next time step after taking an action
a in the current state st = i. The dynamics are Markovian
in the sense that the probability of the next state j depends
only on the current state i and the action a, and not on any
previous history. The reward function r(s, a) assigns a real
number to the state s the action a, so that r(s, a) represents
the immediate reward of being in state s and taking action a.
A policy π = {d1, d2, . . .} is a sequence of decision rules.
Each decision rule dt is a mapping from states to actions at
each time step: dt : S → A, and induces a corresponding
transition probability matrix. The policy π is called stationary
if its actions depend only on the state s, independent of
time, i.e., π = {d, d, d, . . .}. A stationary policy induces a
time-invariant transition probability matrix. Every policy π is
associated with a value function V π(s) such that V π(s) gives
the expected cumulative reward achieved by π when starting
in state s. The solution to an MDP problem is an optimal
policy π∗ that maximizes the expected cumulative reward over
some finite or infinite number of time steps. The former and
latter are termed finite-horizon MDP and infinite-horizon MDP,
respectively. An infinite-horizon model has two typical forms
of reward functions: the discounted and the average reward
functions. The discounted reward function is defined as:

V π
dis(s) = Eπ

s

{

∞
∑

t=1

αtrt(st, at)

}

, (2)

where 0 < α < 1 denotes a given discount factor that
provides convergence of V π(s), but also carries the notion
of discounting the future reward, i.e., putting less emphasis on
the rewards in the far future than those in the near future. The

average reward function is defined as:

V π
ave(s) = lim

N→∞
vN , (3)

where

vπN (s) = Eπ
s

[

N
∑

t=1

r(st, at)

]

. (4)

Under a number of conditions such as r(s, a) is bounded
and the ”environment” is stationary, V π

ave(s) is finite. In
such cases, there are many algorithms for finding an optimal
policy. Since our analysis in this paper is on the classic Value
Iteration (VI) algorithm for the infinite-horizon model with the
average reward objective under ”non-stationary environments”,
we briefly discuss the VI algorithm for the average reward
objective.

B. Value Iteration Algorithm

The VI algorithm is an iterative algorithm for finding an
ε-optimal policy for the infinite-horizon MDP. More precisely,
given an ε, the VI algorithm guarantees to produce a reward
value within an ε of the optimal value. The key to the VI
algorithm is that each step of the algorithm can be viewed as
applying a contracting operating L on v. Running the algorithm
iteratively, or equivalently, applying the operator L repeatedly,
will guarantee that v will converge to the optimal value based
on Bellman equation. Specifically, For a unichain, at each
iteration n, we have:

vn+1 = Lvn,

where L is defined as:

Lv = max
d∈D

{rd + Pdv},

rd and Pd denote the reward and the transition probability
matrix induced by the decision rule d. The pseudo-code for the
VI algorithm with average reward objective is shown below.

Definition 1 (The Value Iteration): [1]. The algorithm for
the Value Iteration with Average Reward Criteria is shown
below:

• Choose any initial reward vector v0, for a given ε > 0,
n=0

• For each s ∈ S, we have:

vn+1(s) = max
a∈A

{r(s, a) +
∑

j∈S

p(j|s, a)vn(j)}.

• Increasing n until sp(vn+1 − vn) < ε, then choose:

dε ∈ argmax{r(s, a) +
∑

j∈S

p(j|s, a)vn(j)}.

where sp(v) = maxs∈S v(s) − mins∈S v(s) is the span
seminorm of vector v.

We note that the ε-optimal policy approaches to an optimal
policy as ε reduces to zero when the number of iterations goes
to infinity.



