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Abstract—Maintaining variation in software is a difficult
problem that poses serious challenges for the understanding
and editing of software artifacts. Although the C preprocessor
(CPP) is often the default tool used to introduce variability to
software, because of its simplicity and flexibility, it is infamous
for its obtrusive syntax and has been blamed for reducing
the comprehensibility and maintainability of software. In this
paper, we address this problem by developing a prototype
for managing software variation at the source code level. We
evaluate the difference between our prototype and CPP with
a user study, which indicates that the prototype helps users
reason about variational code faster and more accurately than
CPP. Our results also support the research of others, providing
evidence for the effectiveness of related tools, such as CIDE and
FeatureCommander.

I. INTRODUCTION

Managing software variation is a fundamental problem in
software engineering that manifests itself in many different
ways throughout the field. In particular, there is a need to
diversify software, for example, in terms of functionality
or for different platforms and users. As with all software
representations, it is important to determine the representation
that best supports software developers in their work.

Among different types of representations, the C prepro-
cessor (CPP) is often used to implement software variation
because of its simplicity and flexibility. However, CPP has
been criticized both for its obtrusive syntax and its lack
of structure, which reduce comprehensibility and increase
maintenance costs [10], [14]. Existing research has addressed
these problems with various tool features to support the
understanding of variational software. For example, both
the FeatureCommander tool [5] and the CIDE tool [7] use
background colors to highlight variational code, while CIDE
also provides a “virtual separation of concerns” and imposes
several restrictions on how a program can vary.

Our ultimate goal in this paper is to combine these existing
approaches into a system with a highly structured, but more
flexible, variational model that can address the limitations
of CPP by supporting understanding and reasoning about
software variation. The system should support at least the
following features.

« Provide a structured and comprehensible model of varia-
tion in software.

« Remove the noisy syntax of CPP to create simpler code.

« Support virtual separation of concerns by hiding unrelated
code when focusing on a particular program variant.
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« Use colors to help users identify the code corresponding
to particular CPP macros.

To this end, we have developed a GUI representation and
implemented a simple prototype. This prototype is based on a
formal representation of software variation, the choice calculus
[3], that we have developed in previous work. This underlying
model imposes restrictions on how and where a program can
vary and informs several aspects of the prototype.

An example of the prototype’s interface (modified here for
readability) is shown in Figure 1. The prototype is divided
into two columns. The left column is call the dimension area,
where users can choose which program variant they want to
see. Dimensions are a feature from the choice calculus and
structure how a program can be configured. In terms of CPP, a
dimension can be considered a way of grouping related macros
together. The right column of the prototype is called the code
area, which contains the source code of the currently selected
program variant. The current selection in the dimension area is
called a configuration. When users change a configuration on
the left, the corresponding code on the right is updated. Code
that is highlighted in the code area represents variation points
that are associated with a particular dimension, as indicated by
the color. Highlighted code can be expected to change if the
selection in that dimension is changed in the dimension area.
Notice in the figure that we have some purple code inside of
the grey code. This is code that is included only if both of the
corresponding options are selected in the dimension area.

Obviously, our prototype removes the noisy syntax of CPP
and uses colors to mark variational code, but in addition to
these syntactic aspects, it also provides a virtual separation
of concerns [7] by only showing the code that is related to
the currently selected configuration. This feature is intended
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Fig. 1: The variation editor prototype.



to support the understandability of a particular variant, but it
also has some associated costs: First, there is a need for the
user to switch between different configurations. Second, there
is a loss of context in which a variation point occurs; that is,
we can only see the code of one variant at a time, and not how
the code differs in other variants. So it is not at all obvious
that the proposed representation performs better in terms of
supporting understanding.

Additionally, there is evidence that the use of color alone
does not significantly improve understanding for some kinds
of tasks involving variational software [5]. Therefore, there is
a need to evaluate the effectiveness of the prototype, or more
specifically, the effectiveness of the combination of the above
features to support users in understanding software variation.
To do this we have conducted a user study with 31 computer
science undergraduate students at Oregon State University.
The study has shown that using the prototype can help users
reason about variational code faster and more accurately than
when reading syntax-highlighted CPP code. Not only does
this result confirm the effectiveness of our prototype, it also
supports other research, providing evidence that other tools
and environments with similar characteristics, like CIDE [7],
will also support the understanding of software variation.

