
Declarative GUIs: Simple, Consistent, and Verified
Stephan Adelsberger

Department of Information Systems
and Operations

Vienna University of Economics
A-1020 Vienna, Austria, Europe

sadelsbe@wu.ac.at

Anton Setzer
Department of Computer Science

Swansea University
Swansea SA2 8PP, UK

a.g.setzer@swansea.ac.uk

Eric Walkingshaw
School of EECS

Oregon State University
Corvallis, OR, USA

walkiner@oregonstate.edu

Abstract
Graphical user interfaces (GUIs) are ubiquitous in real-world
software and a notorious source of bugs that are difficult to
catch through software testing. Model checking has been
used to prove the absence of certain kinds of bugs, but model
checking works on an abstract model of the GUI applica-
tion, which might be inconsistent with its implementation.
We present a library for developing directly verified, state-
dependent GUI applications in the dependently typed pro-
gramming language Agda. In the library, the type of a GUI’s
controller depends on a specification of the GUI itself, stati-
cally enforcing consistency between them. Arbitrary proper-
ties can be defined and proved in terms of user interactions
and state transitions. Our library connects to a custom-built
Haskell back-end for declarative vector-based GUI elements.
Compared to an earlier version of our library built on an
existing imperative GUI framework, the more declarative
back-end supports simpler definitions and proofs.

As a practical application of our library to a safety-critical
domain, we present a case study developed in cooperation
with the Medical University of Vienna. The case study imple-
ments a healthcare process for prescribing anticoagulants,
which is highly error-prone when followed manually. Our
implementation generates GUIs from an abstract descrip-
tion of a data-aware business process, making our approach
easy to reuse and adapt to other safety-critical processes.
We prove medically relevant safety properties about the ex-
ecutable GUI application, such as that given certain inputs,
certain states must or must not be reached.

CCS Concepts • Software and its engineering → For-
mal software verification; Software verification; Functional
languages; • Applied computing → Business process
modeling; • Theory of computation → Type theory; •
Computing methodologies→ Model verification and val-
idation;

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in The 20th International Symposium on Principles and Practice of Declarative
Programming (PPDP ’18), September 3–5, 2018, Frankfurt am Main, Germany,
https://doi.org/10.1145/3236950.3236962.

Keywords Agda, interactive theorem proving, dependently
typed programming, graphical user interfaces, GUI verifi-
cation, state-dependent GUIs, reachability, dependable soft-
ware, data-aware business processes, verification of business
processes

ACM Reference Format:
Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw. 2018.
Declarative GUIs: Simple, Consistent, and Verified. In The 20th
International Symposium on Principles and Practice of Declarative
Programming (PPDP ’18), September 3–5, 2018, Frankfurt am Main,
Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3236950.3236962

1 Introduction
Graphical user interfaces (GUIs) are ubiquitous in modern
software and form an integral part of many safety-critical
systems. Due to the widespread use of interface builders and
user-interface markup languages to define GUI layouts and
transitions, GUIs are also a major practical application of
code generation from declarative specifications. The role of
declarative GUI specifications in GUI application develop-
ment has a clear benefit: it provides an abstraction boundary
between the user interface and the business logic. This allows
user experience designers to work independently from soft-
ware engineers, to develop GUIs at a higher level of abstrac-
tion, and to quickly mock-up and experiment with different
GUIs independently of the rest of the application [72].

1.1 Challenges of Declarative GUIs
A supposed benefit of declarative programming is that it
leads to more correct and more maintainable software. Un-
fortunately, this promise is not realized by the GUI speci-
fication languages currently in use. In practice, GUIs are a
major source of bugs. For example, the GUI for the Mozilla
project is specified using the declarative XML User-Interface
Language (XUL),1 but a study of the Mozilla project found
that the GUI is still the source of 50.1% of reported bugs
and responsible for 45.6% of crashes [71]. Additionally, other
researchers have noted the difficulty in maintaining consis-
tency between GUI specifications, the underlying business
logic [72], and the corresponding test suites [28].

1https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL

https://doi.org/10.1145/3236950.3236962
https://doi.org/10.1145/3236950.3236962
https://doi.org/10.1145/3236950.3236962
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

Besides typical maintenance challenges associated with
mixing generated and handwritten code [79], GUI applica-
tions pose special challenges to ensuring software quality.
The most significant is that traditional software testing of
GUIs is notoriously difficult [50, 53], and that traditional mea-
sures of test quality, such as code coverage, are not useful in
the context of GUIs [52]. The core challenge to testing GUIs
is that automated tests must simulate user interactions, but
the range of interactions is huge and the simulated actions
tend to be brittle with respect to minor changes in the GUI
specification such as swapping the placement of two buttons.

Since many GUI applications are safety critical, there is a
need for stronger correctness guarantees related to GUIs than
software testing can provide. Others have studied the formal
verification of GUI applications using model checking [51].
However, such approaches verify only an abstracted model
of the GUI rather than the software itself.

1.2 A Library for Directly Verified GUIs
To address the need for strong correctness guarantees in
safety-critical situations, we have developed a library for
building directly verified GUI applications in Agda [8]. Agda
is a dependently typed programming language and interac-
tive theorem prover. Our library is unique in that the same
declarative GUI specification that is used to generate the GUI
and bindings to the business logic, is also a first-class value
that can be used in Agda types and proofs. This enables us
to statically guarantee basic consistency properties between
the GUI and the business logic for all GUI applications built
in our library. It also enables us to define and prove sophisti-
cated properties about the behavior of GUI applications in
terms of their specifications.

A major contribution of this paper is a demonstration that
our declarative, directly verified approach to GUI applica-
tion development can be applied to a realistic problem in
a safety-critical domain. Specifically, after briefly introduc-
ing our library in Section 3, we present an extended case
study developed in cooperation with the Medical University
of Vienna. The case study implements a healthcare process
concerning the prescription of blood thinners used in the
emergency room of the Vienna General Hospital.

1.3 Domain: GUI Applications in Healthcare
Medication errors are a serious problem in healthcare, per-
haps even the third leading cause of death in the US [49].
The newest blood-thinning drugs called NOACs (novel oral
anticoagulants) are especially problematic. They are widely
prescribed but studies have found that as many as 11–16% of
NOAC prescriptions are medication errors [35, 81]. Prescrib-
ing NOACs is difficult because they have complex exclusion
and dosage criteria, leading to human errors.
Health information technology (HIT) systems can reduce
medication errors [63]. However, the HIT system itself can

introduce a new class of errors related to software bugs. Ma-
grabi et al. [47] provide a detailed overview of HIT-related
errors. One noteworthy example is that Trinity Health Sys-
tem (at the time, operating 46 hospitals in the US) reported
an error where its GUI application would post doctors’ or-
ders to the wrong medical charts [47]. There is evidence that
HIT errors are widespread and that many of these errors are
specifically related to GUIs. The Pennsylvania Patient Safety
Authority [45] reported 889 medication errors attributed to
HIT systems within six months. Graber et al. [27] reported
248 malpractice claims attributed to HIT systems. Finally,
a review of FDA data in 2011 [58] found 120 error reports
related to HIT systems; 50.2% of these errors were related to
the user interface, while 20.8% were related to calculation
errors or other software bugs.
Potential software errors and liability issues are a likely

reason that medication prescriptions are still usually per-
formed manually, even though this is also error prone for
some medications, such as NOACs.

In our case study, we use our library to build a GUI appli-
cation that implements part of a realistic healthcare process
for prescribing NOACs. First, we develop a declarative speci-
fication of the process in collaboration with a doctor at Vi-
enna General Hospital. Next we develop a verified program
that implements this process as an executable GUI applica-
tion. The application is statically guaranteed to be consistent
with the process specification. Finally, we define and prove
additional medically relevant properties about the process
and the GUI application. Our case study demonstrates how
formal verification can be used to rule out many of the er-
rors that plague safety-critical HIT systems. Notably, our
approach enables directly verifying the healthcare process
itself, the business logic that realizes that process, and the
executable GUI program all within a single framework.

1.4 Role of Dependent Types
Our case study also illustrates the advantages of declarative
specifications as first-class values. In our library, GUI speci-
fications are values of a coinductive data type.2 This means
we can write arbitrary functions to query and modify GUI
specifications. Thus, in implementing the NOAC prescription
process, we do not define each stage of the GUI application
directly, but instead generate them from the process specifi-
cation (which is itself an inductive value). The required GUI
specifications are generated and used as dependently typed
inputs to the rest of the application generation code, ensur-
ing that the GUIs are consistent with the controllers that
realize the parent process specification. This demonstrates
that first-class declarative specifications support both reuse
and correctness. Once we have a data type for specifying
healthcare processes and functions for translating them into

2We use a coinductive rather than inductive data type because we allow
potentially infinite sequences of interactions.

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

GUI applications, we can more easily generate GUI appli-
cations for other healthcare processes and immediately get
the same strong consistency guarantees demonstrated in our
case study.
Dependent types are also central to proving medically

relevant properties about healthcare processes and their real-
ization as executable GUI applications. Of course, by exploit-
ing the Curry-Howard correspondence we can define the
properties that we want to prove as types and prove them by
constructing values of those types. But the utility of depen-
dent types runs deeper in the context of healthcare processes.
Healthcare processes are complex and need to consider pa-
tient data generated at one step in future steps (e.g. blood test
results). Thus, correctness constraints must also take into ac-
count data generated at intermediate steps. Dependent types
are well-suited to describing such data-dependent specifi-
cations and proof conditions, and are more expressive than
other verification methods that have been applied to health-
care processes. For example, Montali et al. [56] allow only
propositional linear temporal logic (LTL) formulas. Depen-
dent types support defining and verifying conditions over
numeric values, such as age or renal value. This corresponds
to LTL with natural number values, which is equivalent to
first-order logic and therefore undecidable [26] Undecidabil-
ity is not a problem in our setting since proof objects are
provided by the programmer.