III. ADIABATIC MARKOV DECISION PROCESS AND

VALUE ITERATION ALGORITHM

A. Adiabatic Setting

Typically, the VI algorithm is used to find an ε-optimal
stationary policy in an offline manner using a number of
iterations, assuming a stationary environment such that every
stationary policy π induces a time-invariant transition probabil-
ity matrix. The resulted policy is then used in an online manner
with the assumption that the environment is stationary and
governed by the time-invariant transition probability matrices
in the VI algorithm. In this paper, we study an adiabatic MDP
setting in which, we assume that the ”environment” is no
longer stationary. Instead, it might change at every iteration
of the VI algorithm, resulting in a sequence of time-variant
transition probability matrices under a stationary policy. The
precise meaning of the ”environment” will be clear shortly.

Instead of running the VI algorithm offline to find an ε-
optimal policy, we apply the decision rule found after each
iteration immediately and repeatedly in an online manner. Our
goal is to determine how good the reward is for such a scheme.
The analysis of such a setting is useful in the rapidly-changing
environments where decisions must be made quickly. Unlike
the traditional MDP setting where for each decision rule d,
there is a time-invariant transition probability matrix P d, in
our setting, for a fixed decision rule d, there is sequence of
time-variant transition probability matrices:

P d
i = Φ(i)P d

0 + (1− Φ(i))P d
f = P d

f +Φ(i)(P d
0 − P d

f ), (5)

where Φ is a function such that:

• Φ(i) : [0,+∞) → [0, 1].

• Φ(0) = 1.

• limi→∞ Φ(i) = 0.

Φ(i) characterizes the change in the environment at the
iteration i of the VI algorithm, and P d

i is the induced transition
probability matrix due to the decision rule found at the iteration
i of the VI algorithm. A slowly changing Φ(i) implies a
slow change in the environment. We note that the notion of
optimal reward is not well defined if the environment fluctuates
arbitrarily. Thus in the model above, we assume that the
environment will approach to a final stationary environment
characterized by P d

f to ensure a well-defined reward. This can

be seen as limi→∞ P d
i = P d

f .

We now articulate a bit more on the meaning of the
”environment.” We note that the induced P d

i depends on both
actions and environments. Therefore, a change in the environ-
ment implies possible changes in the underlying environments,
or the set of actions, or the combination of both over time.
For example, let us consider a queuing system in which the
controller attempts to send packets (actions) at some varying
rates based on the number of packets in the queue in order
to maximize a given reward. In one scenario, we assume the
traffic arrival rate at the queue increases steadily from a initial
rate of λ0 to a final rate of λf . As a result, P d

i varies as
the underlying environment changes over time. In another
scenario, the arrival rate of the packets remains the same,
however, the controller has inaccurate estimation of the arrival
rate initially due to few observations. Consequently, it makes

the decision on what rate it should send based on an inaccurate
arrival rates, and P d

i characterizes the change based on its
decision rule d at iteration i. However, over time with more
observations, its estimation of the arrival rate becomes more
accurate. Therefore, its decision rule approaches the optimal
one for which, the state dynamic is characterized by P d

f . We
will discuss these two examples in more detail in the later
section.

B. Convergence Rate of Adiabatic MDP

It is important to emphasize again that the environment
will be asymptotically stationary corresponding to an induced
transition probability matrix P d

f for any decision rule d. In
addition, there exists an optimal decision rule d∗ corresponding
to a transition probability matrix P d∗

f which can be obtained
when running the VI algorithm under a stationary environment
[1]. Importantly, running the VI algorithm in an adiabatic
setting for a sufficiently large number of steps would produce
the same optimal decision rule d∗f as that of the classic VI
algorithm, and also the same average reward:

g∗ = P∞
d∗ rd

∗

f = πd∗

f rd
∗

f e,

where by Cesaro mean,

P∞
d∗ = lim

N→∞

1

N

N
∑

n=1

(P d∗

f )n−1 = lim
n→∞

(P d∗

f )n =













π
d∗

f

f

π
d∗

f

f

. . .

π
d∗

f

f













,

π
d∗

f

f is the stationary distribution corresponding to P
d∗

f

f ,

e = [11 . . . 1]T .