In the rest of this paper we describe the details of the study
and its results using the recommended format for reporting
empirical research in [12]. We begin by clarifying the specific
goals of the study in Section II. We provide information about
the subject population in Section III and about experiment
materials in Section IV. The tasks that study participants were
asked to complete are described in Section V, and Section VI
states our hypotheses and the variables involved in the study.
In Sections VII and VIII we describe the experiment’s design
and results, respectively. We present a discussion and plans
for future work in Section IX, consider threats to validity
in Section X, discuss related work in Section XI, and offer
conclusions in Section XII.

II. EXPERIMENT GOALS

In this study, we focused primarily on comparing subjects’
performance in reading and understanding code in CPP and
in the prototype. Our specific goals for this experiment were:

1) Determine whether subjects can more accurately deduce
the number of variants represented in code presented in
our prototype compared to code annotated with CPP.

2) Determine whether subjects can more quickly deduce the
number of variants represented in code presented in our
prototype compared to code annotated with CPP.

3) Determine whether subjects can more accurately de-
scribe the behavior of a particular variant represented
in code presented in our prototype compared to code
annotated with CPP.

4) Determine whether subjects can more quickly determine
the behavior of a particular variant represented in code
presented in our prototype compared to code annotated
with CPP.

5) Determine whether subjects consider the prototype to be
more understandable than code annotated with CPP.
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Fig. 2: Histogram of subjects’ self-assessment of C/CPP
programming expertise (1=beginner, S=expert).

III. PARTICIPANTS

We had 31 subjects participate in the study and each subject
was compensated $20. Subjects were recruited through Oregon
State University’s EECS mailing list. Potential subjects had to
take a brief screening test before signing up for the study. This
test was used to confirm a basic understanding of C and CPP,
and only students that passed the screening test were asked
to take part in the study. Among the 53 students who took
the screening test, 45 students passed the test, and 32 of those
signed up for study sessions. One subject did not show up for
his study session.

The studied group consisted of 11 freshmen, 4 sophomores,
8 juniors, and 8 seniors. There were just 2 female subjects and
29 male subjects. We conducted a background questionnaire
before the study that asked about the number of programming
courses the students had taken and the number of courses
that used C or CPP. On average, students had taken 4.9
programming courses (3.4 std. dev.) and 1.6 of those involved
C or CPP (1.5 std. dev.). We also asked about their experience
programming professionally, on open source projects, and
whether they used C and CPP in their own personal projects.
8 of the 31 participants had professional programming expe-
rience, 7 had experience on open-source projects, and 2 had
both. Of these 13 subjects, 6 used C or CPP at their job or on
their open-source projects, which we qualified as “real world”
C or CPP experience. 25 out of 31 subjects claimed to use
C or CPP in their own personal work. Finally, subjects were
asked to rate their C/CPP programming experience on a scale
from 1 to 5, with 1 being a beginner and 5 being an expert.
This data is summarized in Figure 2. On average, subjects
rated themselves at 2.8 with a standard deviation of .81.

IV. EXPERIMENT MATERIALS

Prior to participating in the experiment, potential subjects
submitted a registration form containing a screening test
through a dedicated website. This form collected the student’s
name, email address and answers to four questions to verify
that the student had a basic understanding of C and CPP.

The experiments were administered in a lab setting, on
provided computers via a web browser. The CPP annotated
code was presented on a simple static web page and included
syntax highlighting. The prototype tool was implemented
using PHP, HTML, and Javascript. Questions were presented



to the user at the top of each page and answered via a web
form that submitted the results to a secure web database.