1.5 Contributions
To summarize, this paper makes the following contributions:

• A library for programming state-dependent GUI ap-
plications, which has at its core a type for defining
first-class, generic, declarative GUI specifications, and
which make essential use of dependent types. This
library goes beyond finite state machines in two ways:
it allows for infinitely many states, and it supports
arbitrary real-world interactions (i.e. arbitrary IO ac-
tions) when transitioning from one GUI state to the
next.

• A demonstration using a real-world case study that our
approach can be used to develop safety-critical GUI ap-
plications in the medical domain. This demonstration
illustrates how, using our library we can:
– Generate GUI specifications from a high-level, data-
dependent process description in a way that is guar-
anteed to be type safe and consistent with both the
process description and the business logic.

– Verify data-dependent properties of the actual ex-
ecutable GUI application, such as the reachability
and unreachability of GUI states.

– Perform all of the above within the same framework
and language, avoiding the need to define external
models of the application or translate between frame-
works, which are potential sources of errors.

Source Code. All displayed Agda code has been extracted
automatically from type-checked Agda code [6]. For readabil-
ity, we have hidden some details and show only the crucial
parts of the code which is available online at [6].

2 Background
Agda and Sized Types Agda [8] is a theorem prover and
dependently typed programming language based on Martin-
Löf type theory. In Agda, propositions are represented as
types; a proposition is proved by providing a value of its type.
Agda features a type checker, a termination checker, and a
coverage checker. The termination and coverage checker
guarantee that every program in Agda is total, which is
required for the consistency of the logic.

In dependently typed languages, types can contain values
and functions can produce types. To assign a type, for ex-
ample, to a type-producing function, Agda needs a type of
types, which is called Set. In fact, Agda has infinitely many
type levels. The next level, Set1, extends the collection of
types by Set itself and types formed from it, while Set2 is the
next type level above Set1, and so on.
A dependent function type is written as (x : A) → B,

which maps an element x of type A to an element of type B,
where the type B may depend on x . Wrapping the argument
in curly brackets, such as {x : A} → B, allows us to omit
arguments when applying the function, and to rely on Agda
to infer it from typing information. We may still apply the
argument explicitly using the notation {x = a} or {a}, for
example, when Agda cannot deduce it automatically.

Agda has inductive types (introduced by data) and record
types. To represent infinite structures we use Agda’s coin-
ductive record types, equipped with size annotations [33].
The size annotations are used to show the productivity of
corecursive programs [2], which we define using copattern
matching [3].

State-Dependent IO In previouswork [1], whichwas based
on work of the second author [69], we gave a detailed in-
troduction to interactive programs and objects, and to state-
dependent interactive programs and objects in dependent
type theory. The theory of objects in dependent type the-
ory is based on the IO monad in dependent type theory,
developed by Hancock and Setzer [29–31, 70]. The theoreti-
cal basis for the IO monad was developed by Moggi [55]. It
was pioneered by Peyton-Jones and Wadler [61, 74–77] as
a paradigm for representing IO in functional programming,
especially Haskell. The idea of the IO monad is that an in-
teractive program has a set of commands to be executed in
the real world. It iteratively issues a command and chooses
its continuation depending on the response from the real
world. Formally, our interactive programs are coinductive
(i.e. infinitely deep) Peterson-Synek trees [60], except that
they also have the option to terminate and return a value.
This allows for monadic composition of programs, that is,

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

sequencing one program with another program, where the
second program depends on the return value of the first
program. In the state-dependent version [1], both the set of
available commands and the form of responses can depend
on a state, and commands may modify the state.
For this paper, we introduce a generic IO interface for

describing the commands a program can issue and the re-
sponses the world can return.

record IOInterface : Set1 where
Command : Set
Response : Command → Set

The interface is a record with two fields: Command and
Response. Record fields can be applied postfix using the dot
notation, for example, if p : IOInterface, then p .Command :
Set. To improve readability, throughout the paper we omit
some bureaucratic Agda keywords from record definitions,
such as field, coinductive, and open.

3 A Library for Declarative,
State-Dependent GUI programming

This section introduces our library. Section 3.1 describes
a representation of state-dependent objects from previous
work, which will be used in our library to handle GUI events.
In Section 3.2, we introduce the library from a programmer’s
perspective, developing a simple application that illustrates
some unique capabilities of our library. In Section 3.3, we
introduce the type of GUIs which consists of a frame together
with an object handling events of that frame. In Section 3.4,
we describe the translation of applications defined in our
library into executable programs via a custom-built backend.
Our library separates an application’s view—the appear-

ance of its GUIs—from its controller—the handlers that pro-
cess events generated by user interactions, which is similar
to current practice with model-view-controller frameworks
[43] and graphical GUI-builder tools [72]. However, our ap-
proach is both safer and more flexible. Handlers are depen-
dently typed with respect to the GUIs they interface with,
which means that GUI specifications can be dynamically
modified (see Section 3.2) or programmatically generated
(see Section 5) without sacrificing the static guarantee of
consistency with its handlers. Such dynamically changing or
programmatically generated GUIs are not well supported by
the GUI-builder model, and the consistency guarantees are
not provided by programmatic MVC frameworks. We say
that our library supports state-dependent GUI applications
since the GUI can dynamically change based on the state of
the model and since the GUI is itself a dynamically changing
state of the handler objects.

3.1 State-dependent Objects
GUI events are handled by objects, which we have defined
in our previous work [1], where they are described in detail.

As in other object-oriented frameworks, an object receives
methods and in response returns a result and updates its
internal state. Since Agda is purely functional, state updates
are simulated by pairing the method’s return value with
the update object. More uniquely and requiring dependent
types, a state-dependent object is an object whose available
methods depend on its (externally visible) state. Therefore,
an object’s state is part of its type, and the interface of an
object may change after invoking a method. The following
type Interfaces defines the interface of a state-dependent
object (s indicates state dependency). It consists of the type
of the externally visible state, a set of methods that depends
on the value of that state, the corresponding results of those
methods, and a function that yields the next state based on
the current state, the invoked method, and its result.

record Interfaces : Set1 where
States : Set
Methods : States → Set
Results : (s : States) →Methods s→ Set
nexts : (s : States) (m : Methods s)→ Results s m

→ States

More precisely, an object obj with external state s is an ele-
ment of the type of objects (IOObjects s) for this interface.
A method call is invoked by invoking the field .method m
of obj, wherem : Methods s . Whenm is called it runs an
interactive program, which concludes by returning a result
r : Results s m and an updated object. The updated object
has a new state s ′ = nexts s m r and is therefore an element
of (IOObjects s ′). Therefore (IOObjects s) is a recursive def-
inition. Since an object can be called infinitely many times,
this recursive definition is coinductive.

3.2 Example: A GUI with Infinitely Many States
We will now present a simple example that both illustrates
the use of the GUI data type and demonstrates that we can
develop GUIs with infinitely many states where each state
differs in the GUI elements used. The example is a GUI ap-
plication with n buttons. Clicking the ith button extends the
GUI with i additional buttons. First, we define a function
nFrame that constructs a frame with n buttons. Creating
an empty frame is trivial. A button is added to a frame by
providing its label as a String.

nFrame : (n : N) → Frame
nFrame 0 = emptyFrame
nFrame (suc n) = addButton (show n) (nFrame n)

Next we define a function infiniteBtns that constructs a GUI
application with n buttons, which will be an element of the
data typeGUI. An element ofGUI is a record with two fields:
the GUI .gui, and its handler .obj, which is a state dependent
object. The GUI application is defined by determining the
values for these fields:

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

infiniteBtns : ∀{i}→ (n : N) → GUI {i}
infiniteBtns n .gui = nFrame n
infiniteBtns 0 .obj .method ()
infiniteBtns (suc n) .obj .method (m , _) =
returnGUI (infiniteBtns (n + finToN m))

The argument ∀{i} introduces a hidden dependency on a size
i , which is also a hidden argument of GUI. This argument
is boilerplate needed so that Agda’s termination checker ac-
cepts the corecursive definition of infiniteBtns. The handler
object must handle all of the events that can be triggered
from the GUI, in this case button clicks from n different but-
tons. In case when n = 0, there are no events to be handled,
indicated by the notation (). Otherwise, the handler object’s
method accepts an argument of the form (m, s), wherem is a
finite number (bounded by the number of buttons in the GUI)
that indicates which button was clicked, and s contains all
of the strings obtained by text boxes in the GUI. Since there
are no text boxes in the GUI, the second component will be
empty and is not used in the handler (indicated by _). The
result of the handler method is an interactive program that
returns a new GUI application to replace the current one—in
this case, the program immediately terminates returning a
new infinite button GUI withm additional buttons.
While this example is admittedly contrived, the ability

to define dynamically expanding GUIs is an expressiveness
gain over standard GUI builders. GUI builders only support
constructing finitely many GUIs for a particular application.