However, the convergence rates to this final reward g∗ are
quite different for the traditional MDP and adiabatic MDP
settings. One would expect that the rate in the former setting
would be faster since the environment does not change, thus
the VI algorithm can learn faster than that of the latter.
Therefore, our primary focus of this paper is to characterize
the convergence rate of the VI algorithm in an adiabatic setting
given the dynamics specified by Φ(i). Specifically, we want to
find an integer N such that ∀n > N ,

E =
∥

∥

∥

vn
n

− g∗
∥

∥

∥

∞
≤ ε

Finding N is not trivial. Therefore, we will provide a lower
a bound on N which depends on Φ(.) as well as the set of all
possible matrices P d

f .

IV. MAIN RESULTS

We first give a number of definitions and small linear
algebra results to help us establish the main result.

Definition 2 (Gamma coefficient): The gamma coefficient
of a matrix is defined as follows [1]:

γ = max
s∈S,a∈As,s′∈S,a′∈As′



1−
∑

j∈S

min{p(j|s, a), p(j|s′, a′)}



 ,



where As denote the set of possible actions can be
taken in state s. From [6], the delta coefficient or Haj-
nal measure of a transition matrix P d defined as γd =

maxs∈S,s′∈S

[

1−
∑

j∈S min{pd(j|s), pd(j|s′)}
]

is an upper

bound on the second largest eigenvalue modulus (SLEM) λ∗

of the matrix P d. Easily, we can see the gamma coefficient is
the maximum value of all γd over the set of all decision rules.
Therefore, the gamma coefficient is an upper bound of SLEM
λ∗ of all transition matrices P d for all decision rule d.

Proposition 1: [1]. For any reward vectors u, v,

sp(Lu− Lv) ≤ γsp(u− v).

Proposition 2: [1]. For any reward vectors v and any
decision rule d,

sp(P dv) ≤ γsp(v).

Proposition 3 (The bound on gamma coefficients): Given
P d
i = Φ(i)P d

0 + (1− Φ(i))P d
f ,Φ(i) ∈ [0, 1] for all d ∈ D:

γi ≤ Φ(i)γ0 + (1− Φ(i))γf .

Proof: We omit the proof due to limited space.

Corollary 1: Given P d
i = Φ(i)P d

0 + (1 − Φ(i))P d
f with

decreasing function Φ(i) > 0, for all d ∈ D, then for any
i ≥ n0:

γi ≤ max(γn0
, γf ). (6)

Proof: We omitted the proof due to limited space.

Note that one way to ensure that 0 < γ < 1 is that for each
decision rule d, there exists a column of the corresponding P
with all positive entries.

Theorem 1 (Main Result 1): Consider a unichain
adiabatic-time MDP with S and As are both finite, |r(s, a)| is
bounded by a number M . Suppose 0 < γ = max(γf , γn0

) < 1
and en0

< ∞, then

E ≤
||vn0

− n0g
∗||∞

n
+

1

n

n−1
∑

i=n0

[(

i−1
∏

k=n0

γk

)

sp(vn0+1 − vn0
)

+ YM



ei + 2
i
∑

j=n0+1

sp(vj)|∆Φj−1|(
i−1
∏

k=j

γk)







 , (7)

for any n0, where
∏v

k=u(·) = 1 if v < u, ei =
∑∞

j=i+1(sp(vj)|∆Φj−1|), 2Y = maxd∈D ‖P0 − Pf‖∞.

Proof: From (5), for any d ∈ D we have:

⇒ ||P d
i − P d

i−1||∞ ≤ |Φ(i)− Φ(i− 1)|||P d
0 − P d

f ||∞,

≤ 2Y |∆Φi−1|, (8)

where 2Y = max
d∈D

‖P0 − Pf‖∞.

