

AN ABSTRACT OF THE THESIS OF

Meng Meng for the degree of Master of Science in Computer Science presented on

September 22, 2017.

Title: Implementation Techniques for Variational Data Structures

Abstract approved:
Eric T. Walkingshaw

Many applications require not only representing variability in software and data, but
also computing with it. To do so efficiently requires variational data structures that
make variability explicit in the underlying data and the operations used to manipulate it.
Variational data structures have been developed ad hoc for many applications, but there
is little general understanding of how to design them or what tradeoffs exist among them.

In this thesis, we introduce the concept of holes to represent variational data structures
of different sizes and shapes. Moreover, we strive for a more systematic exploration and
analysis of a variational data structure. We want to know how different design decisions
affect the performance and scalability of a variational data structure, and what properties
of the underlying data and operation sequences need to be considered.

Specifically, we study several alternative designs of a variational stack and analyze how
these design decisions affect the performance of a variational stack with different usage
profiles. We evaluate variational stacks in a real-world scenario: in the interpreter VarexJ

when executing real software containing variability. Finally, we discuss different ways of
representing variational priority queues and show how this affects the performance of the
variational Dijkstra’s algorithm.

c©Copyright by Meng Meng
September 22, 2017
All Rights Reserved

Implementation Techniques for Variational Data Structures

by

Meng Meng

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 22, 2017
Commencement June 2018

Master of Science thesis of Meng Meng presented on September 22, 2017.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Meng Meng, Author

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Eric Walkingshaw, for accepting me
into his research group and providing me with an excellent atmosphere for doing research.
Without his guidance and patience, I would never have been able to finish my thesis.
Additionally, I would like to thank my committee members including Martin Erwig, Amir
Nayyeri, and Kyle Niemeyer for their interest in my work.

Second, I would like to thank the various members whom I had the opportunity to work:
Jens Meinicke, Chu-pan Wong, and Christian Kästner. Thanks you for sharing excellent
ideas with me.

Finally, I would express a deep sense of gratitude to my parents for their constant love
and giving me the opportunity to study in US. I would also like to thanks my friends
and especially thank Hanzhong Xu and Hong Pei who always strengthened my morale by
standing by me in all situations.

CONTRIBUTION OF AUTHORS

This thesis takes material from the paper that were co-authored with Jens Meinicke,
Chu-Pan Wong, Eric Walkingshaw, and Christian Kästner [Meng et al., 2017].

Specifically, parts of chapter 1, 2, 4, 5, and 8 are from the paper.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Contributions and Outline . 2