Finally, we compile our GUI application into an element of
NativeIO. This is a type that can be compiled using Agda’s
foreign function interface (FFI) into native Haskell code,
and can then be executed in Haskell. We use Agda’s do
notation, which is similar to Haskell’s, and supports creating
an interactive program from a sequence of IO actions, where
outputs of preceding actions can be used by later actions.

main : NativeIO Unit
main = do win <- createWindowFFI

compile win (infiniteBtns 3)

3.3 A Data Type for GUIs
A GUI can be broken into two parts: the frame and widgets
that make up the interface, and the data-dependent object
that handles events generated by the interface. The data type
GUI of GUIs is defined below, with fields .gui and .obj for
accessing the respective parts.

record GUI : Set where
gui : Frame
obj : FrameObj gui

For the purposes of this paper, we treat the first part, Frame,
as an abstract data type with the following operations for
creating an empty frame, adding labeled buttons, adding text
labels, and adding text boxes.

emptyFrame : Frame
addButton : String → Frame→ Frame
addLabel : String → Frame → Frame
addTextbox : Frame→ Frame

The handler object, FrameObj, is a state-dependent object
whose state is the .gui interface it must handle events for. As
described in Section 3.2, the handler method accepts pairs
(m, s), wherem is a finite number indicating which button
has been clicked, and s is a list of strings representing the
text in all of the text boxes in the interface. In response to a
method call, an interactive program will be executed. This
may perform arbitrary IO actions, such as performing a data-
base query or interacting with the console. In the future, we
plan to add additional commands to support interactions
with other external devices, such as medical equipment. The
result of the interactive program is a new GUI, which re-
places the current one.

3.4 Implementation Details
GUIs are translated into a value of NativeIO by the function
compile.

compile : SDLWindow → GUI → NativeIO Unit

The required argument SDLWindow can be obtained from a
native interactive program createWindowFFI. The resulting
NativeIO value can be compiled to and invoked fromHaskell,
which will create and execute the GUI that we have defined.

On the Haskell side, we use the libraries SDL [68] and
Rasterific [64] as a backend. Rasterific is one of the outcomes
of the STEPs project [9], which is focused on the concise
formulation of declarative GUIs based on FRP and objects.
At its core is an elegant DSL for vector graphics [21] that
was also ported to Haskell [32]. We used this Haskell port
(Rasterific), the bindings to the SDL library, and some addi-
tional glue code that we contributed ourselves. Our Agda
GUI library binds to this Haskell glue code and presents
vector-based GUI elements that are rasterized via Rasterific
and then presented on the screen via an SDL window.
This approach solves a previous issue when using the

library wxHaskell [80], which exhibits a mismatch for func-
tional/declarative programming. In wxHaskell, handler func-
tions are IO programs which only have side effects and no
return value, and are implemented via pointers in Haskell.
With some effort, wewere able to implement state-dependent
objects and declarative GUI data types using wxHaskell, but
the complexity was substantial. This made verification chal-
lenging. Switching to Rasterific solved this problem.

4 Reasoning About GUI Applications
We can view a GUI application as a state transition graph,
where each state of the application consists of the current
frame and its handler. When an event is triggered, an IO pro-
gram is executed that should eventually yield the next state

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

in the graph. However, reasoning about this graph is difficult
for two reasons. First, handlers may interact with the user
via IO commands, so we must reason about the potential
responses to each command. Second, both the handlers’ IO
program and the GUI application itself are coinductive, mean-
ing that they may never terminate. In the rest of this section,
we introduce infrastructure for reasoning about coinductive
programs (Section 4.1), and for specifying properties over the
state transition graphs of GUI applications (Section 4.2). In
Section 5, we use the infrastructure developed in this section
to prove properties about our case study.

4.1 Reasoning about Coinductive Programs
Because of the difficulties described above, we do not rea-
son about a GUI’s state transition graph directly. Since we
need to be able to reason about user interactions, we unroll
each handler into all of the (potentially infinite) sequences
of commands produced by the associated IO program. Each
command corresponds to a new intermediate state in the
transition graph. The resulting graph is potentially infinite,
both because of the handlers and because the GUI applica-
tion itself may have infinitely many states (see Section 3.2).
Therefore, we do not reason about the graph directly, but
instead reason about finite simulations of this model.

First, we introduce a data type to distinguish the two kinds
of states in our model: either a handler method has been in-
voked and we’re in an intermediate handler state (started), or
we’re at a resting state, waiting for an event (notStarted). The
argument pr to started captures the remaining IO program
to be executed for the handler.

data MethodStarted (g : GUI) : Set where
notStarted : MethodStarted g
started : (m : GUIMethod g)

(pr : IO consoleI∞ GUI) →MethodStarted g

Next, a state in the model can be represented by the parent
GUI state and the handler method invocation state.

data State : Set where
state : (g : GUI)→ MethodStarted g→ State

With this model, we can simulate the execution of a GUI
application. The simulator matches states of the model and
either triggers events (e.g. by pressing buttons), provides
responses to IO commands, or transitions to subsequent
states of the model.
The following function defines the type of actions avail-

able to the simulator at each state in the model.

Cmd : State→ Set
Cmd (state g notStarted) = GUIMethod g
Cmd (state g (started m (exec’ c f))) = IOResponse c
Cmd (state g (started m (return’ a))) = ⊤

From a resting (notStarted) state, the event simulator can
trigger an event drawn from the methods supported by the

GUI interface. From within a handler (started), there are two
possibilities. If the handler has not finished, the IO program
has the form (exec’ c f), where c is the next command to
execute and f is a continuation to be applied to the response.3
In this case, the application is waiting for a response to the IO
command c, which the event simulator must provide. Finally,
if the handler has returned, then the simulator must take the
trivial action (⊤) to advance to the next notStarted state.

The simulator’s transition function has the following type,
which states that given a model state and an action of the
appropriate type, we can transition to the next model state.

guiNext : (g : State) → Cmd g→ State

The implementation of this function optimizes away states
with trivial transitions to simplify proofs over the model. For
example, when the next state is a returned handler state, it
moves directly to the following notStarted state. Similarly,
it collapses sequences of trivial IO actions, such as print
commands, into a single transition.

4.2 Properties Over GUI Application States
Many of the properties we want to express about GUI appli-
cations contain data dependencies. That is, we want to state
that starting from a given state, if the user provides certain
inputs (e.g. text in a text box) and those inputs satisfy certain
conditions, then a certain result state is either reached or not.
To support writing such data-aware properties, we define
the following data type Cmds that formalizes a sequence of
user inputs and a function guiNexts that computes the state
obtained after a sequence of inputs.

data Cmds : State → Set where
nilCmd : {g : State}→ Cmds g
»> : {g : State} (l : Cmds g)→ Cmd (guiNexts g l)

→ Cmds g

guiNexts : (g : State) → Cmds g → State

Note that the Cmds essentially defines a sequence of com-
mands parameterized by a State type that statically ensures
that each input corresponds to the preceding state. This is
an example of an inductive-recursive definition [24, 25].
We can now define a relation between two states s and

s ′ of a GUI. The following data type formulates that s ′ is
reachable from s by a sequence of GUI commands.

data _-gui->_ (s : State) : State → Set where
refl-gui-> : {s’ : State}→ s ≡ s’→ s -gui-> s’
step : {s’ : State}(c : Cmd s)

→ guiNext s c -gui-> s’
→ s -gui-> s’

The first constructor defines that the relation is reflexive,
while the second links two GUI states via a command.
3Previously we used do instead of exec, but do is now a keyword in Agda.

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

Finally, we define a property that, starting from one GUI
state start, we will eventually reach another state final, for
all possible user interactions. It holds if start and final are the
same state (constructor hasReached) or if we will eventually
reach final from the next state reached after any input a user
provides (constructor next).

data _-eventually->_ :
(start final : State) → Set where

hasReached : {s : State} → s -eventually-> s
next : {start final : State}

(fornext : (m : Cmd start)
→ (guiNext start m) -eventually-> final)

→ start -eventually-> final

5 Case Study: Healthcare Process Models
In this section, we present a healthcare case study that we
have developed in cooperation with the Medical University
of Vienna. It investigates the prescription of anticoagulants
(“blood thinners”) to patients admitted to the accident and
emergency department of Vienna General Hospital (AKH).
In Section 5.1 we provide a high-level description of our

case study by presenting an overview of the domain and
its significance, and by presenting a business process model
that describes the healthcare process we want to implement.
In Section 5.2 we define Agda data types and functions for
specifying business processes and translating them into GUIs.
This allows us to build GUI applications directly from the
business process descriptions already used in the domain. In
Section 5.3 we describe the implementation of the health-
care process for prescribing anticoagulants, and finally, in
Section 5.4 we demonstrate how to prove medically relevant
properties about the resulting GUI application.

5.1 A Process for Prescribing Oral Anticoagulants
Most patients prescribed anticoagulants are treated for atrial
fibrillation (AF), which is an abnormal heart rhythm that
affects 3% of the population in the EU/US. For these pa-
tients, four new oral anticoagulants (called NOACs) have
been shown to be equally effective at stroke prevention com-
pared to the older medication warfarin. The NOACs are
preferable in many cases because they are faster acting and
have shorter half-lives than warfarin.

However, NOACs are also frequently associated with med-
ication errors. Studies have shown an 11–16% error rate in
NOAC prescriptions [35, 81], and these errors can lead to
serious or fatal events [65, 66]. The problem is that prescrib-
ing the correct NOAC is complex and depends on several
clinical factors, such as the grade of renal impairment, age,
and risks of falls/accidents.