At the beginning of the experiment session, subjects were
asked to fill out a background questionnaire as described in
the previous section. Next, a tutorial about how to use the
CPP environment and the prototype environment was verbally
administered as subjects followed along with interactive ex-
amples on the screen. At the end of the tutorial, subjects had
a few minor sample tasks to perform. These were done on the
same computers and in the same way as the subsequent tasks.

After finishing the main tasks, subjects were asked to fill out
a post-study questionnaire to assess the perceived usefulness of
the prototype compared to CPP annotations. The questionnaire
included a few questions about the tasks themselves to help us
interpret the other results. All questions were answered with
a Likert-scale or semantic-difference scale from 1 to 5.

V. TASKS

Our experiment was performed within-subject, so all par-
ticipants underwent both treatments (CPP and the prototype)
for all tasks. All participants had to perform three tasks (1) a
simple operating system selection program (the OS task), (2)
a do-and-log program (the doThis task), and (3) an assembly-
like language evaluator (the opcode task). These three tasks
were presented to subjects in order of difficulty (OS < doThis
< opcode). Each task was presented to each user in both
CPP and the prototype, though the order of the treatments
was random for each user. Also, the programs presented in
each treatment for the same task were slightly different. For
example, a subject who received the doThis task in the CPP
representation first would receive a slightly different version of
the task, with different semantics but similar overall structure,
in the prototype. Both variants of each task were presented
in each tool, to different subjects. All of this, combined with
the randomized order of treatments, was designed to decrease
the learning effect while still giving subjects tasks of equal
difficulty in each treatment.

Each session was divided into two sections. The first section
included the two OS and doThis tasks, and the second section
included the opcode task. Subjects were allowed to rest for up
to 10 minutes between sections. Otherwise, after submitting
an answer to a question, subjects were immediately presented
with the next. Subjects were asked to answer each question as
quickly and accurately as possible.

Throughout the tasks in the CPP environment, subjects were
shown the code corresponding to one task-treatment pair in
a web browser window, with syntax highlighting, and the
question was presented at the top of the screen. The code
was displayed only while answering a question.

The prototype tasks were structured similarly, except that
the prototype replaced the static code in the question-
answering window. Since we were comparing the accuracy
and speed of the subjects’ answers in both tasks, the questions
were the same, except for minor wording differences.

Below is a sequence of questions that were used for the
doThis example of the CPP task.

1) How many different ways can this program be config-
ured (by setting each macro to defined or undefined)?

2) How many program variants do you think the writer of
this code intended to specify?

3) How many unique programs can be generated from this
code?

4) What is the printed output of the program if the macros
are defined as follows? DoThisFirst=undefined,
DoThisLater=defined, LogThis=undefined?

5) What is the printed output of the program if the
macros are defined as follows? DoThisFirst=defined,
DoThisLater=defined, LogThis=defined?

6) What is the printed output of the program if the macros
are defined as follows? DoThisFirst=undefined,
DoThisLater=undefined, LogThis=defined?

VI. HYPOTHESES AND VARIABLES

The hypotheses of this study were derived from the goals
described in Section II:

Hi: Subjects predict the number of variants more accurately
using our prototype than with CPP.

H,: Subjects predict the number of variants in less time using
our prototype than with CPP.

Hj: Subjects predict the behavior of a particular variant more
accurately using our prototype than with CPP.

Hy: Subjects predict the behavior of a particular variant in
less time using our prototype than with CPP.

Hs: Subjects consider the prototype to be more understand-
able than CPP.

These hypotheses reveal the structure of the major variables in
our experiment. The dependent variables—accuracy, response
time, understandability rating—are represented as functions
of the independent variables of the treatment group (CPP or
prototype) and task type (variant counting or understanding).
Other major independent variables not reflected in the above
hypotheses are the examples used for each treatment group
and the order in which the treatment groups are presented
(CPP first or prototype first). In the next section we describe
how we used randomization to mitigate the effects of these
uninteresting independent variables.