2 Background and Related Work 4

2.1 The Choice Calculus . 4

2.2 Variational Programming . 5

2.3 Variational Data Structures . 8

2.4 Variability-Aware Execution . 8

3 Holes in Variational Data Structures 10

3.1 Holes in Variational Data Structures . 10

3.2 Retrieving Data . 11

3.2.1 The foo(ctx) Method . 12

3.2.2 The fooImpl() Method . 13

3.2.3 Comparison . 17

4 Variational Stacks 19

4.1 Choice-of-Stacks . 20

4.2 Stack-of-Choices . 22

4.3 Buffered Stack Decorator . 24

4.4 Hybrid Stack Decorator . 25

5 Experimental Analysis on Variational Stacks 27

5.1 Analyzing Tradeoffs in Generated Data . 27

TABLE OF CONTENTS (Continued)
Page

5.1.1 Number of Configuration Options 28

5.1.2 Distribution of Variational Operations 30

5.2 Variational Stacks in VarexJ . 32

6 Variational Priority Queues 35

6.1 Implementation . 35

6.2 Insertion and Deletion . 38

7 Variational Priority Queues Evaluation 42

7.1 Heapsort . 42

7.2 Shortest path problems . 43

7.2.1 Variational Graph . 45

7.2.2 Key-Value Variational Priority Queue 46

7.2.3 Variational Dijkstra’s algorithm 48

7.3 Case Study . 52

7.3.1 Comparison . 53

7.3.2 Different Running Context . 54

7.3.3 Number of Configuration Options 55

8 Conclusion 58

Bibliography 58

LIST OF FIGURES
Figure Page

3.1 Two representations of variational lists. 10

3.2 Two ways for retrieving data from variational data structures. 12

3.3 The input order of program G by using head(True) and headImpl() 16

3.4 A simple example. 18

4.1 Feature diagram for variational stacks. 19

4.2 Comparison of two different core variational stack implementations. 20

5.1 Comparing variational stacks on artificially generated operation sequences
with different numbers of configuration options that may appear in the
variational contexts. Y-axes are on a logarithmic scale. 29

5.2 Comparing variational stacks on randomly generated operation sequences
with different probability that an operation is executed in the same varia-
tional context as the previous operation. 31

6.1 Two possible ways for representing variational priority queues using a heap 36

6.2 Representing variational priority queues using a list 37

6.3 Two ways for representing variational priority queues using a BST (a) An
BST implemenataion of variational priority queues (b) BST implementation
with duplicate priorities under the same context 37

7.1 Comparing variational heapsort on artificially generated variational lists
with different numbers of configuration options that may appear in the
variational contexts. 44

LIST OF FIGURES (Continued)
Figure Page

7.2 One simple eaxample of variational graphs with all variations on edges. . . 45

7.3 A variational graph for representing the example in Table 7.2 53

7.4 A performance comparison between three different implementations 55

LIST OF TABLES
Table Page

3.1 popFirst(¬A) states . 13

3.2 popFirst(ctx) states . 15

3.3 popFirstImpl() states . 15

3.4 comparison for Figure 3.1b . 17

3.5 comparison for Figure 3.4 . 17

5.1 Running time (ms) of each variational stack used as the operand stack in
VarexJ while executing different variational programs. Each row measures
the overall running time of VarexJ using each stack in-situ. 32

5.2 Overview of four variational programs. Columns indicate: lines of code
(LOC), number of configuration options (Opt), and total number of con-
figurations (Conf) for each example; the total number of operand stacks
created while executing the example in VarexJ (Stacks); and the failure
rates for the hybrid optimization (λH), buffered optimization (λB), and
both optimizations combined (λHB). 33

7.1 The original data from airlines . 52

7.2 A small example . 52

7.3 Comparing variational Dijkstra’s algorithm with different config- uration
options under True context . 56

7.4 Comparing variational Dijkstra’s algorithm with different config- uration
options under ¬UA context . 56

7.5 Comparing variational Dijkstra’s algorithm with different config- uration
options under ¬UA ∧ ¬OO context . 56

LIST OF TABLES (Continued)
Table Page

7.6 Comparing variational Dijkstra’s algorithm with different config- uration
options under ¬UA ∧ ¬OO ∧ ¬AA context 57

Chapter 1: Introduction

Variation is common in both software systems and data computation. In software systems,
variability is introduced so that users can configure the software according to different
use cases, for example, using command line options, plugins, or preprocessor directives.
In data computation, variability arises by running a program or part of a program many
times with inputs that are varied slightly, as in configuration testing, uncertainty analysis,
and speculative analysis [Kästner et al., 2012,Kim et al., 2012,Nguyen et al., 2014,Sumner
et al., 2011,Muslu et al., 2012]. Although variation makes software and computation
flexible, it also requires more efficient techniques for analyzing and executing programs
since it is usually not possible to explore each variant individually due to the combinatorial
explosion of possibilities. Recent research in several domains addresses the combinatorial
explosion problem with a variety of solutions that share some common ideas: analyze,
manipulate, and compute with an explicit representation of variation in code and data,
and exploit sharing among the variants.