Med D Med A Med E Med C Med W

Contraindicated if GFR < 30 < 15 < 15 < 15 N/A
Contraindicated in AKH if GFR < 30 < 25 < 30 < 30 N/A
Contraindicated if fall risk no yes yes yes no
Low Dosage when GFR 30–49∗ ≤ 60kgs† 15–49 15–49 N/A

∗ non-mandatory constraint † weight of patient
Table 1. Contraindications of NOACs and warfarin accord-
ing to the European Society of Cardiology. All numerical
units are GFR (glomerular filtration rate) unless otherwise
noted. Medications are: D, dabigatran; A, apixaban; E, edox-
aban; C, rivaroxaban; and W, warfarin.

In this case study we consider the process of prescribing
anticoagulants to treat AF. Figure 1 specifies the business pro-
cess using the language BPMN.4 In BPMN, steps of the pro-
cess are indicated by rounded rectangles and data artefacts
are depicted as notes with three black bars. For example, the
step Patient registration involves recording the patient’s age
and weight, the step Patient history involves assessing and
recording the patient’s stroke risk (CHA2DS2-VASc-Score)
and fall risk, and most importantly, the step Receive blood test
results involves recording the result of a GFR (glomerular
filtration rate) blood test. GFR is an estimation of kidney
function, and is also called a renal value.

While the upper half of the diagram in Figure 1 is related
to the acquisition of data and an ensuing diagnosis of AF,
the lower half illustrates the critical steps of the doctor’s
decision of which anticoagulant to prescribe. In BPMN, the
X-symbol represents exclusive decision path branching and
merging. At the MD Choice step, the doctor may choose to
either prescribe warfarin or a NOAC. If the doctor chooses to
prescribe a NOAC, they must choose one of the four specific
medications (Med A–D) and a suitable dosage (high or low).
As mentioned, the safety constraints for this decision-

making process are complex. A subset of the constraints is
summarized in Table 1. While the full clinical specification
is more complex, we focus on the constraints presented in
the table for brevity. The first non-header line of the table
captures one such safety constraint: patients with severe
kidney damage (GFR below 30) cannot be given dabigatran,
and patients with kidney failure (GFR below 15) cannot be
given any NOAC. As a result, patients must be treated with
warfarin. Consequently, an implementation of the process in
Figure 1 must not reach the step Prescribe NOAC or any sub-
sequent NOAC step if the GFR is below 15. A stricter version
of this property (incorporating hospital-specific constraints,
see below) is proved as theoremWarfarin in Section 5.3.

In addition to safety constraints from the medication man-
ufacturer, additional constraints can be imposed by the hos-
pital to further reduce risk. In AKH, the hospital of our case

4https://www.omg.org/spec/BPMN/2.0.2/

https://www.omg.org/spec/BPMN/2.0.2/

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

Patient arrival at ER

Patient
registration

Patient
history

Draw
blood

Receive
blood

test results

Diagnosis
(atrial

fibrillation)

MD Choice
(check all

data)

Prescribe
warfarin

Prescribe
NOAC

Med A

Med B

Med C

Med D

High
dose

Low
dose

Discharge Patient

patient age
patient weight

CHA2DS2-
VASc-Score
fall/accident

risk

GFR / Creat.
(renal

function)

Figure 1. Specification of a healthcare process for prescribing oral anticoagulants to treat
atrial fibrillation.

Figure 2. Screenshot from the
corresponding GUI application.

study, the second row captures additional AKH-specific con-
straints. By applying these constraints, we see that if the
GFR is between 25 and 30, apixaban is the only NOAC that
may be prescribed.
If a patient may need immediate surgery, or in the case

of an elderly patient who has an increased risk of falling
and sustaining an injury, one should prescribe only NOACs
which have an antidote that can reverse the thinning effect
of the medication. This is not the case for Med A (apixaban).
Therefore, in case of fall risk, Med A needs to be substituted
with a different NOAC or by warfarin.

The last row of the table captures constraints related to the
dosage of a NOAC. For most NOACs, a smaller dosage must
be prescribed when the GFR is in a particular range. However,
apixaban dosage is instead constrained by the weight of the
patient. An additional constraint not reflected in the table
is that in the case of dabigatran, patients over the age of 75
should always be given a restricted dosage.

5.2 Formalization of Business Processes
The healthcare process of our case study is specified as a
business process, in BPMN, plus additional safety constraints.
We could implement and verify a GUI application for our
case study by directly constructing GUIs and handlers as
described in Section 3. However, we expect many healthcare
processes (and other safety-critical business processes) can

be expressed in a similar way as our case study, and so build-
ing a GUI application directly would miss out on potential
for reuse among implementations of such processes.

Instead, we define an inductive data type for directly repre-
senting business processes as Agda values, and then translate
these specifications into GUIs that implement each step. This
illustrates how our library is suitable not only as a way to
build verified GUIs from scratch, but also as infrastructure for
defining domain-specific libraries or languages for building
GUI applications from higher-level specifications. Crucially,
the GUI applications generated in this way are still directly
verifiable executable programs.

A simple data type for specifying business processes is
given below. The data type includes only the cases needed
to realize our case study, but could easily be extended to
support more of the BPMN language.

data BusinessModel : Set where
terminate : String→ BusinessModel
xor : List (String × BusinessModel)

→ BusinessModel
input : {n : N}→ Tuple String n

→ (Tuple String n→ BusinessModel)
→ BusinessModel

simple : String→ BusinessModel→ BusinessModel

A value of type BusinessModel represents a business process
as illustrated in Figure 1, augmented with some additional

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

information needed to generate a corresponding GUI appli-
cation. The terminate constructor represents a final step of
the process, whose string argument represents a concluding
message. The xor constructor represents a branching step,
where the possible next steps are represented by a list of
string-labeled business models. The input constructor cor-
responds to a step requiring n inputs from the user. The
function argument determines the next step based on the
inputs provided by the user.5 Finally, the simple constructor
represents a basic step in the process, which consists of a
message to display and a business model that is the next step
in the process.
A value of type BusinessModel can be translated into a

GUI using the following function.

businessModel2Gui : BusinessModel → GUI

A simple or xor step will be translated into a GUI with string-
labeled buttons leading to the corresponding next steps. An
input step will be translated into a form with text boxes
for each input and a handler that collects these inputs and
invokes the provided function to transition to the next step.
The function associated with an input step may perform

arbitrary processing. For example, in the input step associ-
ated with collecting the GFR test result (renal value), the
string input from the text box is converted into an integer,
and then categorized into elements of the following data
type, which is used to select the next step in the process.

data RenalCat : Set where
<25 ≥25<30 ≥30<50 ≥50 : RenalCat

Finally, the initial state of the GUI application for a business
process can be obtained from the following function.

businessModel2State : BusinessModel → State
businessModel2State b
= state (businessModel2GUI b) notStarted

5.3 From Business Processes to GUI Applications
Using the BusinessModel data type defined in Section 5.2,
we can encode the business process depicted in Figure 1.
We show only a representative sample of the full encoding
of the process. First, we start from the end and work our
way backwards. The following three lines define the final
discharge step and two of the simple steps that precede it.

5The repository contains a more advanced variant where the input construc-
tor also accepts an input validation function. The resulting GUI application
will then validate its inputs; if validation fails, the validation function speci-
fies an error message to display and the application will return to the input
form. In our example, this can be used to ensure that numeric values are
entered as numbers and fulfil reasonable range conditions. The repository
shows as well how to adapt the verification of the health care process given
below to a process with validation of inputs.

discharge = terminate "Discharge Patient"

lowdoseSelection = simple "Low Dose" discharge
highdoseSelection = simple "High Dose" discharge

Many xor steps in the business process are not points where
doctors should be able to make arbitrary decisions. Rather,
the next steps are fully determined by safety constraints
and by data acquired earlier in the process. Therefore, we
model such steps not with xor, which would enable arbi-
trarily choosing among next steps, but with simple and a
next step computed by a function on the incoming data.
For example, from the Med A step, whether to choose the
high dosage or low dosage depends on the patient’s weight
(see Table 1). This is implemented below by defining Med
A (NOACSelectionA) to be a simple step whose next step is
computed by the doseSelectionA function.

doseSelectionA : WghtCat → BusinessModel
doseSelectionA ≤60 = lowdoseSelection
doseSelectionA >60 = highdoseSelection

NOACSelectionA : WghtCat → BusinessModel
NOACSelectionA w = simple "Med A" (doseSelectionA w)

For the other three NOAC medications, the transition to the
corresponding dosage step is determined by the following
function, which implements the remainder of the third row
of Table 1, plus the additional constraint that patients over
75 years of age should receive a low dosage.

doseSelection¬A : RenalCat≥30 → AgeCat
→ BusinessModel

doseSelection¬A ≥30<50 <75 = lowdoseSelection
doseSelection¬A ≥50 <75 = highdoseSelection
doseSelection¬A r ≥75 = lowdoseSelection

The first steps of the process model are concerned with col-
lecting data about the patient. The following defines the
input step for entering the patient’s blood test results.

bloodTestRes : FallRisk → AgeCat→WghtCat
→ BusinessModel

bloodTestRes f a w =
input "Enter Bloodtest Result" λ str →
diagnosis f (str2RenalCat str) a w

The subsequent state is determined by the diagnosis func-
tion, which takes into account the renal value (converted
to a categorical value of type RenalCat), and the categori-
cal values for fall risk and age, obtained at previous input
steps. The rest of the business process is constructed simi-
larly to the steps illustrated above. The compiled program
is now obtained by applying businessModel2GUI to the ini-
tial business process patientRegistration. Figure 2 shows a
screenshot of the resulting GUI application.