VII. EXPERIMENT DESIGN

Our experiment was conducted within subjects to maximize
statistical power with a relatively small number of subjects. All
uninteresting and potentially confounding independent vari-
ables were distributed and randomized as much as possible.
Specifically, we had three tasks, ordered by increasing level
of difficulty. For each of the tasks, a corresponding version of
the code was presented in CPP, and a slightly different version
with different semantics was presented in the prototype. The
order of treatments was randomized for each task to make
it different from subject to subject. There are two ways to
order the treatments in each task, either CPP followed by the
prototype or the other way around. As a consequence, there are
eight different ordering possibilities to present the tasks. We
assigned subjects a random ordering and distributed subjects
across the eight ordering groups evenly.



All other potentially confounding variables are mitigated by
randomly assigning subjects to sessions, by the screening test,
and by treating all subjects with the same introductory tutorial.

VIII. EXPERIMENT RESULTS

Each of our hypotheses is a different view of a more fun-
damental claim that software variation is more understandable
when represented in our prototype than when represented with
CPP directives. The first four hypotheses can be addressed by
analyzing the quantitative data gathered throughout our exper-
iment, and we do this in depth in the next two subsections.
Hypothesis Hs is addressed by questions in our post-study
questionnaire that asked subjects directly which tool was more
understandable.

A. Counting Variants

Hypotheses H; and H, consider how accurately and quickly
a subject can determine how many program variants are rep-
resented by a piece of variational software. In the experiment,
we addressed these questions by having the subjects count the
number of possible variants, the number of unique variants,
and the number of intended variants represented by some code,
and timing their responses. For each of the three tasks, subjects
were presented an example represented in CPP and a similar
example represented in the prototype (not necessarily in that
order). They were asked how many possible variants, how
many unique variants, and how many intended variants each
representation contained. The responses to each question were
scored either “correct” or “incorrect.”

We assigned each subject a point for each correct response
and combined the results from the three tasks. We then com-
pared each subject’s score using the CPP representation with
the scores using the prototype. Four plots of this data are given
in Figure 3. For each of the three types of counting questions,
subjects were significantly more likely to answer correctly
using the prototype than using the CPP representation.! If we
group all of the counting questions into one category and count
the number of correct answers that subjects gave using the
prototype with those using the CPP representation, subjects
were significantly more likely to give correct answers using
the prototype than using the CPP representation (paired ?-
test, t = —15.0721, df =30, p=1.543 x 10’15). These results
provide multiple arguments in support of hypothesis Hj.

Now we consider hypothesis H», that subjects can count the
number of variants more quickly using the prototype. There
are two possible approaches to statistically analyzing the time
data, either by basing the analysis solely on the time results,
or by basing it on the relationship between the time taken and
the correctness of the answers. Analyzing the data based solely
on time is simpler, but it paints an inaccurate picture in some
cases where subjects had no idea how to answer, so quickly
gave a random answer (or no answer) and moved on to the
next question. Analyzing time data based on the relationship

'Possible—conﬁguration questions: paired -test, t = —8.4152, df =30, p =
2.162 x 107, unique-variant questions: paired t-test, t = —9.3185, df = 30,
p=2.306x 10719, intended-variant questions: paired ¢-test, t = —6.356, df =
30, p=5.178 x 1077).
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Fig. 3: Number of correctly answered counting questions for
each subject, by treatment.

between the correctness of the answers and the used time is a
bit more complex but can address the “fast guessing” problem.
Therefore, we chose this approach as our primary method for
analyzing the time data (though as we show below, a straight
comparison of time spent also yields significance).

From the response data we computed the efficiency of
each subject on each question, calculated as the quotient
of received points over response time (in minutes). Higher
efficiency scores are better, indicating a faster, more accurate
response. If a subject finishes a question quickly by guessing
the wrong answer, he or she will score zero for that question.
The distributions of the average efficiency data are presented
in Figure 4. The first two distributions represent the average
efficiency by subjects for Task 1, for each environment; the
next two distributions show the average efficiency for Task 2;
the next two for Task 3; and the last two distributions represent
overall the average efficiency for counting questions in each
environment. We can confirm that the relative difficulties of
the tasks were assigned correctly by observing that as the tasks
get more difficult, the efficiency of the subjects decreases.

