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ABSTRACT
The design of hardware-software systems is a complex and

difficult task exacerbated by the very different tools used by de-
signers in each field. Even in small projects, tracking the impact,
motivation and context of individual design decisions between
designers and over time quickly becomes intractable. In an at-
tempt to bridge this gap, we present a general, low-level model
of the system design process. We formally define the concept of a
design decision, and provide a hierarchical representation of both
the design space and the context in which decisions are made.
This model can serve as a foundation for software-hardware sys-
tem design tools which will help designers cooperate more effi-
ciently and effectively. We provide a high-level example of the
use of such a system in a design problem provided through col-
laboration with NASA.

INTRODUCTION
Software/hardware systems are becoming increasingly com-

plex and prevalent, tremendously impacting our lives. Systems in
areas ranging from security and safety to health care and personal
devices consist of hardware and software components that must
cooperate to perform accurately. Autonomous systems depend
heavily on software for planning actions, monitoring and diag-
nosing general system health, and executing critical commands.

Unfortunately, the growing dependence on software-
intensive designs also means vulnerability when systems fail to
function in critical situations. There have been many unfortunate
cases to demonstrate that even minor errors in designs can have
a big impact on the functioning of the artifact, in some cases
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with disastrous consequences. Many examples of spectacular
software failures have been reported that draw our attention to
the importance of good design, including the high-cost and high-
visibility mishaps of the Patriot Missile Defense System in 1991,
the Ariane 5 rocket in 1996, and the loss of the Mars Climate
Orbiter in 1999, to name only a few [9].

What makes one design successful and another one fail?
How can we judge the impact of a particular set of decisions
on a design? Why were the design decisions made? Being able
to answer these kinds of questions is an important prerequisite
to effective and systematic design of complex software-intensive
systems. In this paper, we present a methodology that can sup-
port designers in working with such complex hardware/software
systems, by helping them capture when and why the decisions
were made and understand the consequences of these design de-
cisions. Such support can be ultimately achieved only if the
formal model provides general knowledge that explains hard-
ware/software system design and the design process.

Concurrent Design of Software and Hardware
Ensuring that such software-intensive systems operate prop-

erly requires that the software and the hardware are compatible
with each other, reinforcing the need for concurrent design. Con-
current design environments have become common in industries
that deal with large scale complex systems as a means to tackle
the problem of generating requirements and producing concep-
tual designs that consist of multidisciplinary subsystems (e.g.,
Team X at NASA Jet Propulsion Laboratory) [38, 58]. Unfortu-
nately, a true concurrent design approach between the hardware
and software developers is not easily realized. The two sides of
development can often find themselves disconnected, resulting in



them being developed completely independent of each other and
put together at the end. The problem with this approach is that,
because there is a lack of understanding between the software
and hardware sides of development, dependencies are not fully
understood and incompatibilities may exist. Testing the system
can discover incompatibilities and changes can be made to en-
sure proper system performance. However, this can be a difficult
task, and become very expensive due to changes to the system
being implemented late in the design process.

In this research, we draw direct parallels between engineer-
ing design and software design, with the purpose of bridging this
gap. In particular, this paper presents a formal representation of
the design process to help bridge the information gap between
software and hardware system designers.

Observations about Design
In the world of engineering design, a “physical design” can

have many representations during the different phases of design.
A concept can be described as functions and their interactions
semantically (for example, verbal or textual representation of a
product) [64], using a graphical representation (for example, a
functional decomposition) [49], preliminary sketches to gener-
ate concepts/ideas [48], models to analyze how the design works
(stress analysis, failure analysis, vibration analysis, etc.) [15],
and/or detailed drawings that show how the parts/components fit
together to meet a need and/or a physical representation of the
product (for example, a prototype) [48].

In contrast, “software design” is not very well defined. Very
generally, a software design is a plan for implementing a software
system, usually by representing the individual parts of the system
and their arrangement [1, 11, 13].

The process of design is one of decision making, that is the
progression from the initial need (the design problem) to a final
product [48,64]. From this point of view, software design is also
understood as a problem-solving process [13]. In this paper, we
explore existing commonalities between software and hardware
system design. In particular, we make the following observations
about design in general that are common to both software and
hardware systems.

1. Any software or hardware artifact is an embodiment of a
set of design decisions. Each of these decisions affects a
particular aspect, or attribute, of the design.

2. Designs, design attributes, and design decisions, are abstract
ideas that must be given in some concrete representation
when they are to be communicated. In general, multiple rep-
resentations, which might differ in usability, exist for partic-
ular (combinations of) design attributes.

3. The function of designed artifacts are always given within
some context. The context represents requirements and con-
straints for the artifact.
For physical objects, the idea of design attributes is obvious:

A physical object has a certain form, color, size, etc. In addi-

tion to these almost universal attributes, objects can have many
more specialized attributes, such as number of wheels or doors,
and also attributes that describe functionality, such as maximum
speed of a car or resolution of a digital camera.

The fact that some attributes are derived from others, such
as weight, indicates that attributes are generally not indepen-
dent of one another but often related through constraints. Dif-
ferent attribute representations are also apparent. For example,
attributes can be given as textual descriptions, such as “color:red”
or “height=5in” or in graphical form. Contexts are typically rep-
resented as constraints to restrict the large space of design alter-
natives [19, 24, 70].