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

5.4 Verifying GUI Applications
Now we want to verify medically relevant safety proper-
ties about our GUI application. In particular, we want to
verify that for various kinds of inputs, our application will
recommend the correct coagulant and dosage.
To express and prove such properties, we need a way

to automate and abstract over the initial input steps of the
process. The following function takes several string values
corresponding to each of the inputs requested in the ini-
tial steps of the process (age, weight, fall risk, stroke risk
score, and blood test result) and returns the state of the GUI
application after submitting each of these inputs.

stateAfterBloodTest :
(strAge strWght strFallR strScore strBlood : String)
→ State

stateAfterBloodTest strAge strWght strFallR strScore strBlood
= guiNexts patientRegistrationState

(nilCmd
»> textboxInput2 strAge strWght
»> textboxInput2 strFallR strScore
»> btnClick
»> textboxInput strBlood)

The body of this function returns the next state of the GUI
after executing a sequence of user actions on the initial pa-
tient registration state. The sequence of actions follows the
sequence of steps at the top of Figure 1: it inputs the age
and weight strings in the GUI corresponding to the first step,
inputs the fall risk and stroke risk in the next step, clicks to
confirm that blood has been drawn, and finally inputs the
blood test result in the fourth step.
Our first theorem states that, given a complete set of

inputs, if the blood test yields a renal value of less than
25, then we will eventually reach the state where warfarin
is prescribed. The theorem is expressed in terms of the
-eventually-> relation defined in Section 4.2.

theoremWarfarin :
(strAge strWght strFallR strScore strBlood : String)
→ str2RenalCat strBlood ≡ <25
→ stateAfterBloodTest strAge strWght strFallR

strScore strBlood
-eventually-> warfarinState

theoremWarfarin strAge strWght strFallR strScore strBlood =
theoremWarfarinAux (patientHist2FallRisk strFallR)
(str2RenalCat strBlood) (str2AgeCat strAge)
(str2WghtCat strWght)

The proof relies on an auxiliary theorem where the string-
valued inputs have been converted into the corresponding
categorized values to support pattern matching.

theoremWarfarinAux : (f : FallRisk)(r : RenalCat)
(a : AgeCat)(w : WghtCat)

→ r ≡ <25
→ diagnosisState f r a w

-eventually-> warfarinState
theoremWarfarinAux r .<25 a w refl =
next (λ _ → next (λ _→ hasReached))

The proof expresses that no matter which inputs are pro-
vided in the first two steps of the GUI, we will reach the
warfarin state if the categorized renal value is <25. The proof
constructs a value of the -eventually-> type. Each next con-
structor corresponds to a GUI state that must be clicked
through before reaching the desired warfarin state. Since
no further inputs are needed or used, each step ignores its
inputs as indicated by _.
The second theorem states that if the weight is > 60, and

if we reach the state where apixaban (A) is prescribed, then
a low dosage is not prescribed.

theoremNoLowDosisWeight>60 :
(strAge strWght strFallR strScore strBlood : String)
→ str2WghtCat strWght ≡ >60
→ (w’ : WghtCat)
→ stateAfterBloodTest strAge strWght strFallR

strScore strBlood
-gui-> NOACSelectionAState w’

→ (s : State)
→ NOACSelectionAState w’ -gui-> s
→ ¬ (s ≡ lowdoseSelectionState)

The proof of this theorem is carried out by a case distinction
on possible paths. We do this manually, but current work
on Agda will make it possible to perform such finite case
distinctions automatically in the future.

6 Related Work
In our previous article [1], we introduced an Agda library for
developing state-dependent, interactive, object-based pro-
grams. We demonstrated its use for the development of basic
GUIs. In this paper, we have extended this work by adding
a declarative specification of GUIs as a data type that cap-
tures all aspects of a GUI application (components, handlers,
etc.). We also demonstrate a way to define and prove proper-
ties about GUI applications in Sections 4–5. Such properties
include data-dependent reachability and unreachability con-
straints for GUIs generated from declarative business process
specifications. In another paper [5], we have adapted the cur-
rent framework to allow the specification and verification of
feature-based composition of workflows implemented as a
feature-oriented software product line [10]. The framework
allows the modular definition of features and promotes the
separation of concerns in workflow definitions.
The library presented in this paper uses a custom-built

backend based on SDL and Rasterific, as described in Sec-
tion 3.4. We have also developed an alternative version of

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

this library based on the standard wxWidgets toolkit via wx-
Haskell [80], which is described in previous work [7]. There
are several tradeoffs between the two versions of the library.
The version presented here is much simpler (since wxWid-
gets is an inherently imperative toolkit with concurrency,
interfacing to it from Agda leads to significant complexity),
which supports scaling to larger applications and greatly
simplifies the definition and proof of properties. However,
wxWidgets integrates better with the host operating sys-
tem and has a larger selection of components that can be
integrated with our approach without too much additional
effort. The library described in [7] is also more generic in that
it supports nested frames and modifying properties with-
out redrawing the entire GUI. An advantage of the simpler
version presented here is that it is easier to programmati-
cally generate GUI applications from higher-level declarative
specifications, as illustrated by the translation of business
processes into GUIs in Sections 5.2 and 5.3. Due to the in-
creased complexity, the application presented in [7] is much
simpler than the case study presented here.

FunctionalReactive Programming (FRP) FRP is another
approach to writing interactive programs in functional pro-
gramming languages [78]. Sculthorpe and Nilsson [67] pro-
vide an implementation of FRP in Agda. Jeffrey [36] define
an embedding of linear temporal logic (LTL) into Martin-Löf
type theory. This embedding supports program verification
in which specifications are expressed as LTL formulas. An ex-
tension of FRP with side effects was introduced in Agda [13].
Krishnaswami and Benton [44] introduced a semantic

model of GUIs based on the Cartesian closed category of
ultrametric spaces using FRP. However, their work doesn’t
address the verification of GUIs.
The STEPs project [9] led by Alan Kay presented an ap-

proach to declarative GUIs based on FRP andMorphic (Small-
talk GUIs). Its vector graphics library is particularly concise
and elegant, which is why it can be considered as suitable for
use in vector-based GUI backends. We used it for our Haskell
GUI backend. A major difference between the STEPs project
and regular FRP is that it is based on dynamically-typed
languages without static type guarantees.

Formlets [20] are abstract user interfaces that define static
forms, which combine several inputs into one output; they
do not support sequencing multiple intermediate requests.

Formalizations in Isabelle There has been work on for-
malizing end-user-facing applications in Isabelle. There are
formalizations of distributed applications [15] and confer-
ence management systems [37]. In both cases, the verifica-
tion provides confidentiality guarantees about the informa-
tion flow. However, only the core of the server is verified.
The user interface and server API are external to the system
and therefore not part of the Isabelle formalization and not
checked for consistency. Since this aspect is of particular

interest for the healthcare domain, we plan to implement
similar confidentiality guarantees and other security proper-
ties. We can define stronger guarantees since we can define
them over the entire running system (including the GUIs),
and not just the core information flow.

Semantic Reasoning in the Healthcare Domain Abidi
et al. [4] present a decision support system for the prescrip-
tion of NOACs. They use semantic reasoning (OWL) to ad-
dress the challenge of determining the appropriate medica-
tion. However, their work does not involve formal verifica-
tion. The fact that this system has been developed illustrates
the difficulty of the medication process and thus the need
for automated systems.

Process Models in the Healthcare Domain Healthcare
processes have been specified using Declare [54], which is a
declarative modeling language [73] for business processes
based on human-readable diagrams. The Declare constraints
are often embedded in LTL or finite automata theory. A
useful extension for healthcare processes is to model patient
data in the underlying business models. This was studied
from the perspective of databases [19] and implemented as
an extension for Declare [56]. A first-order logic approach
is presented by [46], which would be sufficiently expressive,
however, it is undecidable which is problematic (e.g. most
model checkers don’t support it).
In the current paper, in contrast to [19, 54, 56] and other

approaches to process models, we apply formal verification
using a theorem prover (Agda) and provide machine-checked
proofs as safety guarantees. We have found only two papers
using formal specifications: Debois [23] proves in Isabelle a
general result that a certain labeling of events in a business
logic guarantees orthogonality of events. Montali et al. [57]
developed a language DecSerFlow to model properties of
business processes via choreographies mapped to LTL and
then to abductive logic programming. These properties can
be reasoned about with automated theorem provers. How-
ever, that limits their use to finite systems. Furthermore, it
doesn’t deal with the execution of process models/GUIs.

Deductive Verification of Imperative Programs An al-
ternative approach is to use a co-inductive approach to di-
rectly verify imperative programs [59]. [16] presents Dy-
namic Trace Logic (DTL), which combines dynamic logic
with temporal logic, allowing to prove functional and infor-
mation-flow properties in concurrent programs. Properties
of interactive programs are specified using modal operators.
We also plan to develop a full modal logic.

Idris and Algebraic Effects. Bauer and Pretnar [14] have
introduced the notion of algebraic effects. Brady [17] adapted
this approach to represent interactive programs in Idris
[18, 34]. In [1, Sec. 11], we have conducted a detailed com-
parison of the IO monad used in Agda and the use of alge-
braic effects in Idris. Additionally, we have detailed how to

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

translate between the two approaches. The focus of Idris is
on practical dependently typed programming, but it is also
usable as an interactive theorem prover. There are no estab-
lished GUI libraries for Idris, but GUI programming should
be possible using its FFI interface [62].