For each of the three tasks, subjects achieved significantly
higher efficiency using the prototype than using the CPP



30 40
I

points/minute
20
L

° — N
T T T T T T T T
T1.CPP T1.Pro T2.CPP T2.Pro T3.CPP T3.Pro All.CPP All.Pro

Fig. 4: Subjects’ counting efficiency (points/minute).

environment for counting questions.”> If the results of all
tasks are combined, subjects also achieved significantly higher
efficiency using the prototype than using the CPP environment
for counting questions (paired r-test, r = —7.1222, df = 30,
p=6.377x 1078). These results support hypothesis H.

We tried running the same tests based solely on the time
subjects used to answer counting questions and also obtained
a significant difference for the all three tasks combined and
for the tasks individually.> We can therefore note that the
significant differences subjects achieved on the time scores
are not dependent on the particulars of our analysis.

B. Variant Behavior

Hypotheses Hz and H; consider how accurately and quickly
a user can understand a particular program variant, given a
piece of variational software. Within each treatment, we posed
two variant comprehension questions for the first task (OS)
and three variant comprehension questions for each of the
remaining tasks (doThis and opcodes), for a total of eight
comprehension questions per environment. These questions
asked about the specific output that would be printed if a
particular variant was generated and executed. As we did
for the variant counting questions, we scored and timed
the responses. Each answer was marked either “correct” or
“incorrect.” We then counted the number of correct answers
for all of the comprehension questions. Four line-plots of the
variant comprehension data are given in Figure 5.

Combining the results of all three tasks, statistical analysis
confirms that subjects were significantly more likely to score
higher on variant comprehension questions when using the
prototype than when using the CPP representation (paired ?-
test, t = —4.6032, df =30, p=7.127 x 10’5). Likewise for the
first and second tasks in isolation, subjects achieved signifi-
cantly higher scores using the prototype than when using CPP.*
Hypothesis Hy is supported in these cases. No conclusion
about the difference between using the CPP environment and

2Task 1: paired t-test, t = —6.6958, df = 30, p = 2.031 x 1077, Task 2:
paired z-test, t = —5.0559, df =30, p =1.990 x 10_5, Task 3: paired z-test,
t = —2.4062, df =30, p =0.022.

3Combined: paired r-test, t = 6.0644, df = 30, p = 1.165 x 1079, Task 1:
paired z-test, = 5.1048, df =30, p = 1.733 x 1073, Task 2: paired z-test,
t =5.2183, df =30, p = 1.258 x 1075, Task 3: paired 7-test, 1 = 3.4906,
df =30, p =0.0015.

4Task 1: paired z-test, + = —3.5032, df = 30, p = 0.0014, Task 2: paired
t-test, t = —2.9901, df = 30, p = 0.0055
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Fig. 5: Number of correctly answered variant comprehension
questions for each subject, by treatment.

the prototype can be made if we consider only the data Task
3 (paired t-test, t = —1.5406, df = 30, p = 0.1339).

We suspect that the reason for non-significance of the
variant comprehension questions in Task 3 is that it was simply
too hard given the constraints of the study. As a result, the
effects of the differences between subjects dwarfed the effects
of the differences between treatments. Among the 31 subjects,
7 subjects did not get any points on the variant comprehensions
questions in Task 3, and another 6 subjects got just 1 point.
This means that over 40% of our subjects (13/31) received
only 0 or 1 points for these tasks, making the differences
in their correctness performance difficult to analyze. This
theory is also supported by the data collected in the post-study
questionnaire: 23 subjects agreed or strongly agreed with the
statement, “the opcode (Task 3) examples were difficult to
understand”. In comparison, only 8 students thought Task 2
was difficult, and 3 students thought Task 1 was difficult.
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Fig. 6: Subjects’ efficiency score for comprehension questions.