By encoding variation explicitly in code and data, many approaches gain significant
performance improvement without sacrificing precisions of the results. For example,
uncertainty analysis proposed by Sumner et al. [Sumner et al., 2011] runs faster by
operating on a vector of uncertain input values all at once, rather than on individual
values sequentially, since many computations are independent and can be shared. Encoding
and manipulating variability explicitly has also been extremely successful in analyzing
software product lines. Such variational analyses are shown to scale to large configuration
spaces but still provide sound results [Thüm et al., 2014,Meinicke et al., 2014].

Data structures for computing with explicit variation are often reinvented and optimized in
an ad-hoc way with little reuse across projects. We envision that more general variational
data structures can be essential building blocks to be reused across all of these domains,
but they are not currently well understood [Walkingshaw et al., 2014]. This thesis is a
step towards a more systematic exploration and analysis of the design and implementation

2

of variational data structures. Specifically, we focus on variational lists, stacks, and
priority queues. This thesis discusses how different implementations and optimizations
affect the performance of variational data structures. Specifically, we evaluate how
different variational stacks perform in the variability-aware Java interpreter VarexJ,
where variational stacks play a central role [Meinicke, 2014,Meinicke et al., 2016], and
analyze the performance of different variational priority queues implementations when
used in finding the shortest path in a variational graph.

1.1 Contributions and Outline

The main goal of this thesis is to present different ways to represent variational data
structures and analyze how different implementations and optimizations affect the perfor-
mance of variational data structures. The following parts describe the structure of this
thesis and give the corresponding contributions that each chapter makes.

Chapter 2 introduces the related work and several basic concepts including the choice
calculus and variational programming. It also defines two widely used functions that will
be used throughout the thesis.

Chapter 3 introduces the concept of holes for variational data, which can generally be
applied to different variational data structure designs. It also presents how variational
data structures with holes are retrieved in two different ways. One way for getting the
data is by calling the function with a context to indicate what variational context the
operations are performed in. The other way is calling the function without the context,
which means the variational data structures decide the context and values that operations
perform in. For giving a intuitive understanding of the two different ways, we use a
variational list as an example to show the difference between the two ways.

Chapter 4 details how to use the holes in variational stacks. It also gives a description of
a small family of variational stack representations. The family consists of two alternative
core stack implementations and two independently optional optimizations, leading to
eight different variational stacks.

Chapter 5 provides two experiments on variational stacks and makes two main contribu-

3

tions:

1. It provides an exploratory analysis of variational stacks on artificially generated
operation sequences (Section 5.1) that vary in the number of configuration options
they reference and in the distribution of variational operations.

2. It also provides an empirical analysis of the performance of each of the eight
variational stacks when used as the variational operand stack of the variational Java
interpreter VarexJ (Section 5.2). Our experiments show that both optimizations are
highly effective in practice, and also demonstrate that choosing the right variational
data structure can have a significant impact on the overall performance of programs
that compute with variability.

Chapter 6 describes an implementation of variational priority queues using a balanced
binary search tree and defines two different ways of retrieving data.

Chapter 7 first provides an experiment on a variational heapsort to evaluate the perfor-
mance of variational priority queues using the two different implementations. Then, we
show how to solve the shortest path problems in a variational graph using a variational
version of Dijkstra’s algorithm. At the end of this chapter, we discuss how two different
implementations influence the performance of variational priority queues on a real world
example.

Chapter 8 gives a summary of this thesis and the future work.

4

Chapter 2: Background and Related Work

In this chapter, we provide necessary background on variational data structures and also
on variability-aware execution, an analysis strategy that extensively uses variational data
structures to share common execution paths across variants. We use the variability-aware
interpreter VarexJ in later sections to evaluate our variational stack implementations.

2.1 The Choice Calculus

Conceptually, variational data represents many different concrete data values at once.
However, variational data is not just a flat set of variants, but also describes which
configurations each variant is associated with. Variation on atomic data values can be
expressed in different forms, such as by trees of choices between alternatives or by maps
from variants to the configuration context where each is relevant [Erwig and Walkingshaw,
2011,Walkingshaw et al., 2014].