7 Future Work
We plan to evaluate the GUI application developed in our
case study by running it on live, anonymized patient data.
This is awaiting the approval of the AKH hospital’s ethical
board.

A constraint imposed by our framework is that a GUI has
one event handler object that handles all events generated by
the GUI. We are working on a version that removes this con-
straint by allowing the composition of more loosely coupled
GUI objects, which is desirable from several perspectives,
including modularity, security, and performance.
We also plan to investigate combining the formlets ap-

proach with our notion of GUIs. This would allow us to
create generic GUIs that compute results from user inputs,
which can be plugged together. Specifically, it would enable
better composition and reuse of high-level GUI components.

Currently, our library generates application programs. We
plan to extend this to also support web-based GUIs and
mobile apps. Event handlers in our framework are writ-
ten in Agda and compiled to Haskell. We plan to use the
Threepenny-gui framework [11], which is a Haskell API for
developing GUIs that run in a web browser via JavaScript.
The JavaScript layer for Threepenny-gui is lightweight while
most of the heavy lifting happens in Haskell. This makes it
ideal as an alternate back-end for our library, allowing us
to generate both application and web-based GUIs from the
same Agda code.

One important application we have in mind is to use our
approach to create a verified mobile app to be used by medi-
cal professionals. Trials of this app with real patients could
be made in collaboration with our partners in the Medical
University of Vienna.

Appel et al. [12] proposed that a key building principle for
deep specifications is vertical compositionality, which means
that higher specification levels are related provably correct
ton lower specification levels. This allows proving properties
at the higher specification level that hold at the lower specifi-
cation levels. For us, it would be useful to be able to translate
properties on the level of business processes to properties on
the level of GUI applications. Since verification at the level
of business processes is easier, this would facilitate easier
verification of process-based GUI applications.

Model checking provides a convenient way to verify prop-
erties about finite state machines. We could build on the
work by Kanso [38–40] on integrating model checkers into
Agda. Such a verification could take place on the business

process logic and then translate, via vertical compositional-
ity, into verification of the GUI. With integrated automated
theorem proving, interactive theorem proving can focus on
generic systems and universal statements, such as properties
of operators on GUIs, while proofs of properties of concrete
systems can be carried out by model checking. This would
enable automatically proving the theorems in this paper.

Finally, we plan to support new kinds of properties of GUI
applications by extending the language of properties with
LTL or related modal logics. To be compatible with Agda,
this requires adapting one of several constructive modal
logics [22, 42, 48].

8 Conclusion
GUI applications are ubiquitous in real-world systems but are
inherently difficult to verify through software testing. This
is problematic because many GUI applications are safety-
critical, such as in the healthcare domain. In this paper, we
presented a library for implementing state-dependent GUI
applications in Agda to address this problem instead through
formal verification. In our library, a GUI application consists
of a declarative GUI specification and an object that handles
its events. The type of the event handler depends on the
GUI specification, ensuring that the two are consistent. We
demonstrated how to create an application with infinitely
many steps in a straightforward way. In order to generate
GUIs from a higher-level specification, we formalized busi-
ness processes and translated them into GUIs. As a case study,
we formalized an error-prone example from the medical do-
main as a business process. We generated a GUI from it and
proved correctness properties. The properties expressed that
if one starts at the beginning, gives the inputs as required
by the GUI, then one reaches a state such that if the inserted
value fulfils certain conditions, then a certain state will even-
tually be reached, and another state will never be reached.
This shows that it is possible to formalize GUI applications at
this level of complexity and formally prove their correctness.

Acknowledgments
The authors thank Prof. Gottsauner-Wolf for providing the
details of the medication process. The second author was
supported by the projects CORCON (Correctness by Con-
struction, FP7 Marie Curie International Research Project,
PIRSES-GA-2013-612638), COMPUTAL (Computable Analy-
sis, FP7 Marie Curie International Research Project, PIRSES-
GA-2011-294962), CID (Computing with Infinite Data, Marie
Curie RISE project, H2020-MSCA-RISE-2016-731143). The
first and second author were supported by CA COST Ac-
tion CA15123 European research network on types for pro-
gramming and verification (EUTYPES). The third author was
supported by AFRL Contract FA8750-16-C-0044 under the
DARPA BRASS program.

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

References
[1] Andreas Abel, StephanAdelsberger, andAnton Setzer. 2017. Interactive

programming in Agda – Objects and graphical user interfaces. Journal
of Functional Programming 27, Article 38 (Jan 2017), 54 pages. https:
//doi.org/10.1017/S0956796816000319

[2] Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion
with copatterns and sized types. JFP 26, Article e2 (2016), 61 pages.
https://doi.org/10.1017/S0956796816000022 ICFP 2013 special issue.

[3] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
2013. Copatterns: Programming infinite structures by observations. In
Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’13), Roberto Giacobazzi
and Radhia Cousot (Eds.). ACM, New York, NY, USA, 27–38. https:
//doi.org/10.1145/2429069.2429075

[4] Samina Raza Abidi, Jafna Cox, Ashraf Abusharekh, Nima Hashemian,
and Syed Sibte Raza Abidi. 2016. A Digital Health System to Assist
Family Physicians to Safely Prescribe NOAC Medications. Studies
in health technology and informatics 228 (2016), 519—523. http://
europepmc.org/abstract/MED/27577437

[5] Stephan Adelsberger, Bashar Igried, Markus Moser, Vadim
Savenkov, and Anton Setzer. 2018. Formal Verification
for Feature-based Composition of Workflows. http:
//www.cs.swan.ac.uk/~csetzer/articles/SERENE/SERENE18/
SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf To appear in
proceedings of http://www.cs.swan.ac.uk/~csetzer/articles/SERENE/
SERENE18/SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf.

[6] Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw. 2017.
Declarative GUIs: Simple, Consistent, and Verified. (2017). https:
//github.com/stephanadelsb/PPDP18 Git respository.

[7] Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw. 2018. De-
veloping GUI Applications in a Verified Setting. In Symp. on Dependable
Software Engineering: Theories, Tools and Applications. ACM.

[8] Agda Community. 2017. The Agda Wiki. (2017). http://wiki.portal.
chalmers.se/agda

[9] Dan Amelang, Bert Freudenberg, Ted Kaehler, Alan Kay, Stephen
Murrell, Yoshiki Ohshima, Ian Piumarta, Kim Rose, Scott Wallace,
Alessandro Warth, and Takashi Yamamiya. 2011. STEPS Toward Ex-
pressive Programming Systems, 2011 Progress Report. Technical Report.
Viewpoints Research Institute.

[10] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013.
Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer-Verlag, Berlin/Heidelberg.

[11] Heinrich Apfelmus. 2017. Threepenny-gui. https://wiki.haskell.org/
Threepenny-gui

[12] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: the science of deep specification. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 375, 2104 (2017), 1 – 24. https://doi.org/10.1098/
rsta.2016.0331

[13] Manuel Bärenz and Sebastian Seufert. 2017. Verifying Functional
Reactive Programs with Side Effects. (2017). [41], pp. 47 – 48.

[14] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic
effects and handlers. Journal of Logical and Algebraic Methods in
Programming 84, 1 (2015), 108 – 123. https://doi.org/10.1016/j.jlamp.
2014.02.001

[15] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco
Raimondi. 2017. CoSMeDis: A Distributed Social Media Platform with
Formally Verified Confidentiality Guarantees. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, IEEE, Piscataway, New Jersey, US,
729–748. https://doi.org/10.1109/SP.2017.24

[16] Bernhard Beckert and Daniel Bruns. 2013. Dynamic Logic with Trace
Semantics. In Automated Deduction – CADE-24, Maria Paola Bonacina
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 315–329.

[17] Edwin Brady. 2015. Resource-Dependent Algebraic Effects. In Trends
in Functional Programming: 15th International Symposium, TFP 2014,
Soesterberg, The Netherlands, May 26-28, 2014. Revised Selected Papers,
Jurriaan Hage and Jay McCarthy (Eds.). Springer International Pub-
lishing, Cham, 18–33. https://doi.org/10.1007/978-3-319-14675-1_2

[18] Edwin Brady. 2017. Type-driven Development with Idris (1 ed.). Manning
Publications, Greenwich, Connecticut.

[19] Carolina Ming Chiao, Vera Künzle, and Manfred Reichert. 2012. To-
wards Object-aware Process Support in Healthcare Information Sys-
tems. In 4th International Conference on eHealth, Telemedicine, and
Social Medicine (eTELEMED 2012). IARIA, Wilmington, Delaware, US,
227–236. http://dbis.eprints.uni-ulm.de/775/

[20] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2008. The
essence of form abstraction. In Programming Languages and Systems:
6th Asian Symposium, APLAS 2008, Bangalore, India, December 9-11,
2008. Proceedings, G. Ramalingam (Ed.). Springer, Berlin, Heidelberg,
205–220.

[21] Dan Amelang. 2018. Gezira Library. https://github.com/damelang/
gezira https://github.com/damelang/gezira.