Consider E =
∥

∥

vn

n
− g∗

∥

∥

∞
where vi+1 = Livi:

E =

∥

∥

∥

∥

∥

n−1
∑

i=n0

(

vi+1 − vi − g∗

n

)

+
vn0

− n0g
∗

n

∥

∥

∥

∥

∥

∞

,

≤

n−1
∑

i=n0

‖vi+1 − vi − g∗‖∞
n

+
||vn0

− n0g
∗||∞

n
.

Firstly, we bound ‖vi+1 − vi − g∗‖∞.
Let xi = argmaxs∈S (Livi − Li−1vi−1), yi =
argmins∈S (Livi − Li−1vi−1).
Let d∗i , d

∗
i−1 be the optimal decision rule corresponding to the

operator Li, Li−1, respectively. Then,

Livi(xi) − Li−1vi−1(xi) ≤ L
d∗

i

i vi(xi)− L
d∗

i

i−1vi−1(xi),

= P
d∗

i

i vi(xi)− P
d∗

i

i−1vi−1(xi),

= (P
d∗

i

i − P
d∗

i

i−1)vi(xi) + P
d∗

i

i−1(vi(xi)− vi−1(xi)).

where Ld is the operator that we apply the decision rule at
that step: Ldv = rd + Pdv.

Let αi = argmaxs∈S (vi), βi = argmins∈S (vi),∆P
d∗

i

i =

P
d∗

i

i − P
d∗

i

i−1. Since P
d∗

i

i , P
d∗

i

i−1 are stochastic matrices, then
∑

s∈S(∆P
d∗

i

i (xi, s)) = 0. Let a = ∆P
d∗

i

i vi(xi) =

(∆P
d∗

i

i (xi, ·))vi = (∆P
d∗

i

i (xi, ·))(vi − vi(βi)e) where e =
[11 . . . 1]T . Therefore:

a =
∑

s∈S

∆P
d∗

i

i (xi, s))(vi(s)− vi(βi)),

≤
∑

∆P
d∗
i

i (xi,s))≥0

∆P
d∗

i

i (xi, s))(vi(s)− vi(βi)),

≤ (vi(αi)− vi(βi))
∑

∆P
d∗
i

i (xi,s))≥0

∆P
d∗

i

i (xi, s)),

≤ (vi(αi)− vi(βi))
||P

d∗

i

i − P
d∗

i

i−1||∞

2
,

≤ Y |∆Φi−1|sp(vi) from (8).

Hence,

Livi(xi) − Li−1vi−1(xi) ≤ YMsp(vi)|∆Φi−1|+

+P
d∗

i

i−1(vi(xi)− vi−1(xi)). (9)

Similarly,

Livi(yi) − Li−1vi−1(yi) ≥ −YMsp(vi)|∆Φi−1|+

+P
d∗

i−1

i−1 (vi(yi)− vi−1(yi)). (10)

Since b = P
d∗

i

i−1(vi(xi) − vi−1(xi)) ≤ vi(xi−1) −
vi−1(xi−1), then Livi(xi) − Li−1vi−1(xi) ≤
YMsp(vi)|∆Φi−1| + vi(xi−1) − vi−1(xi−1). Similarly,
Livi(yi)−Li−1vi−1(yi) ≥ −YMsp(vi)|∆Φi−1|+vi(yi−1)−
vi−1(yi−1).

Now, by keep expanding, we have:
vt+1(xt) − vt(xt) = Ltvt(xt) − Lt−1vt−1(xt) ≤
YM

∑t
j=i+1 (sp(vj)|∆Φj−1|) + (vi+1(xi)− vi(xi)).

Let t → ∞. When t = ∞, we know exactly Pf and run
VI for it, we will have a reward received at one time step
limt→∞(vt+1(xt)−vt(xt)) = g∗ which is the optimal average
reward [1]. Therefore,
g∗ ≤ YM

∑∞
j=i+1 (sp(vj)|∆Φj−1|)+ (vi+1(xi)− vi(xi)) for

any i.