For software, attributes are of a more abstract nature, includ-
ing the types of input and output or the employed algorithm. As
in the case for physical objects, some attributes are derived, for
example, the runtime efficiency of an algorithm. Different rep-
resentations for software attributes have been investigated in the
area of software visualization [6, 35, 55]. For example, module
relationships can be displayed as graphs instead of text. Employ-
ing alternative representations for creating/modifying software
has also been investigated, such as syntax trees [10, 53, 54], type
derivations [68, 69], or abstract data types [21–23]. In particular,
context in software is often neglected and is seldom explicitly
modeled or represented. The approach of problem frames [31]
makes a strong case for representing software design contexts.

Contributions
In this paper, we exploit these observations to develop a gen-

eral representation of the design process. Our model captures
design decisions on individual attributes of a larger design ob-
ject. The structure of this object defines the entirety of the de-
sign space. This representation can be employed to represent and
study a variety of design domains and to investigate the design
process within these domains.

The design object is generated dynamically, as it is explored,
through the use of a hierarchical library of rules. These rules,
which describe both the local and cross-cutting impact of design
decisions, collectively describe the context of the design. This
modular definition of the design context allows the creation of
a sharable repository for constructing design spaces, facilitating
standardization and reuse.

Finally, design decisions generate and maintain associated
annotations. Annotations contain arbitrarily complex informa-
tion and provide an explanatory record of a decision—why it was
made, and how it affected the design space.

These contributions can be employed in many ways, such
as representing and studying design domains directly, measuring
differences and similarities between design alternatives, creating
reusable design repositories, and developing a variety of tools to
support the design process.

In what follows, we first present related work that addresses
formalisms in both hardware and software design. We then
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present our model of the design process, followed by an appli-
cation to a research rover example at NASA that illustrates how
the model could be utilized by designers of software-intensive
systems.

RELATED WORK
Many in the engineering design research community have

focused on developing formalisms that help model and hence im-
prove the design process. Three areas of direct relevance are: (1)
the use of examples and reuse to generate new designs; and the
efforts in (2) modeling the decision making process to help gen-
erate alternatives for new designs, and, (3) modeling the design
space to help narrow the search for “best” designs.

Formalisms in Reuse and Example-Based Design
The reliance on examples is often the starting point when

designing a new artifact, be it software or a physical product. In
fact, most design is done by “redesign”, based on reusing previ-
ous concepts, models, ideas, exploring commonalities amongst
products, functions, and failure mechanisms, and drawing analo-
gies with other products and domains [2, 47, 61, 62].

There have been numerous efforts in the engineering design
research literature to formalize the process of designing by ex-
amples during conceptual design [48,49]. There are obvious rea-
sons for this common practice. In many cases it is much faster,
easier, and more cost-effective to modify an existing artifact than
to build a completely new one. For commercial companies, huge
savings can be accomplished by exploring commonalities among
products, and building common platforms for reuse and mass
customization. Product platform design can greatly improve re-
sponse to new customer requests, reduce design and manufactur-
ing costs, improve reliability and failure tolerance, and improve
time to market [18, 34, 37, 59].

The idea of designing by example has been explored in the
realm of software as well. The research on software reuse dates
back almost 40 years [41]. As a result, the software design liter-
ature is replete with efforts to provide software reuse guidelines
and procedures for taking advantage of commonalities, modular-
ity, etc. [14, 25, 26, 32, 71]. The idea of exploring commonality
and variability amongst software has also been suggested [17].
Note that “programming by example” is a different idea that
refers to approaches to infer abstract programs from concrete ex-
amples [45].

A particularly simple, yet widely used, approach to soft-
ware reuse is code scavenging [36] (also called copy-paste or
copy-edit), in which code fragments are sought, copied, and then
modified. Several studies have shown that the implementations
of Linux, FreeBSD, MySQL, PostgreSQL, and the X Windows
System all consist of 20-30%, sometimes even of up to 60%, du-
plicated code [4, 33, 40, 52, 63]. Code reuse essentially involves
the following two steps. (1) Finding a suitable code to start with,
and (2) modifying the code. In many cases the first step is triv-

ial or not even needed. For example, one aspect of the so-called
agile methods is to deliver working versions of software prod-
ucts frequently [16, 30]. The focus is getting a working program
within a fixed time frame and to reiterate to add or modify func-
tionality. Therefore, agile methods constantly apply code reuse
to the last released prototype.

Despite its great promise and much research efforts, soft-
ware reuse has had only limited success so far [8, 42, 43], in part
because of the difficulties with finding suitable code as a basis for
reuse and because of the lack of structured approaches to modify
reused code.

In summary, the use of examples in design is prevalent, but
it is not always well supported by methods and tools. In this pa-
per, we present a general representation of the design process for
hardware and software design alike, which we plan to use to de-
vise a design-by-example methodology. In particular, the ability
to track these decisions will allow designers to have a better un-
derstanding of the system and enable the reuse of hardware and
software more effectively by being able to go back and determine
what decisions were made and why.