[22] R. Davies. 1996. A temporal-logic approach to binding-time analysis. In
Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
IEEE, Piscataway, New Jersey, US, 184–195. https://doi.org/10.1109/
LICS.1996.561317

[23] Søren Debois, Thomas Hildebrandt, and Tijs Slaats. 2015. Concurrency
and Asynchrony in DeclarativeWorkflows. In Business Process Manage-
ment: 13th International Conference, BPM 2015, Innsbruck, Austria, Au-
gust 31 – September 3, 2015, Proceedings, Hamid Reza Motahari-Nezhad,
Jan Recker, and Matthias Weidlich (Eds.). Springer International Pub-
lishing, Cham, 72–89. https://doi.org/10.1007/978-3-319-23063-4_5

[24] Peter Dybjer. 2000. A general formulation of simultaneous inductive-
recursive definitions in type theory. Journal of Symbolic Logic 65, 2
(June 2000), 525 – 549. https://doi.org/10.2307/2586554

[25] Peter Dybjer and Anton Setzer. 2003. Induction-Recursion and Initial
Algebras. Annals of Pure and Applied Logic 124 (2003), 1 – 47. https:
//doi.org/10.1016/S0168-0072(02)00096-9

[26] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980.
On the Temporal Analysis of Fairness. In Proceedings of the 7th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’80). ACM, New York, NY, USA, 163–173. https://doi.org/10.
1145/567446.567462

[27] Mark L Graber, Dana Siegal, Heather Riah, Doug Johnston, and Kathy
Kenyon. 2015. Electronic health record-related events in medical
malpractice claims. Journal of patient safety 00, 00 (2015), 1– 9. https:
//doi.org/10.1097/pts.0000000000000240

[28] Mark Grechanik, Qing Xie, and Chen Fu. 2009. Maintaining and Evolv-
ing GUI-directed Test Scripts. In Proceedings of the 31st International
Conference on Software Engineering (ICSE ’09). IEEE Computer Society,
Washington, DC, USA, 408–418. https://doi.org/10.1109/ICSE.2009.
5070540

[29] Peter Hancock and Anton Setzer. 2000. Interactive Programs in De-
pendent Type Theory. In CSL’00 (Lect. Notes in Comput. Sci.), Peter
Clote and Helmut Schwichtenberg (Eds.), Vol. 1862. Springer, Berlin /
Heidelberg, 317–331. https://doi.org/10.1007/3-540-44622-2_21

[30] Peter Hancock and Anton Setzer. 2000. Specifying interactions with
dependent types. http://www-sop.inria.fr/oasis/DTP00/Proceedings/
proceedings.html Workshop on subtyping and dependent types in
programming, Portugal, 7 July 2000.

[31] Peter Hancock and Anton Setzer. 2005. Interactive programs and
weakly final coalgebras in dependent type theory. In From Sets and
Types to Topology and Analysis. Towards Practicable Foundations for
Constructive Mathematics (Oxford Logic Guides). Clarendon Press, Ox-
ford, UK, 115 – 136. https://doi.org/10.1093/acprof:oso/9780198566519.
003.0007

https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
http://europepmc.org/abstract/MED/27577437
http://europepmc.org/abstract/MED/27577437
http://www.cs.swan.ac.uk/~csetzer/articles/SERENE/SERENE18/SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/SERENE/SERENE18/SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/SERENE/SERENE18/SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/SERENE/SERENE18/SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf
http://www.cs.swan.ac.uk/~csetzer/articles/SERENE/SERENE18/SERENE18AdelsbergerIgriedMoserSavenkoSetzer.pdf
https://github.com/stephanadelsb/PPDP18
https://github.com/stephanadelsb/PPDP18
http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda
https://wiki.haskell.org/Threepenny-gui
https://wiki.haskell.org/Threepenny-gui
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1109/SP.2017.24
https://doi.org/10.1007/978-3-319-14675-1_2
http://dbis.eprints.uni-ulm.de/775/
https://github.com/damelang/gezira
https://github.com/damelang/gezira
https://github.com/damelang/gezira
https://doi.org/10.1109/LICS.1996.561317
https://doi.org/10.1109/LICS.1996.561317
https://doi.org/10.1007/978-3-319-23063-4_5
https://doi.org/10.2307/2586554
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://doi.org/10.1097/pts.0000000000000240
https://doi.org/10.1097/pts.0000000000000240
https://doi.org/10.1109/ICSE.2009.5070540
https://doi.org/10.1109/ICSE.2009.5070540
https://doi.org/10.1007/3-540-44622-2_21
http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html
http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html
https://doi.org/10.1093/acprof:oso/9780198566519.003.0007
https://doi.org/10.1093/acprof:oso/9780198566519.003.0007

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Stephan Adelsberger, Anton Setzer, and Eric Walkingshaw

[32] haskell.org. 2018. SDL. Haskell Library. https://wiki.haskell.org/SDL
https://wiki.haskell.org/SDL.

[33] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Cor-
rectness of Reactive Systems Using Sized Types. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’96). ACM, New York, NY, USA, 410–423.
https://doi.org/10.1145/237721.240882

[34] Idris Development Team. 2017. Idris. A language with dependent types.
https://www.idris-lang.org/

[35] K Ioannidis, I Scarlatinis, A Papachristos, and X Madia. 2018. 4CPS-017
Misuse of novel oral anticoagulants in hospital settings.

[36] Alan Jeffrey. 2012. LTL Types FRP: Linear-time Temporal Logic
Propositions As Types, Proofs As Functional Reactive Programs. In
Proceedings of the Sixth Workshop on Programming Languages Meets
Program Verification (PLPV ’12). ACM, New York, NY, USA, 49–60.
https://doi.org/10.1145/2103776.2103783

[37] Sudeep Kanav, Peter Lammich, and Andrei Popescu. 2014. A con-
ference management system with verified document confidential-
ity. In Computer Aided Verification: 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 18-22, 2014. Proceedings, Armin Biere and Roder-
ick Bloem (Eds.). Springer International Publishing, Cham, 167–183.
https://doi.org/10.1007/978-3-319-08867-9_11

[38] Karim Kanso. 2012. Agda as a Platform for the Development of Verified
Railway Interlocking Systems. Ph.D. Dissertation. Dept. of Computer
Science, Swansea University, Swansea, UK. http://www.swan.ac.uk/
csetzer/articlesFromOthers/index.html

[39] Karim Kanso. 2017. Agda. https://github.com/kazkansouh/agda
Github repository, fork of Agda installation, containing code from
PhD thesis Kanso.

[40] Karim Kanso and Anton Setzer. 2014. A light-weight integration of
automated and interactive theorem proving. Mathematical Structures
in Computer Science FirstView (12 November 2014), 1–25. https://doi.
org/10.1017/S0960129514000140

[41] Ambrus Kaposi (Ed.). 2017. 23rd International Conference on Types
for Proofs and Programs TYPES 2017, Budapest, Hungary, 29 May - 1
June 2017, Abstracts. (May 2017). http://types2017.elte.hu/proc.pdf

[42] Kensuke Kojima and Atsushi Igarashi. 2011. Constructive linear-time
temporal logic: Proof systems and Kripke semantics. Information and
Computation 209, 12 (2011), 1491 – 1503. https://doi.org/10.1016/j.ic.
2010.09.008 Intuitionistic Modal Logic and Applications (IMLA 2008).

[43] Glenn E. Krasner and Stephen T. Pope. 1988. A Cookbook for Using
the Model-View-Controller User Interface Paradigm in Smalltalk-80.
Journal of Object Oriented Programming 1, 3 (1988), 26–49.

[44] Neelakantan R. Krishnaswami and Nick Benton. 2011. A Semantic
Model for Graphical User Interfaces. In Proceedings of ICFP ’11. ACM,
New York, NY, USA, 45–57. https://doi.org/10.1145/2034773.2034782

[45] S Lawes and M Grissinger. 2017. Medication errors attributed to health
information technology. PA-PSRS Patient Saf Advis 14, 1 (2017), 1–8.

[46] Fabrizio Maria Maggi, Marlon Dumas, Luciano García-Bañuelos, and
Marco Montali. 2013. Discovering Data-Aware Declarative Process
Models from Event Logs. In Business Process Management, Florian
Daniel, Jianmin Wang, and Barbara Weber (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 81–96.

[47] Farah Magrabi, Mei-sing Ong, and Enrico Coiera. 2016. An Overview
of HIT-Related Errors. In Safety of Health IT: Clinical Case Studies,
Abha Agrawal (Ed.). Springer, Cham, 11–23. https://doi.org/10.1007/
978-3-319-31123-4_2

[48] Patrick Maier. 2004. Intuitionistic LTL and a New Characterization
of Safety and Liveness. In Computer Science Logic: 18th International
Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz,
Poland, September 20-24, 2004. Proceedings, Jerzy Marcinkowski and
Andrzej Tarlecki (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
295–309. https://doi.org/10.1007/978-3-540-30124-0_24

[49] Martin A Makary and Michael Daniel. 2016. Medical error-the third
leading cause of death in the US. BMJ: British Medical Journal (Online)
353 (May 03 2016), 1–5.

[50] Atif M. Memon. 2002. GUI Testing: Pitfalls and Process. Computer 35,
8 (2002), 87–88.

[51] AtifM.Memon. 2007. An Event-FlowModel of GUI-BasedApplications
for Testing. Software Testing, Verification and Reliability 17, 3 (2007),
137–157.

[52] Atif M. Memon, Mary Lou Soffa, andMartha E. Pollack. 2001. Coverage
Criteria for GUI Testing. ACM SIGSOFT Software Engineering Notes 26,
5 (2001), 256–267.

[53] Atif M. Memon and Qing Xie. 2005. Studying the Fault-Detection
Effectiveness of GUI Test Cases for Rapidly Evolving Software. IEEE
Transactions on Software Engineering (TSE) 31, 10 (2005), 884–896.