To confirm hypothesis Hy, that subjects understand a partic-
ular variant more quickly using the prototype, we present the
efficiency scores for the comprehension questions in Figure 6.
Recall that efficiency is computed by dividing the points
earned for each question by the time used on that question. The
first six distributions represent each of the six task-tool pairs,
and the average efficiency subjects achieved on the questions
in that pair. The last two distributions represent the average
efficiency of subjects on all comprehension questions, for
each treatment. As is obvious by looking at the distributions,
subjects were significantly more likely to complete variant
comprehension questions with more efficiency when using
the prototype than when using the CPP representation for all
of the tasks combined (paired ¢-test, t = —6.6958, df = 30,
p =2.031 x 10~7), providing support for hypothesis Hj.

In both Task 1 and Task 2, subjects were significantly
more likely to complete variant comprehension questions with
higher efficiency when using the prototype than when using
CPP. No significant difference was found for Task 3 (paired
t-test, t = —1.9054, df = 30, p = 0.066). Again, we suspect
the relative difficult of Task 3 is the reason.

C. Questionnaire Results

A post-study questionnaire consisting of 19 questions was
given to subjects after they finished their main tasks. The
answers to most questions are given on a Likert scale from
1 (strongly disagree) to 5 (strongly agree). There are three
questions at the end of the questionnaire asking users to
compare CPP and the prototype directly. These answers are
captured on 5-point semantic difference scale, where 1 means
“much easier in CPP” and 5 means “much easier in prototype.”
These three questions are used to answer hypothesis Hs and
are listed below:

(1) In which tool was it easier to count the number of
configurations and program variants?

(2) In which tool was it easier to understand a particular
program variant?

(3) Overall, which tool made it easier to understand software
variation (code that represents many different programs)?

These questions were all answered overwhelmingly in favor

of the prototype. For question (1) the average response score

was 4.32 (std. dev. of 0.894). For question (2) the average

STask 1: paired t-test, t = —7.6542, df =30, p = 1.546 x 1078, Task 2:
paired z-test, f = —3.0931, df = 30, p = 0.00425.

T T T
(1) mean=4.32 () mean=4.29  (3) mean=4.09

Fig. 7: Answers to questions regarding hypothesis Hs.

response was 4.29 (std. dev. of 0.923). And for question (3)
the average response was 4.10 (std. dev. of 0.893).

To triangulate and confirm the responses to the above
direct comparison questions, other questions on the post-task
questionnaire asked subjects to rank the difficulty of various
types of tasks separately in both CPP and the prototype.
We compared the responses of users on matching pairs of
questions with a Wilcoxen signed-rank test. The results are
given in Figure 8 and provide strong evidence for Hs.

IX. DISCUSSION AND FUTURE WORK

Here we present some other interesting observations and
insights gathered during this user study and its analysis.

First, the subject’s rating of the prototype seemed to co-
incide with their behavior during the study. P18’s case is
an especially strong example. During Task 3 (the hardest
task), P18 began with the CPP environment. He spent 105
seconds on the first comprehension and eventually clicked
next without giving any answer. For the next comprehension
question in the CPP environment, he spent 12 seconds, again
giving no answer and moving on. And for the third question,
he spent two seconds before moving on. This sequence of
events clearly indicates that P18 gave up on Task 3 for the
CPP environment. One explanation for this is that the task was
simply too overwhelming. When he moved on to the prototype
environment for Task 3, we expected him to behave similarly
by giving up on the comprehension questions, but he did
not. Instead he spent 719 seconds on the first comprehension
question, 246 on the second, and 184 on the third, giving
correct answers to all three questions. Separation of concerns
is widely believed to help program understanding by reducing
the effort and attention paid to irrelevant parts of the code.
In this case, however, it seemed to also increase the subject’s
confidence that he could even solve the problem at all. This
suggests a possible line of future work.

When subjects used the prototype, we counted the number
of times subjects changed the configuration before giving
answers. For comprehension questions, most subjects had
the same number of configuration changes. However, for the
counting questions, some subjects changed the configuration
many more times than others. This is due to the fact the
subjects wanted to compare the differences between code
variants. Informally, one subject stated the need for seeing
two variants on the screen at the same time in the prototype.
In addition, in the post-study questionnaire, 13 students agreed
or strongly agreed that it was helpful to see multiple program



Question Pairs

Wilcoxon signed-rank test results

configurations.