Formalisms in Decision Making in Design
Decision making has been recognized as an integral part of

the engineering design process in all phases of design and the
role of decisions during the concept generation phase of early
abstract design has been the focus of many research efforts. For-
mal research in the engineering design community has focused
on improving this process through the application of rigorous
mathematical principles from decision theory [39, 65], which is
largely based on concepts from game theory, utility theory, vot-
ing, and preference modeling, and has its roots in decision sci-
ence, economics, and operations research [27, 56]. In an effort
to introduce this formalism into engineering design many design
researchers have worked on finding utility functions and prefer-
ences that work for the engineering design process [5,28,50,67].

These mathematical approaches were explored to satisfy the
need for establishing the “mathematics of design” [29]. They
offer a sound way to handle vast numbers of decisions using sta-
tistical models to account for uncertainty, risk, information, and
preferences. However, most research in decision modeling as-
sumes that designers (decision-makers) have a pool of design al-
ternatives ready to explore for examination, evaluation, compari-
son, and selection. Incorporating these decision theory principles
into the actual alternative generation process is not addressed
thoroughly. Decision making takes place throughout the typical
design process for physical artifact design. In the early stages,
there is much uncertainty about the design and the requirements
to enable to selection of the “best” design. During this stage,
decisions help guide the design by eliminating options that are
not viable [72]. Generating these alternatives costs significant
amounts of labor and money to companies, and as a result, meth-
ods to facilitate the automation of alternative generation are in
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great demand.
In summary, many in the engineering design community

have questioned the formalization of such an abstract phase of
design using these mathematical approaches, because they of-
fered more of a black-box approach and did not help with the ac-
tual process of generating concepts [39]. Our fine-grained model
based on attributes offers a new, non-black-box alternative.

Formalisms in Design Space Exploration
Since the design process essentially consists of repeatedly

making design decisions, any designed system is a manifestation
of a set of such design decisions. However, the decisions that
lead to the “best” designs have the potential to result in a very
large number of alternatives, which raises questions about how
to search the large design space to find an optimal solution. One
idea that has been explored heavily is set-based design. The idea
behind set-based design is to represent design alternatives in sets
during the design process. These sets are then gradually nar-
rowed down to the “best” solution as the design evolves [60,66].
A derivative of this concept is set-based concurrent engineering,
where sets of designs are first developed for a given design prob-
lem, followed by an inter-team and intra-team communication
by comparing the sets of alternatives, looking for regions in the
design space that overlap in their design alternatives [7, 60].

While powerful as a concept, the existing research on set-
based design does not bring us closer to our goal of modeling
the fundamentals of making decisions from a set of design al-
ternatives in the large design space, because these approaches
store the whole design in sets and do not maintain sets of indi-
vidual attributes. Formalisms that focus on design-space explo-
ration and global optimization [46,57] and representing impreci-
sion during decision making have been introduced and pursued
successfully based on the mathematics of set-based theory [3].
Formalisms that establish the mapping from performance to de-
sign space have also been introduced based on the concepts of
information systems and decision tables using the rough set the-
ory, in an effort to help with the optimization and trade space ex-
ploration [57]. Finally, set theory has been used in efforts to find
the best designs for computer-aided design (CAD) in the form of
set-based parametric design, which combines the set-based con-
current design practice with the parametric modeling technique
widely used in most 3D-CAD systems [44].

In summary, these formalisms lay the groundwork for de-
veloping a model of how decisions are made when exploring the
large sets of alternatives in the design space, and as such, con-
tribute to our general understanding of the process of making
design decisions for hardware-software systems.

A FORMAL MODEL OF THE DESIGN PROCESS
In order to facilitate the development of better design sys-

tems we define a model of the design process. Using this model
we can define the structure and content of the design space, for-

malize what it means to make a decision, and describe the evo-
lution of the design space through the constraints and decisions
which refine it. In the following subsections, we introduce the
model in a roughly bottom-up fashion. We begin with the obser-
vation that an artifact is an embodiment of individual design de-
cisions. We first define decision making and introduce attributes,
the fundamental element on which a decision is made. Building
on this, we next develop a hierarchical representation of design
objects, and we define the design environment through a hierar-
chical library of rules. Finally, we extend the model to include
annotations, a means of relating decisions to the environment and
outside world.

Attributes and Decisions
Conceptually, the design space of an artifact is the range of

all possible designs of that artifact, and is thus of both arbitrary
breadth and arbitrary density. In order to provide structure to this
space, we need some fundamental design unit, which we call an
attribute. Each attribute A has an identifier i and an associated
domain D, which we write as A = i : D, where i is a string and
D is a (possibly infinite) set. For example, the design of a car
might include an attribute exterior-paint-color : C, where the set
C represents all possible colors. Elements of an attribute’s do-
main, such as individual colors in the example, are referred to as
values.

A decision, in the most basic sense, is the constraining of
an attribute’s domain. More formally, a decision i : D� D′ is
an operation on attribute A = i : D that changes the domain of A
to D′, where D′ ⊂ D. An attribute whose domain still contains
multiple elements is an unresolved attribute, and elements in its
domain are called potential values or, where linguistically appro-
priate, choices. An attribute which has been fully constrained,
such that its domain contains only one value, is said to be a re-
solved attribute. The remaining value of a resolved attribute is
simply called its value except in cases where we must distinguish
from values associated with unresolved attributes, in which case
we call the values of resolved attributes selected values. Sim-
ilarly, a decision which converts an unresolved attribute into a
resolved attribute is said to select the remaining value, regardless
of whether this selection is performed explicitly or as a result of
eliminating all other potential values.