Similarly,
g∗ ≥ −YM

∑∞
j=i+1 (sp(vj)|∆Φj−1|) + (vi+1(yi) − vi(yi))

for any i.
Let ei =

∑∞
j=i+1(sp(vj)|∆Φj−1|) which represents the total



error from the time step i to ∞. This error comes from the
fact that we use the matrix P d

i matrix at each time step instead
of P d

f for all d.

Using ∞−norm,

‖vi+1 − vi − g∗‖∞ ≤ YMei + (vi+1(xi)− vi(xi))

−(vi+1(yi)− vi(yi)),

≤ sp(vi+1 − vi) + YMei.

Now, we upper bound sp(vi+1−vi). From (9), (10), we have:

sp(vi+1 − vi) = (Livi(xi)− Li−1vi−1(xi))−

−(Livi(yi)− Li−1vi−1(yi)),

≤ 2YMsp(vi)|∆Φi−1|+

+P
d∗

i

i−1(vi(xi)− vi−1(xi))−

−P
d∗

i−1

i−1 (vi(yi)− vi−1(yi)),

≤ 2YMsp(vi)|∆Φi−1|+

+sp([P
d∗

i

i−1/P
di−1

i−1 ](vi − vi−1)),

≤ 2YMsp(vi)|∆Φi−1|+

+γi−1sp(vi − vi−1). (11)

where [P1/P2] denotes the stacked matrix in which the rows
of P1 follow the rows of P2. Based on the Definition 2, the
gamma coefficient of the set of stacked matrices at time step
i − 1 is at most γi−1. (11) is similar to Proposition 1 except
there is an error 2YMsp(vi)|∆Φi−1| which goes to 0 when
i → ∞.

Since 0 < γi ≤ γ = max (γn0
, γf ) < 1,

sp(vi+1 − vi) ≤ (
∏i−1

k=n0
γk)sp(vn0+1 − vn0

) +

2YM
(

∑i
j=n0+1 sp(vj)|∆Φj−1|(

∏i−1
k=j γk)

)

for all i ≥ n0.

Then,
∑n−1

i=n0

‖vi+1−vi−g∗‖
∞

n
≤ 1

n

∑n−1
i=n0

[sp(vi+1 − vi) + YMei]
∑n−1

i=n0

‖vi+1−vi−g∗‖
∞

n+1 ≤ 1
n

∑n−1
i=n0

[

(
∏i−1

k=n0
γk)sp (vn0+1−

vn0
) + YM

(

ei + 2
(

∑i
j=n0+1 sp(vj)|∆Φj−1|(

∏i−1
k=j γk)

))]

.

Therefore, we have an upper bound of A as follows:

E ≤
||vn0

− n0g
∗||∞

n
+

1

n

n−1
∑

i=n0

[(

i−1
∏

k=n0

γk

)

sp(vn0+1 − vn0
)

+ YM



ei + 2

i
∑

j=n0+1

sp(vj)|∆Φj−1|(

i−1
∏

k=j

γk)







 .

Theorem 2 (Main Result 2): Consider a unichain
adiabatic-time MDP with S and As are both finite,
|r(s, a)| is bounded by a number M . Suppose
0 < γ = max(γf , γn0

), γ′ = max(γf , γ0) < 1 and
Φ(i) is a positive decreasing function on [n0,+∞), then for

n ≥
2

ε

(

n0M + ||v0||∞ +
ε

1− γ
+

+
M + (1 + γ)

[

M(1−(γ′)n0 )
1−γ′

+ (γ′)n0(sp(v0))
]

1− γ



 , (12)

we guarantee: E =
∥

∥

vn

n
− g∗

∥

∥

∞
< ε,

where 2Y = maxd∈D ‖P0 − Pf‖∞, n0 is the smallest integer

satisfying
[

M
1−γ′

+ γ′(n0)sp(v0)
]

Φ(n0) ≤
ε

2YM
.