In CPP annotated code/the prototype, it was easy to determine the total number of

W =41.5Z=—3.7483,p=5.595x 1073
mean(CPP)=2.8, mean(Pro)=4.19

program variants could be generated/selected.

In CPP annotated code/the prototype, it was easy to determine how many unique

W =46,Z=—-3.7019,p =9.31 x 1073
mean(CPP)=2.48, mean(Pro)=3.96

variants the programmer intended to specify.

In CPP annotated code/the prototype , it was easy to determine how many program

W =255,7Z=—3.843,p=4.345x 107>
mean(CPP)=2.58, mean(Pro)=3.93

generated/selected program would function.

In CPP annotated code/the prototype, it was easy to understand how a particular

W =26,Z=—-3.5018,p =0.00017
mean(CPP)=3.12, mean(Pro)=4.16

In general, the CPP annotated code/code in the prototype was easy to understand.

W =26.5,Z=—4.2636,p=2.883x 10~°
mean(CPP)=2.58, mean(Pro)=4.19

Fig. 8: Wilcoxon signed-rank test results for questionnaire data.

variants at the same time in the CPP environment. Although
the feature was not implemented in the version of the prototype
used in the study, we plan to include tooltips in future versions
of the prototype that show how highlighted code in the code
section is different in other configurations. We believe that this
feature could be especially useful in helping users determine
the number of unique variants a piece of software represents.
Task 3 contained 8 total configurations but only 6 unique
variants. This proved difficult for users to determine (only 17
out of 31 got the question correct), since it required clicking
through all 8 variants and remembering which had been seen.
While users still performed better on this task than when using
CPP, we believe that further gains could be made by providing
additional variational context via tooltips.

At the end of their study sessions, many subjects expressed
their enthusiasm about the prototype. One subject said, “This
is really cool! I love this tool.” Another subject even wanted
to use the tool for his work, “If you guys (the researchers)
develop this tool, I would love to try it for my work. This
would definitely make a difference.” This feedback from
subjects suggests the possibility of a field study. There are
several issues that must be addressed before the tool is ready
for real-world tasks, however. These are addressed in the
discussion of external validity in the next section.

X. THREATS TO VALIDITY

Here we describe some threats to the validity of our study.
We focus on threats not discussed elsewhere in the paper.
Many other internal threats to validity are addressed with
randomization, as discussed in Sections V and VII.

A. Construct Validity

In the pre-study questionnaire we asked subjects to judge
their C/CPP programming experience. This is subjective and
may not accurately represent a subject’s ability to read and
understand CPP-annotated programs. For example, participant
P29 gave himself 4 points on a 5-point Likert scale for his
C/CPP experience but did not get any answers correct for the
third task. At the same time, participant P16 gave himself 3
points and got correct answers for all the questions in the third
task. This information was used for demographic purposes
only and our study results do not rely on these data.

B. Internal Validity

For each task in the study, we created a version to be
presented in the CPP environment and a slightly different ver-
sion to be presented in the prototype. Implementing the tasks
this way ensured that the code shown in each environment
is at the same difficulty level. However, this also introduce a
significant learning effect. That is, if subjects begin with the
CPP environment for a task, they will very likely do better with
the prototype for the same task and vice versa. We controlled
for this learning effect by randomizing the order of treatments
for each task, within each subject.

C. External Validity

All of the subjects recruited in this study were students, so
the results of the study might not generalize to all software
developers. Moreover, the tasks in the study were designed
to be appropriate for an undergraduate level of programming
expertise and to fit within the constraints of the study’s format,
and thus do not represent typical C/CPP programs in the
real world. These are typical limitations of controlled studies.
Had we given students real-world C programs, it would have
taken much longer for them to finish the tasks, with a higher
likelihood of differing levels of experience introducing noise
into the study’s outcome.