Note that it is not possible for a decision to convert a re-
solved value into an unresolved value. This reflects the notion
that decision making is a directed process, with the goal of reach-
ing a concrete design within the design space; a decision always
makes progress towards this goal. In practice, designers may de-
cide to undo or re-evaluate decisions, resulting in the conversion
of resolved attributes to unresolved attributes. Such decisions
can be classified as meta-decisions, higher-level decisions which
operate on decisions rather than attributes. These meta-decisions
are not considered here, but are supported by the introduction of
annotations.
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Attributes are the building blocks of design space model-
ing, while decisions provide a fundamental means of navigation.
In the next section we show how attributes can be combined to
form higher-level design objects which capture the structure of
both the artifact to be designed and the implicit structure of the
decision process itself.

Structure of Design Objects
A design object O refers to the formal characterization of a

specific design space, and can be defined, very simply, by a set
of attributes {A1, ...,An}. However, the structure of O is not flat,
since attribute values (potential or selected) may be design ob-
jects in their own right. Below is a simple formal definition of
design objects. The domain of an attribute is given by a set of val-
ues V and no syntactic distinction is made between resolved and
unresolved attributes; the lower-case v refers to a terminal value,
that is, a value which is not a design object and thus represents a
leaf of the resulting design tree.

O ::= {A1, ...,An}
A ::= i : {V1, ...,Vn}
V ::= v | O

The terms “design object” and “design tree” both refer to
this data structure, but are used in different contexts where con-
venient and to emphasize the structure’s role in these contexts.

Note that two different types of branching occur within a de-
sign tree. Object branching refers to branches in the O produc-
tion rule, where each branch corresponds to an attribute within
the design object. Returning to the car design example from the
previous subsection, the top level of a car design might contain
the attributes “transmission” and “interior” (among others). Po-
tential values of the transmission attribute would be design ob-
jects in their own right, corresponding to the design of a particu-
lar transmission. Similarly, values of the interior attribute would
be design objects corresponding to the design of car interiors.
Thus, object branching captures structure that exists within the
artifact itself.

Decision branching, on the other hand, refers to branches in
the A production rule, where each branch represents a different
potential attribute value. Our transmission attribute from above,
for example, would likely contain at least two choices, corre-
sponding to designs for both manual and automatic transmis-
sions. While object-branching captures the structure of the arti-
fact, decision branching captures the implicit structure of the de-
cision space—the structure of the decisions which must be made
to attain a fully resolved design object. The hierarchical struc-
ture of the decision space implies that certain decisions (those
lower in the tree) are contingent upon other decisions (their an-
cestors higher in the tree). Although it may be possible in some
cases to make a decision in a subtree before making a decision in
its unresolved parent attribute, that decision is only conditionally
defined on its subtree being selected in the parent attribute.

Until now we have made a few assumptions about the na-
ture of the design space and the scope of impact of a particular
decision. In the next subsection we challenge those assumptions
and provide a solution through extensible sets of rules which re-
fine the decision space by performing validation and dynamically
altering the design tree.

Rules and Actions
Representing the design space as a tree-like structure seems

to imply a couple of important but ultimately invalid assump-
tions: First, that it is possible to statically model the entire de-
sign space. Second, that the impact of a decision is confined to
the attribute on which it was made.

The first assumption is clearly unrealistic. The design space
is rarely completely known at the outset of the design process,
and even if it is, relatively small examples can produce design
trees which are prohibitively large to represent, and may recurse
infinitely. Therefore, we must be able to generate parts of the
design tree lazily, on demand. Additionally, different parts of the
design tree often have subtrees in common. We must be able to
abstract out these commonalities to avoid duplication.

The second assumption, that decisions only have local ef-
fects, does not allow for the existence of cross-cutting con-
straints. Returning to the car design example, suppose the car
design used has budgetary restrictions; the decision to use an ex-
pensive part in one part of the car limits our choices in other
parts of the car since less money remains in the budget. Thus,
the decision space is not strictly modularized and hierarchical as
we have modeled it. We need a way to represent the non-local
implications of some decisions.

As a solution to all of these problems, we introduce the con-
cept of design-guiding rules. Rules exist independently of the
design object, as part of the environment within which the de-
sign object exists. They are triggered by decisions within the
design object, and affect change on that design object. More pre-
cisely, a rule consists of two parts which address the following
questions: Given a decision and the current design tree, does this
rule apply? If this rule applies, what action should be carried
out?

More formally, a rule R is a pair of functions (apply,action).
apply addresses the first question, of whether a rule ap-
plies to a particular decision, and has the corresponding type
(i : D� D′,O)→ Bool. action is a tree transformation with type
O→ O and describes changes to the design tree as a result of
applying this rule. Additionally, the action component can po-
tentially have side-effects, for example, providing a notification
that the rule was triggered, or writing to a log file.

Actions can take many forms. One of the most basic actions
is to simply extend the decision tree by replacing a particular leaf
value with a decision object. This allows the designers to gen-
erate the decision tree as particular subtrees become relevant. It
also provides a means of abstraction, by moving the definition of
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recurring design objects into rules. This allows arbitrarily large
game trees to be defined lazily, as well as providing a way to
abstract common subtrees into a single rule.