The choice calculus is one way to express variational data [Erwig and Walkingshaw,
2011,Walkingshaw, 2013,Hubbard and Walkingshaw, 2016]. For example, consider the
value x = Choice(A, 1, 3), a choice that represents either the concrete value 1 if the
configuration option A evaluates to true, or 3 otherwise. Computations on x will operate
on both 1 and 3, preserving the fact that 1 is associated with the variational context A
and 3 with the context ¬A. A configuration space is a set of all possible combinations
over configuration options. A context is a set of configurations. Clearly, the size of the
configuration space for variational data is exponential in the number of independent
configuration options it contains.

A conditional value is an Java implementation of choice calculus, which is a mapping of
concrete values to the corresponding contexts [Meinicke, 2014]. It can be implemented as
a tag tree, formula tree, or formula map [Walkingshaw et al., 2014]. For simplicity, we only
discuss tag tree and formula tree representations. Listing 2.1 shows an implementation

5

of conditional values with type T using a tag tree representation [Meinicke, 2014]. The
Tag in Line 7 is a single configuration option. The class One represents concrete values
and the class Choice maps tags to conditional values. This representation is simple but it
cannot share common partitions of the configuration space [Walkingshaw et al., 2014].

1 interface Conditional<T> {}
2 class One<T> implements Conditional<T> {
3 T value;
4 One(T value) {...}
5 }
6 class Choice<T> implements Conditional<T> {
7 Tag t;
8 Conditional<T> yes, no;
9 Choice(Tag t, Conditional<T> yes, Conditional<T> no) {...}

10 }

Listing 2.1: A tag tree implementation of conditional values in Java

Compared to the tag tree representation, a formula tree is more flexible by replacing the
tags by a FeatureExpr. A FeatureExpr is a formula over a set of configuration options
and is used to represent variational contexts. However, we need SAT solvers to reason
about valid configuration space in formula tree representations [Walkingshaw et al., 2014].

2.2 Variational Programming

In this section, we introduce two widely used functions, map and flatMap, to manipulate
conditional values. The map function is simple and it maps function f with type T ⇒ U

over all variants. For example, suppose we map a succ function, which has type Int ⇒ Int,
over Choice(A, 1, 3). We will get Choice(A, 2, 4). Listing 2.2 shows one implementation of
the map function for formula trees [Meinicke, 2014]. The syntax is from Java 8 and we can
see that the map method takes a function as input and applies it to all variants [Meinicke,
2014].

1 interface Conditional<T> {
2 Conditional<U> map(Function<T, U> f);
3 }

6

4 class One<T> implements Conditional<T> {
5 T value;
6 <U> Conditional<U> map(Function<T, U> f) {
7 return new One<>(f.apply(value));
8 }
9 }

10 class Choice<T> implements Conditional<T> {
11 FeatureExpr ctx;
12 Conditional<T> yes, no;
13 <U> Conditional<U> map(Function<T, U> f) {
14 return new Choice<>(ctx, yes.map(f), no.map(f));
15 }
16 }

Listing 2.2: Implementation of the map function for formula trees

The map applies a function to all variants without changing the structure of conditional
values. However, the flatMap function can apply a function with type T⇒ Conditional<U>

to the variants. Since our variants have the type Conditional<T>, this operation will
flatten the return value into type Conditional<U>.

The Listing 2.3 shows the implementation of the flatMap from VarexJ [Meinicke, 2014].

1 interface Conditional<T> {
2 <U> Conditional<U> flatmap(Function<T, Conditional<U> > f); }
3 class One<T> implements Conditional<T> {
4 T value;
5 <U> Conditional<U> flatmap(Function<T, Conditional<U> > f){
6 return f.apply(value) ; }
7 }
8 class Choice<T> implements Conditional<T> {
9 CTX ctx;

10 Conditional<T> yes, no;
11 <U> Conditional<U> flatmap(Function<T, Conditional<U> > f){
12 return new Choice<>(ctx, yes.fmap(f), no.fmap(f)); }
13 }

Listing 2.3: Implementation of the flatMap for formula trees

7

To illustrate how flatMap works, we give two examples. The first one is adding two choices:
Choice(A, 1, 4) and Choice(B, 10, 20). It can be calculated by applying the flatMap with
the function x⇒ Choice(B, x+ 10, x+ 20) over all the variants on Choice(A, 1, 4). The
result is Choice(A,Choice(B, 11, 21),Choice(B, 14, 24)).