The prototype itself is also quite limited since code can
only be read and not edited. Our focus in this study is on
promoting understanding, but in order to support the larger
problem of maintaining variational software, it would also
need to provide ways to edit and refactor code containing
variation. How to best support these operations remains an
important open research question.

Finally, the tasks concerned with counting configurations
probably do not correspond directly to tasks performed by
programmers in the real world. These tasks are intended as a
simple way to assess the user’s understanding of the overall
variational structure of the code. While this information might
sometimes be more readily attainable in CPP-based projects
by looking at external documentation or a feature model [6],
this information is very often not available, out-dated, or in-
consistent with the implementation. Therefore, it is important
for programmers to be able to easily determine the variational
structure of software from the code and environment alone.



XI. RELATED WORK

Several authors have argued that the use of CPP can
lead to highly complex code, prevent comprehension, and
increase the cost of maintenance. Spencer [14] states that
the “C programmer’s impulse to use #ifdef in an attempt at
portability is usually a mistake.” Lohmann [11] uses the term
“ifdef-hell” to describe the implementation of cross-cutting
concerns [9] in the source code of different contemporary
operating systems. Favre identifies many specific difficulties
when trying to understand CPP, including lack of abstraction,
lack of available techniques, and unclear tool semantics [4].
All mentioned papers point out the need for a tool to support
understanding CPP, which is one goal of this paper.

Several tools have been proposed to manage the complexity
of CPP, for example, the VSF editor [2] and C-CLR [13]. One
of the most popular and actively researched tools is CIDE [8],
a graphical integrated development environment for creating
and managing features in feature-oriented software develop-
ment [1]. The model used by CIDE is basically equivalent to
CPP with only #ifdef statements, with many changes made
in the interest of usability. CIDE annotates optional code
using background colors, similar to our prototype. Unlike our
prototype, code can only be marked as optional in CIDE—
there is no equivalent to the notion of a “dimension” in which
alternatives can be selected. Our approach is more expressive,
as shown in [3], and provides additional structure to the space
of potential variants. While CPP allows arbitrary lines of code
to be marked as optional, CIDE limits variation points to
nodes in the AST. This leads to more structured and regular
variation than in CPP, and ensures that, at the very least, all
program variants will be syntactically correct. This feature is
also present in our prototype, inherited from our underlying
choice calculus model [3]. Finally, like our prototype, CIDE
provides a “virtual separation of concerns” (a term coined
by the CIDE researchers) by allowing users to select which
features to show and which to omit [7].

Another related tool is FeatureCommander (FC) [5]. FC
relies on CPP directly as its underlying model, simply adding
background color to existing CPP annotated documents. The
primary focus of FC is on scaling the idea of background color
to code bases with hundreds of CPP macros. FC copes with
this problem by retaining the underlying CPP annotations and
allowing users to mark only those macros which they are most
interested in, and only those will be marked with background
colors. FC was recently evaluated in a user study with 14
graduate students at University of Magdeburg, Germany. The
examples used in this study were closer to real-world examples
than those used in our study, containing over 160,000 lines
of code and 340 features. The study tasks revolved around
finding the code associated with a smaller set of 12 features
and solving simple maintenance tasks. While they did find a
significant difference in the response times to these questions,
they did not find a significant difference in correctness. We
believe this provides evidence that background color alone is
not enough, and that separation of concerns is also important
for program understanding.

XII. CONCLUSION

We have demonstrated that a representation of software
variation based on the principles of (1) an unobtrusive syntax
based on background coloring, (2) virtual separation of con-
cerns, and (3) a dimension-based model of variation can im-
prove understandability over software variation implemented
with the C Preprocessor.

In future work we will investigate the impact of the loss
of variational context that results from virtual separation of
concerns, whether this poses problems for specific kinds
of tasks, and whether tooltips that show alternative code
simultaneously can mitigate any such issues. We will also
consider the extension of the prototype to support the editing
and refactoring of variational software, and whether these
extensions are better than manipulating CPP-annotated code
directly.
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