Other rules address the need to define constraints on the de-
sign. This could include cross-cutting constraints like budget or
weight limitations, or more specialized constraints—for exam-
ple, if a manual transmission is selected, we must also select an
interior which is compatible with the inclusion of a clutch and
gear stick. Rules which express these sorts of constraints may
include actions which transform the tree accordingly (e.g. by re-
moving all interiors which violate the constraint) or if such a
transformation is not possible (e.g. if the designer has already
chosen an incompatible interior) an action may notify the de-
signer of the constraint violation. In the next section, we dis-
cuss the proposed design system from a user’s perspective and
includes a more detailed look at some rule actions which require
user interaction.

After any decision is made, all of the currently included
rules are checked (by applying the apply function of each to the
new decision), and the actions of any matching rules carried out.
Thus, rather than being determined by a statically defined tree,
the design space is determined by a combination of the initial
design tree and a set of rules which define how that tree will
change as decisions are made. Since the number of rules can
grow quickly, they can be organized into hierarchical libraries,
easing rule management and promoting rule reuse between de-
signs. The next section provides an example hierarchy of rules
in the context of the design of a program for a NASA rover.

Additionally, we would like to be able to dynamically add
and remove rules from the model. This would allow designers to
begin work on a design without complete knowledge of the de-
sign space, and it would provide a way for designers to respond
to external change, such as changing requirement specifications
or resources. However, added or removed rules may have had an
impact on past decisions and subsequent transformations—how
do we take this into consideration? We could simply consider
the new rule set to affect only subsequent decisions. This may be
desirable if we want to modify a rule only temporarily (e.g. to
circumvent a constraint in a special case) or have rules which ap-
ply only at certain points in the design process. It seems like both
of these scenarios, however, could be avoided with careful rule
definitions. It seems far more likely that we will want to recon-
sider all past decisions involving changing rules. For this, and
other reasons, each decision also maintains a list of associated
annotations.

Annotations
Previously, we defined a decision as simply the process of

constraining an attribute’s domain. The ultimate goal of the
model, however, is not to simply transform a decision tree into
a concrete artifact through a sequence of decisions, but also to
provide a record, or an explanation, of why decisions were made

and how the decision tree was affected. Thus, each decision also
maintains a corresponding list of annotations, each of which con-
tains information about the decision.

At the lowest level, all rules which were applied when a par-
ticular decision was made are saved as an annotation to that de-
cision. This allows us to easily go through and re-evaluate deci-
sions that correspond to changing rules, as discussed above. On
a much higher level, a user might want to supply a free text com-
ment about why a particular decision was made. The Related
Work section discussed various ways of formally modeling de-
sign requirements; structured annotations could relate decisions
to these more traditional engineering models as well.

This approach is similar to that found in [51], which asso-
ciates rigidly defined metadata with each decision in a design
tree. This metadata contains information providing, e.g. justifi-
cations for a decision and/or design alternatives considered. By
allowing arbitrary annotations our approach is somewhat more
general, but could incorporate this previous work as just one of
many different types of annotations.

Annotations provide a link from within the model to the out-
side world. At the lowest level, a decision provides links to the
rule environment it is working in. At higher levels annotations
provide links to design documents and the designers themselves.
These links are critical to understanding the design process.

APPLICATION: A NASA RESEARCH ROVER
The United States and the world have gained a vast amount

of knowledge from the work done at NASA. NASA contin-
ues advancements in developing and applying new technologies
through research into developing new rovers for future space
exploration. Spirit and Opportunity, two current rovers from
NASA, have done a great job of collecting data and providing
us with information about Mars. They have performed beyond
expectations but they do have some limitations. The rovers have
limited intelligence that constricts the actions of the rovers. It
takes three Martian days to be able to get the rover to an inspec-
tion point and to get an instrument correctly positioned on the
spot to collect data.

To address this limitation and other problems, NASA has
a research rover program to integrate and test new technolo-
gies that will help them meet the goals of future space missions,
such as the Mars Space Laboratory (MSL), which is scheduled
to launch in the Fall of 2009. The goal of the program is to
build a reliable and autonomous rover. It is necessary to have
autonomous placement of instruments to acquire samples, deter-
mine mineralogy, obtain microscopic images and other opera-
tions to understand the geology of a planet. By implementing
advancements in technology and creating a more autonomous
rover, NASA hopes to complete sampling and testing more ef-
ficiently. To help with this goal, two research rovers have been
created for testing of new technology: the K9 and the K10 rovers,
discussed briefly next, followed by a discussion of the software
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designed to help with the autonomous operation of these rovers.

The K9 and K10 Rovers
The K9 rover was developed jointly by NASA Ames and

NASA’s Jet Propulsion Laboratory (JPL). The K9 is a six-
wheeled, solar-powered rover that was modeled after the Field
Integrated Design and Operation (FIDO) rover that was designed
by JPL in the late 1990’s. The rover features several hardware
components including a compass, an inertial measurement unit,
three pairs of monochromatic cameras, solar tracker, and pair of
stereo cameras. There are several other components and possible
attachments for the rover [12].