Proof: Suppose we can find n0 so that en0
< ε

2YM
. We

will show how to find n0 later. By applying the Theorem 1
with n0 and the Corollary 1,

E ≤
||vn0

−n0g
∗||∞

n
+ 1

n

sp(vn0+1−vn0
)

1−γ
+

1
n

∑n−1
i=n0

YM
(

ei + 2
∑i

j=n0+1(γ
i−jsp(vj)|∆Φj−1|))

)

.

We have the following facts:

1) ||vn0
− n0g

∗||∞ ≤ ||rd∗

n0−1
+ P

d∗

n0−1

i vn0−1 −

n0g
∗||∞ ≤ ||(rd∗

n0−1
− g∗)||∞ + ||P

d∗

n0−1

i (vn0−1 −

(n0 − 1)g∗)||∞ ≤ ||(rd∗

n0−1
− g∗)||∞ + ||(vn0−1 −

(n0 − 1)g∗)||∞ ≤
∑n0

k=1 ||rd∗

k−1
− g∗||∞ + ||v0||∞ ≤

n0 max(M − g∗, g∗) + ||v0||∞ ≤ n0M + ||v0||∞,

2) sp(vn0+1 − vn0
) = sp(rd∗

n0
+ P

d∗

n0
n0 vn0

− vn0
) ≤

sp(rd∗

n0
) + sp(P

d∗

n0
n0 vn0

) + sp(vn0
) ≤ M + (1 +

γ)sp(vn0
) (from Proposition 2).

Now, since vi = rd
∗

i−1+P
d∗

i−1

i−1 vi−1 and γi ≤ γ′, ∀i ≥
0, then

sp(vi) ≤
[

sp(rd
∗

i−1) + sp(P
d∗

i−1

i−1 vi−1)
]

,

≤ [M + γi−1sp(vi−1)] (Proposition 2),

≤ M



1 +

i−1
∑

j=1

j
∏

k=1

γi−k



+

i
∏

k=1

γi−k(sp(v0)),

≤
M(1− (γ′)i)

1− γ′
+ (γ′)i(sp(v0)).

Then, sp(vn0+1 − vn0
) ≤ M + (1 + γ)sp(vn0

) ≤

M + (1 + γ)
[

M(1−(γ′)n0 )
1−γ′

+ (γ′)n0(sp(v0))
]

.

3) Let yi =
∑i

j=n0+1(γ
i−jsp(vj)|∆Φj−1|)). We have:

yn0+1 = sp(vn0+1)∆Φn0
,

yn0+2 = γyn0+1 + sp(vn0+2)∆Φn0+1,

. . .

yn = γyn−1 + sp(vn),∆Φi−1

. . .

Then,

∞
∑

i=n0

yi =
en0

1− γ
.

4) Now, we find conditions on n0 so that en0
=

∑∞
j=n0+1(sp(vj)|∆Φj−1|) ≤

ε
2YM

. Since sp(vj) ≤
M(1−(γ′)j)

1−γ′
+ (γ′)jsp(v0) ≤

M
1−γ′

+ γ′(n0)sp(v0), for

all j > n0,

en0
≤

∞
∑

j=n0+1

(sp(vj)|∆Φj−1|),

≤

[

M

1− γ′
+ (γ′)n0sp(v0)

] ∞
∑

j=n0+1

(|∆Φj−1|),

≤

[

M

1− γ′
+ (γ′)n0sp(v0)

]

Φ(n0).



since Φi is decreasing, i ≥ n0, then |∆Φj−1| =
Φ(j − 1) − Φ(j). Easily, we can see M

1−γ′
+

(γ′)n0sp(v0) is bounded. Therefore, there exists n0

so that en0
≤
[

M
1−γ′

+ (γ′)n0sp(v0)
]

Φ(n0) ≤
ε

2YM
.

Then for all i ≥ n0, ei ≤ en0
≤ ε

2YM
.