[54] Steven Mertens, Frederik Gailly, and Geert Poels. 2015. Enhancing
declarative process models with DMN decision logic. In International
Conference on Enterprise, Business-Process and Information Systems
Modeling. Springer, Cham, 151–165.

[55] Eugenio Moggi. 1991. Notions of computation and monads. Informa-
tion and Computation 93, 1 (1991), 55 – 92. https://doi.org/10.1016/
0890-5401(91)90052-4

[56] Marco Montali, Federico Chesani, Paola Mello, and Fabrizio M. Maggi.
2013. Towards Data-aware Constraints in Declare. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing (SAC ’13).
ACM, NewYork, NY, USA, 1391–1396. https://doi.org/10.1145/2480362.
2480624

[57] Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani,
Paola Mello, and Sergio Storari. 2010. Declarative Specification and
Verification of Service Choreographies. ACM Trans. Web 4, 1, Article
3 (Jan. 2010), 62 pages.

[58] Risa B Myers, Stephen L Jones, and Dean F Sittig. 2011. Review of
reported clinical information system adverse events in US Food and
Drug Administration databases. Applied clinical informatics 2, 1 (2011),
63.

[59] Keiko Nakata and Tarmo Uustalu. 2009. Trace-based coinductive oper-
ational semantics for while. In Theorem Proving in Higher Order Logics,
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wen-
zel (Eds.). Springer, Springer Berlin Heidelberg, Berlin, Heidelberg,
375–390.

[60] Kent Petersson and Dan Synek. 1989. A Set Constructor for Inductive
Sets in Martin-Löf’s Type Theory. In CTCS’89 (Lect. Notes in Comput.
Sci.), Vol. 389. Springer-Verlag, London, UK, 128–140.

[61] Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional
Programming. In Proceedings of the 20th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’93). ACM, New
York, NY, USA, 71–84. https://doi.org/10.1145/158511.158524

[62] Keith Pinson. 2015. GUI programming in Idris? https://groups.google.
com/forum/#!topic/idris-lang/R_7oixHofUo Google groups posting.

[63] David C Radley, Melanie R Wasserman, Lauren EW Olsho, Sarah J
Shoemaker, Mark D Spranca, and Bethany Bradshaw. 2013. Reduction
in medication errors in hospitals due to adoption of computerized
provider order entry systems. Journal of the American Medical Infor-
matics Association 20, 3 (2013), 470–476.

[64] Rasterific. 2018. Github repository. https://github.com/Twinside/
Rasterific https://github.com/Twinside/Rasterific.

[65] William B Runciman, Elizabeth E Roughead, Susan J Semple, and
Robert J Adams. 2003. Adverse drug events and medication errors in
Australia. International Journal for Quality in Health Care 15, suppl_1
(2003), i49–i59.

[66] Eva A Saedder, Birgitte Brock, Lars Peter Nielsen, Dorthe K Bonnerup,
and Marianne Lisby. 2014. Identifying high-risk medication: a system-
atic literature review. European journal of clinical pharmacology 70, 6
(2014), 637–645.

https://wiki.haskell.org/SDL
https://wiki.haskell.org/SDL
https://doi.org/10.1145/237721.240882
https://www.idris-lang.org/
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1007/978-3-319-08867-9_11
http://www.swan.ac.uk/csetzer/articlesFromOthers/index.html
http://www.swan.ac.uk/csetzer/articlesFromOthers/index.html
https://github.com/kazkansouh/agda
https://doi.org/10.1017/S0960129514000140
https://doi.org/10.1017/S0960129514000140
http://types2017.elte.hu/proc.pdf
https://doi.org/10.1016/j.ic.2010.09.008
https://doi.org/10.1016/j.ic.2010.09.008
https://doi.org/10.1145/2034773.2034782
https://doi.org/10.1007/978-3-319-31123-4_2
https://doi.org/10.1007/978-3-319-31123-4_2
https://doi.org/10.1007/978-3-540-30124-0_24
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2480362.2480624
https://doi.org/10.1145/2480362.2480624
https://doi.org/10.1145/158511.158524
https://groups.google.com/forum/#!topic/idris-lang/R_7oixHofUo
https://groups.google.com/forum/#!topic/idris-lang/R_7oixHofUo
https://github.com/Twinside/Rasterific
https://github.com/Twinside/Rasterific
https://github.com/Twinside/Rasterific

Declarative GUIs: Simple, Consistent, and Verified PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

[67] Neil Sculthorpe and Henrik Nilsson. 2009. Safe Functional Reactive
Programming Through Dependent Types. In Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’09). ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/
1596550.1596558

[68] SDL. 2018. Single Directmedia Layer. Library. http://www.libsdl.org/
http://www.libsdl.org/.

[69] Anton Setzer. 2006. Object-oriented programming in dependent
type theory. In Conference Proceedings of TFP 2006. Intellect Books,
Bristol, 1–16. http://www.cs.nott.ac.uk/~psznhn/TFP2006/Papers/
26-AntonSetzer-OOPInDependentTypeTheory.pdf

[70] Anton Setzer and Peter Hancock. 2004. Interactive Programs and
Weakly Final Coalgebras in Dependent Type Theory (Extended Ver-
sion). In Dependently Typed Programming 2004 (Dagstuhl Seminar
Proc.s), Thorsten Altenkirch, Martin Hofmann, and John Hughes
(Eds.), Vol. 04381. Internationales Begegnungs- und Forschungszen-
trum (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany, 1 – 30.
http://drops.dagstuhl.de/opus/volltexte/2005/176/

[71] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and
Chengxiang Zhai. 2014. Bug Characteristics in Open Source Software.
Empirical Software Engineering 19, 6 (2014), 1665–1705.

[72] Laura A. Valaer and Robert G. Babb. 1997. Choosing a User Interface
Development Tool. IEEE Software 14, 4 (1997), 29–39.

[73] Wil MP van Der Aalst, Maja Pesic, and Helen Schonenberg. 2009.
Declarative workflows: Balancing between flexibility and support.
Computer Science-Research and Development 23, 2 (2009), 99–113.

[74] Philip Wadler. 1990. Comprehending Monads. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming (LFP ’90).
ACM, New York, NY, USA, 61–78. https://doi.org/10.1145/91556.91592

[75] Philip Wadler. 1995. Monads for functional programming. In Advanced
Functional Programming: First International Spring School on Advanced
Functional Programming Techniques Båstad, Sweden, May 24–30, 1995
Tutorial Text, Johan Jeuring and Erik Meijer (Eds.). Springer, Berlin,
Heidelberg, 24–52. https://doi.org/10.1007/3-540-59451-5_2

[76] Philip Wadler. 1997. How to Declare an Imperative. ACM Comput.
Surv. 29, 3 (September 1997), 240–263. https://doi.org/10.1145/262009.
262011

[77] Philip Wadler. 1998. The Marriage of Effects and Monads. In Proceed-
ings of the Third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’98). ACM, New York, NY, USA, 63–74.
https://doi.org/10.1145/289423.289429

[78] Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Program-
ming from First Principles. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). ACM, New York,
NY, USA, 242–252.

[79] J. Whittle, J. Hutchinson, and M. Rouncefield. 2014. The State of
Practice in Model-Driven Engineering. IEEE Software 31, 3 (2014),
79–85.

[80] wiki.haskell. 2017. WxHaskell. (Retrieved 9 February 2017). https:
//wiki.haskell.org/WxHaskell

[81] Xiaoxi Yao, Nilay D Shah, Lindsey R Sangaralingham, Bernard J Gersh,
and Peter A Noseworthy. 2017. Non–vitamin K antagonist oral antico-
agulant dosing in patients with atrial fibrillation and renal dysfunction.
Journal of the American College of Cardiology 69, 23 (2017), 2779–2790.

https://doi.org/10.1145/1596550.1596558
https://doi.org/10.1145/1596550.1596558
http://www.libsdl.org/
http://www.libsdl.org/
http://www.cs.nott.ac.uk/~psznhn/TFP2006/Papers/26-AntonSetzer-OOPInDependentTypeTheory.pdf
http://www.cs.nott.ac.uk/~psznhn/TFP2006/Papers/26-AntonSetzer-OOPInDependentTypeTheory.pdf
http://drops.dagstuhl.de/opus/volltexte/2005/176/
https://doi.org/10.1145/91556.91592
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1145/262009.262011
https://doi.org/10.1145/262009.262011
https://doi.org/10.1145/289423.289429
https://wiki.haskell.org/WxHaskell
https://wiki.haskell.org/WxHaskell

	Abstract
	1 Introduction
	1.1 Challenges of Declarative GUIs
	1.2 A Library for Directly Verified GUIs
	1.3 Domain: GUI Applications in Healthcare
	1.4 Role of Dependent Types
	1.5 Contributions

	2 Background
	3 A Library for Declarative, State-Dependent GUI programming
	3.1 State-dependent Objects
	3.2 Example: A GUI with Infinitely Many States
	3.3 A Data Type for GUIs
	3.4 Implementation Details

	4 Reasoning About GUI Applications
	4.1 Reasoning about Coinductive Programs
	4.2 Properties Over GUI Application States

	5 Case Study: Healthcare Process Models
	5.1 A Process for Prescribing Oral Anticoagulants
	5.2 Formalization of Business Processes
	5.3 From Business Processes to GUI Applications
	5.4 Verifying GUI Applications

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