The K10 rover was developed as a successor to K9 and was
designed to be a less expensive and easily upgradeable rover.
The K9 features several specialty components and is expensive to
maintain whereas the K10 was designed using as many commer-
cially available off the shelf components as possible to address
reliability and cost concerns. The K10 has a four wheel steer and
drive chassis, digital 3-axis compass, GPS unit, 2D laser scanner,
stereo cameras, panorama camera, laptop computer, and several
other components. The K10 reused several pieces from the K9 to
take advantage of proven technology and to also reduce costs in
development. The electrical system and several hardware com-
ponents including the cameras were carried over from the K9.

The rovers are controlled by means of autonomy software
developed at NASA Ames. To enable autonomous operation, the
rovers need to be able to know their position. The K9 accom-
plishes this by using a compass with a sun tracker. The K10
rover upgraded to a 3-axis compass to be able to capture all the
measurements necessary so that a sun tracker does not need to be
used. However, this upgrade resulted in a failure. During test-
ing, the 3-axis compass proved to be a problem and designers
later changed to a compass and sun tracker setup similar to what
the K9 used. The rover program at NASA is a relatively small
project compared to a NASA mission and features a relatively
small staff. Even with a relatively small development team, con-
tact between the hardware developers and software developers
is limited. Changes to the hardware and software are generally
done independently of each other and problems are identified and
corrected through testing.

PLEXIL and The Universal Executive
One of the field demonstrations for the K9 rovers accom-

plishes the autonomous control of the rover with the help of
PLEXIL, which is an execution planning language designed at
NASA [20]. The main building block of a PLEXIL program is
called a node. Each node contains a single action, which can be
one of the following seven types:

Command: A request to be executed on the external hard-
ware system
Function: A complicated calculation to be calculated out-
side of PLEXIL

Assignment: Sets an internal variable within a PLEXIL pro-
gram
List: A collection of sub nodes for grouping similar nodes
and allowing multiple actions
Update: Sends output data to the external system, like status
information for users
Plan Request: Sends a request to design support asking for
a new plan
Empty: No other defined action

Nodes are inherently executed in parallel. A programmer
can affect this by using node conditions. These conditions spec-
ify when the node’s action executes, and, in the case of list
nodes, when its children’s actions should be started and com-
pleted. PLEXIL programs are executed through a system known
as the Universal Executive (UE). UE is a lightweight interpreter
designed to run PLEXIL programs on a variety of automated
hardware systems at NASA. PLEXIL programs are designed to
schedule commands, and the UE uses these programs to send the
commands to the hardware system.

SYSTEM DESIGN USING THE FORMAL MODEL
In this paper, we want to view the design decisions made

in software-hardware systems as they are being developed. Our
example will focus on the creation of PLEXIL programs for the
K9 and K10 rover design. We will show that keeping track of
decisions made during the design phase can prevent issues when
connecting software designs to hardware components.

Use Scenario
We envision a programmer sitting and programming within

a design system. Working within this system would be similar to
working within a modern IDE (integrated development environ-
ment), and in fact, would likely be implemented as an extension
to an existing IDE. The programmer enters PLEXIL code into a
text editor which is automatically compiled and analyzed at cer-
tain intervals, for example, when the user saves the file they are
working on. When we refer to the design system (e.g., “the sys-
tem alerts the user...”), we mean the application that the user is
working in, but more specifically, the extensions related to the
theory of design decisions.

Crucial to the scenario here is that the design space of the
system at any given time is specified by a hierarchical library
of rules. Each rule is composed of two parts which answer the
following questions: Given the current state of the design tree,
does this rule apply? If this rule applies, what action should be
carried out?

A design tree corresponds nearly exactly with the PLEXIL
syntax tree. An action can take one of the following forms:

1. Alert the user that a rule was matched by providing a rele-
vant message, usually indicating a problem with the design.

2. Alert the user to the problem and suggest a solution.
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3. Automatically apply a solution and possibly alert the user.

A solution takes the form of a tree transformation which
resolves the problem identified by the rule by modifying the
PLEXIL code. For example, a solution could specify adding a
predefined node to an existing node’s list of children.

When considering the implementation of these actions,
alerts can be either active (e.g., a popup window) or passive
(e.g., a line in a specific pane or log file). It may be best to follow
the precedent set by other tools common in IDEs like compilers
and style checkers and implement only passive alerts, allowing
the user to triage and address these at their discretion.

It is also worth noting that the information required to spec-
ify a rule utilizing either the second or third type of action is the
same. In both cases the design system must be able to detect the
problem and provide a solution—the only difference is whether
or not the system automatically applies that solution. The first
type of action only requires the design system to be able to de-
tect the problem. It will probably be the case that all three types
of actions will be utilized in different places in the rule hierar-
chy depending on the severity and complexity of the problems
addressed by each rule.

Notes on colors and fonts
In each figure that follows, nodes added or modified since

the last figure are colored green if they were added or modified
by the user, red if they were added or modified by the design
system. The rule hierarchy is shown to the right or below any
graph containing a red node. The level containing the rule that
generated the red node is also colored in red.

In the text, low-level commands available to PLEXIL are in-
dicated in monospaced font. PLEXIL node and variable names
are indicated by italics.

Scenario Overview
A NASA programmer has the simple task of writing a

PLEXIL program to drive a K9 rover forward some amount. The
programmer creates a very simple program to do this, which the
design system helps augment to handle the case where a wheel is
stuck.