Now, for n ≥ n0,

E ≤
||vn0

− n0g
∗||∞

n
+

1

n

sp(vn0+1 − vn0
)

1− γ

+
YM

∑n−1
i=n0

ei

n
+

1

n
2YM

en0

1− γ
,

≤
1

n
(n0M + ||v0||∞+

M + (1 + γ)
[

M(1−(γ′)n0 )
1−γ′

+ (γ′)n0(sp(v0))
]

1− γ
+

ε

1− γ

)

+
ε

2
.

Let 1
n

(

M+(1+γ)
[

M(1−(γ′)n0 )

1−γ′
+(γ′)n0 (sp(v0))

]

1−γ
+ + n0M+

+||v0||∞ +
ε

1− γ

)

≤
ε

2
,

or

n ≥
2

ε

(

n0M + ||v0||∞ +
ε

1− γ
+

+
M + (1 + γ)

[

M(1−(γ′)n0 )
1−γ′

+ (γ′)n0(sp(v0))
]

1− γ



 .

Then, E ≤ ε.

As shown above, the gamma coefficient of a matrix is an
upper bound of the second largest eigenvalue modulus λ∗.
Then, the term 1

1−γ
is a upper bound of the relaxation time

trel =
1

1−λ∗ of P d
f for all d ∈ D. Moreover, the relaxation time

is proportional to the the mixing time of P d
f or the convergence

rate of the corresponding Markov chain [7]. Therefore, the
convergence rate of the Adiabatic-Time MDP is proportional

to the convergence rate of a Markov chain with P
d∗

f

f . This
is intuitively plausible that when n is large, the environment
becomes approximately stationary under the decision rule d∗f .

V. APPLICATIONS

A. Application to Queuing System with Progressive Arrival
Rate Estimation

Consider an M/M/1/K queue with a unknown packet arrival

rate λ per unit time. We estimate λ at time i∆t denoted as λ̂i

and decide the packet departure rate, µi = f(λ̂i) as follows:

λ̂i =
1

i∆t

i
∑

k=1

Xk,

µi = f(λ̂i) = (1 + δi)λ̂i,

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i (time step)

Φ
 (

i)

Figure 1. The Φ(i) function.

where Xk ∼ Poisson(λ∆t) is the number of packets in the kth
slot of duration ∆t and δi > 0 is an action we choose from a
set of constant numbers.

We define the state s as the number of packets in the
queue, therefore, s ∈ S = {0, 1, 2, . . . ,K − 1,K}. Let
d be the decision rule which maps each state to a value,
i.e., di(s) = δi(s). The generator matrix in time interval
(i∆t, (i+ 1)∆t] is:

Qi =













−λi λi 0 0 . . .
µi −(µi + λi) λi 0 . . .
. . .

. . .
. . .

. . .
. . .

. . . 0 µi −(µi + λi) λ

. . . 0 0 µi −µi













.

(13)
The corresponding transition probability matrix
P (i∆t, (i+ 1)∆t):

Pi = P (i∆t, (i+ 1)∆t) = eQi∆t. (14)

If we only care about the delay of packets in the queue
and the cost of implementing fast serving rates, we can set the

immediate reward: r(s, δ) = − M(s−Kδ)2

maxs,δ(s−Kδ)2 . Our goal is to

maximize the average reward 1
N
E
[

∑N
t=1 r(st, at)

]

Using Chernoff bound, we can find a number ai so that

with probability at least 1− 2α, (1− ai)λ ≤ λ̂i ≤ (1 + ai)λ.

Based on that, we can find Φ(i) =
|Pi−Pf |∞
|P0−Pf |∞

which is now a

function of ai. Easily, we can see that ai decreases to 0 when
i goes to ∞. Thus, Φ(i) is a decreasing function satisfying our
conditions (5) on Φ(i) as shown in the Figure 1.

Now, we verify the theoretical bound provided by Theo-
rems 1 and 2 via simulation using the following parameters:
ε = 0.01, λ = 40,∆t = 1, α = 0.1,M = 1,K = 10, A =
{0.2, 0.4, 0.6, 0.8}, v0 = 0e. The function Φ(i) is shown on
the Figure 1. From the Theorem 2, we obtained

n0 = 58, N = 12270.

Figure 2 shows the actual the distance to the optimal reward
obtained from the VI algorithm and its upper bound by



0 2000 4000 6000 8000 10000 12000 14000
0

1

2

x 10
−4

n (time step)

D
is

ta
n
c
e
 

 

 

Actual Distance

Upper Bound

Figure 2. The simulated distance to the reward and its upper bound.

Theorem 2. As seen, they are well correlated with each other.

B. Bernoulli Discrete Queuing System with Underlying Time-
variant Environment

In this section, we show a toy example illustrating the
application of our framework for the time-varying underlying
environment. Specifically, we consider a Bernoulli queuing
system of size K = 2. Assume at each time step, there
are probabilities p and q that a packet will be arriving and
departing the queue, respectively. In this case, the state space
S = {0, 1, 2}, the time-varying environment is described by
changing the values of p over time, while the action is the
value of q. The transition matrix has the following form:

P =

[

1− p(1− q) p(1− q) 0
q(1− p) pq + (1− p)(1− q) p(1− q)

0 q(1− p) 1− q(1− p)

]

Because all entries in the matrix P are linear functions of
p, if we set pi = φ(i)p0 + (1 − φ(i))pf to model the change
in the arrival rates, then:

Pi = Φ(i)P0 + (1− Φ(i))Pf

where Φ(i) = φ(i) for all i. Note that Φ(i) satisfies the
conditions for the adiabatic setting. We also choose the reward
function shown in the Table I.
To examine the theoretical results, we run simulation using

r(s, a)
a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s
0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

1 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1

2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table I
THE REWARD r(s, a)

the following parameters: ε = 0.1, p0 = 0.4, pf = 0.6, φ(i) =
1

i+1 , A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, v0 = 0e.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

n (time step)

D
is

ta
n
c
e
 

 

 

Actual Distance

Upper Bound

Figure 3. The simulated distance to the otimal reward and its upper bound.

From the Theorem 2, we obtained n0 = 82, N = 22801.
Figure 3 shows the simulated distance to the optimal reward
obtained from the VI algorithm and its upper bound predicted
by our main results. As seen, they are very correlated.

VI. CONCLUSION

We provide an analysis framework for studying the VI
algorithm under the adiabatic setting. We provide theoretical
bounds on the convergence rate of the VI algorithm with
the average reward objective. Specifically, our work provide
a lower bound on the number of time iterations in the VI
algorithm needed in order to ensure that the resulted policy
produces an average reward that is ε-close to the optimal
average reward value.

REFERENCES

[1] M. L. Puterman, Markov Decision Processes: Discrete Stochastic, Dy-

namic Programming, 3rd ed. John Wiley & Sons, 2005.

[2] R. Bellman, Dynamic Programming. Priceton University Press, 1957.

[3] M. Born and V.Fork, “Beweis des adiabatensatzes,” Zeitschrift Fur Physik

A Hadrons and Nuclei, vol. 51, pp. 165–180, 1928.

[4] A. Messiah, Quantum mechanics, 1st ed. John Wiley & Sons, 1962,
vol. 2.

[5] Y. Kovchegov, “A note on adiabatic theorem for markov chains,” Statis-

tics and Probability Letters, vol. 80, pp. 186–190, February 2010.

[6] E. Seneta, Non-negative Matrices and Markov Chains. Springer-Verlag,
1981.

[7] D. A.Levin, Y. Peres, and E. L.Wilmer, Markov Chains and Mixing

Times. American Mathematical Society, 2008.