The programmer then adds some code to maintain a mea-
sure of the distance traveled. The system again helps to improve
the robustness of the system, this time detecting and providing a
handler for a potential error with the Sun Tracker unit.

Later, a new rule is added to the system which ensures that
any time the rover drives, it handles the case where a wheel is
slipping (i.e., spinning, but not getting traction). The code is an-
alyzed and the system alerts and suggests solutions for newfound
potential holes in the design.

This latest change triggers a code readability-related rule
which suggests some simple code maintenance changes.

Finally, the K9 rules will be switched out for the K10 rover

as the hardware is updated. The new rules will trigger a change
in the code to conform to the new hardware.

The rule hierarchy in use is given in Fig. 1. At the base
are rules concerned with PLEXIL syntax and style. Next in the
hierarchy are general NASA-wide rules that apply for any vehicle
or mission. Next are rules specific to the K9 rover. At the top are
rules that apply specifically to the mission at hand—in this case,
driving forward.

Plexil

NASA

Drive 
Forward

K9 Rover

Figure 1. The rule hierarchy for this mission

Scenario Implementation
First, the user adds a single PLEXIL node named Drive as

shown in Fig. 2. The Drive node contains a call to the lower-

Drive

Figure 2. User adds drive node

level Drive command. A rule in the K9 level of the rule hierar-
chy specifies that any call to Drive must ensure that the wheels
are not stuck by including an appropriate monitor as a sibling of
the calling node. The system proposes a resolution to this rule by
asking the user if they would like to include a predefined Stuck
Monitor node. The user accepts, resulting in the graph shown in
Fig. 3.

Drive Stuck 
Monitor

Plexil

NASA

Drive 
Forward

K9 Rover

Figure 3. System adds stuck monitor

The result of this addition, however, is a syntactically invalid
PLEXIL program. The rules are rechecked automatically and a
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rule in the PLEXIL level matches the current tree. The rule spec-
ifies that a program must have a single root node. Parent Node
is automatically created and the two existing nodes are added as
children (see Fig. 4). The user gives this newly created node a
slightly more meaningful name, Drive Program (Fig. 5).

Parent 
Node

Drive Stuck 
Monitor Plexil

NASA

Drive 
Forward

K9 Rover

Figure 4. System adds parent node

Drive 
Program

Drive Stuck 
Monitor

Figure 5. User renames parent node

The specification indicates that the program must also main-
tain a total distance traveled. The programmer accomplishes this
by adding three new variables and two children nodes to Drive
Program (see Fig. 6, variables not shown). The new variables are
startPosition indicating the location of the rover before moving,
endPosition indicating the location of the rover after moving, and
distance indicating the total distance traveled by the rover.

The first child of Drive Program is Pre Drive, a node which
will be executed before each execution of Drive. It has one child,
Start Position, which checks the Sun Tracker and stores the cur-
rent position to the startPosition variable.

Post Drive is executed after each execution of Drive. It has
two children. The first, End Position, checks the Sun Tracker and
stores the new current position to endPosition. Update Distance
increments distance by the difference between endPosition and
startPosition.

In this example, the program reads the starting position from
the Sun Tracker while simultaneously sending a command to
start the rover driving. When the Drive command is complete,
the Sun Tracker again reads the rover’s position, which can later
be used to calculate the distance travelled in a later node Update

Distance. This code will continue to be executed until another
node sets keepDriving to false, forcing a repeat condition (not
shown) to evaluate to false and ending program execution.

Drive 
Program

Drive Stuck 
Monitor

Pre 
Drive

Post 
Drive

End 
Position

Update 
Distance

Start 
Position

Figure 6. User adds nodes that use Sun Tracker

After these changes are saved the design system automati-
cally analyzes the new program. A rule in the NASA level of the
hierarchy recognizes that we are using a Sun Tracker and sug-
gests the addition of a new node, Sun Tracker Monitor, to our
program. The programmer accepts. With the addition of Sun
Tracker Monitor, the program will only let the program run as
long as the Sun Tracker is on. Since the Sun Tracker is used both
in Start Position and End Position, the monitor is added to the
first common ancestor of these two nodes (see Fig. 7).

Drive 
Program

Drive Stuck 
Monitor

Pre 
Drive

Post 
Drive

ST 
Monitor

End 
Position

Update 
Distance

Start 
Position

Plexil

NASA

Drive 
Forward

K9 Rover

Figure 7. System adds Sun Tracker Monitor

The programmer submits the completed program and moves
on to another project. Sometime later, field-tests reveals that
sometimes K9 wheels will spin without getting traction, a prob-
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lem that all existing programs for K9 rovers that call Drive
should handle.

A new rule is added to the K9 level of the rule hierarchy and
the design tool is run against all existing K9 programs, including
the one the programmer submitted long ago. The rule detects the
Drive call in this existing program and no existing slip monitor,
so the Slip Monitor node is automatically created and added to
the program (see Fig. 8) and a notice sent to the programmer
requesting that they verify the modification.

Drive 
Program

Drive Stuck 
Monitor

Pre 
Drive

Post 
Drive

ST 
Monitor

Slip 
Monitor

End 
Position

Update 
Distance

Start 
Position

Figure 8. System adds slip monitor

When the programmer opens the program in their IDE to
verify the change, a rule in the PLEXIL ruleset concerned with
code style detects that the node Drive Program has three or more
monitors attached to it. In an effort to declutter Drive Program, it
suggests adding a node called Monitor Set, and placing all mon-
itors beneath it. The programmer verifies the previous change
and accepts this one as well resulting in the final program tree
(Fig. 9).

Drive 
Program

Drive

Stuck 
Monitor

ST 
Monitor

Slip 
Monitor

Pre 
Drive

Post 
Drive

Monitor 
Set

End 
Position

Update 
Distance

Start 
Position

Figure 9. System organizes monitors

Later on, we could imagine this program getting transferred
from the K9 rovers to the K10 model. The rover designers can
scan through the rules and update them to meet the hardware re-
quirements. The Sun Tracker was removed during the hardware
upgrade, so the designers can add a rule to state that the rover
position value can only be read from the new 3-axis compass.
When the program is later checked for consistency with the new
ruleset, the system can point out the hardware issues.

The system would find three places where the Sun Tracker
was used within the code. Two are the Pre Drive and End Posi-
tion nodes, where the code reads the position value. The last case
is in Slip Monitor which checks that the Sun Tracker is on. With
user confirmation, the system changes the code to read position
data from the compass instead.

CONCLUSIONS AND FUTURE DIRECTIONS
The overall objective of this research is to support designers

in working with complex hardware/software systems, by helping
them capture when and why the decisions were made and under-
stand the consequences of these design decisions. Our hypothe-
sis is that every system is a compilation of design decisions. The
ability to track these decisions will allow designers to have a bet-
ter understanding of the system and enable the reuse of hardware
and software more effectively by being able to go back and deter-
mine what decisions were made and why. This paper specifically
presents a formal model of the design process, focusing on being
able to track the decisions made during the design process. An
initial model that accomplishes these goals is presented in this
paper, and illustrated using a rover design example at NASA.

The overall goal of the research presented in this paper is to
create a body of systematized knowledge about example-based
design, which helps to better understand how example-based de-
sign works, under which conditions it succeeds and when it fails,
and what is needed to support a methodology for designing by
example. The model derived to represent the design and deci-
sion making process will have a variety of benefits.

1. The theory can be employed to represent and study a variety
of design domains and to investigate the design process in
these domains. For example, the design-attribute-oriented
viewpoint helps to separate concerns in design domains and
supports the identification of methods and techniques for a
more effective design process.

2. Since in the model every design is expressed based on the
basic entities of design attributes and design decisions, we
can identify measurements that are based on these elements.
In particular, differences between designs can be expressed
in terms of these elementary units of design. Based on such
difference measures, a concept of design similarity can be
defined that can be exploited in tools supporting designers,
for example, in searching for similar design examples.

3. The modular definition of the concepts of design domain and
design space allows the creation of a sharable repository for
design spaces, attribute representations, and design contexts
Design domains and design contexts can then be defined by
reusing definitions from the repository.

One of the goals in this research is to test the decision model on
a real-life application. Future work will enable the simulation of
real-world applications, using a simulator, the LUV Viewer, cur-
rently under development. The LUV Viewer reads in a PLEXIL
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file and displays the contained nodes. Then, it runs the pro-
gram through the Universal Executive and displays the node sta-
tus changes to the user. In order to handle communication with
the external system, the programmer must also provide a simple
script that contains a list of preprogrammed responses. However,
it does not include any state information about the conditions in
the surrounding world.

ACKNOWLEDGMENT
The authors would like to thank Dr. Guillaume Brat at CMU-

Silicon Valley and Dr. Ann Patterson-Hine at NASA Ames re-
search center for their valuable input to the project as part of the
advisory board. This research is supported by the National Sci-
ence Foundation’s Science of Design program under Grant Num-
ber CCF-0741584. Any opinions or findings of this work are the
responsibility of the authors, and do not necessarily reflect the
views of the sponsors or collaborators.

REFERENCES
[1] UML. http://www.uml.org.
[2] E. Antonsson and J. Cagan. Formal Engineering Design Synthesis.

Cambridge University Press, 2001.
[3] E. Antonsson and K. Otto. Imprecision in engineering design.

Journal of Mechanical Design, 117(B):25–32, 1995.
[4] B. S. Baker. On finding duplication and near-duplication in large

software systems. In 2nd Working Conf. on Reverse Engineering,
page 86, Washington, DC, USA, 1995. IEEE Computer Society.

[5] J. Barzilai. Measurement and preference function modeling. In-
ternational Transactions in Operational Research, 12:173–183,
2001.

[6] S. Basil and R. K. Keller. Software visualization tools: Survey and
analysis. In 9th Int. Workshop on Program Comprehension, pages
7–17, Washington, DC, USA, 2001. IEEE Computer Society.

[7] Joshua I. Bernstein. Design methods in the aerospace industry:
looking for evidence of set-based practices. Dissertation, Mas-
sachusetts Institute of Technology, 1998.

[8] Ted J. Biggerstaff and Alan J. Perlis, editors. Software reusability:
vol. 2, applications and experience. ACM Press, New York, NY,
USA, 1989.

[9] JPL Review Board. Report on the loss of the mars polar lander
and deep space 2 missions. Technical Report JPL D-18709, NASA
JPL, 2000.
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