The second example is applying flatMap under a specific context, which only manipulates
a part of conditional values. The vadd function in Listing 2.4 maps an integer n to a
choice Choice(ctx, n + v, n) over all variants under the context ctx of the conditional
value num. For the rest of parts under ¬ ctx, the variants stay unchanged as shown in
Line 3. The function vmin in Listing 2.5 is similar to the vadd function except that the
vmin function compares the variants with a value v under ctx and returns the smaller one.

1 Conditional<Integer> vadd(Conditional<Integer> num, FeatureExpr ctx, int v) {
2 Conditional<Integer> ret = num.flatMap(FeatureExpr f, Integer n) → {
3 if(f.and(ctx).isContradiction()) {
4 return new One(n); }
5 if(f.and(ctx).isTautology()) {
6 return new One(n + v); }
7 return new Choice(ctx, n+v, n);
8 }
9 return ret;

10 }

Listing 2.4: Variational add function over a choice

1 Conditional<Integer> vmin(Conditional<Integer> num, FeatureExpr ctx, int v) {
2 Conditional<Integer> ret = num.flatMap(FeatureExpr f, Integer n) → {
3 if(f.and(ctx).isContradiction() || v > n) {
4 return new One(n); }
5 if(f.and(ctx).isTautology()) {
6 return new One(v); }
7 return new Choice(ctx, v, n);
8 }
9 return ret;

10 }

Listing 2.5: Variational minimum function over a choice

8

2.3 Variational Data Structures

Variational data structures are designed to compactly represent and compute with varia-
tional data [Walkingshaw et al., 2014]. In previous work, some designs of variational lists,
maps, and sets are discussed [Walkingshaw et al., 2014]. However, it is still unclear how the
design decisions described in that work affect the scalability of variational computations
in practice and which design decisions have yet to be identified. Thus, a systematic
evaluation and exploration of the design space is needed.

Variational data structures have diverse applications. They are commonly used for
variational program analysis, such as variational ASTs for type checking [Kästner et al.,
2011], variational type inference [Chen et al., 2014,Chen and Erwig, 2014], and variational
executions [Erwig and Walkingshaw, 2013,Nguyen et al., 2014,Meinicke, 2014,Chen et al.,
2016]. They are also proposed for variational representations of software artifacts, such
as test suits, formal specification, and deductive verification [Walkingshaw et al., 2014].
Further applications from other domains already need to cope with variation, such as
travel planning, uncertainty in analysis, and context-oriented programming [Walkingshaw
et al., 2014].

2.4 Variability-Aware Execution

Variability-aware execution makes extensive use of variational data structures. The core
idea is to combine repeated computations into a single execution, tracking differences while
sharing as much data and execution as possible. This technique is useful, for example, in
testing highly configurable systems [Meinicke et al., 2016,Meinicke, 2014,Kästner et al.,
2012,Nguyen et al., 2014], where it enables faster testing of all configurations and scales
well to large configuration spaces.

A variability-aware interpreter is a programming language interpreter that supports
variability-aware execution [Meinicke et al., 2016,Meinicke, 2014,Kästner et al., 2012,
Nguyen et al., 2014]. In such an interpreter, data values are variational and instructions
are executed within variational contexts (corresponding to the selection of some or all
configuration options). Since VarexJ computes with variational data, there are many

9

applications for variational data structures.

Computation in the JVM centers around operand stacks, so the operand stack is a central
data structure that must handle variation efficiently. In the JVM, there are instructions
for pushing constants, field values, or local variables onto the stack; arithmetic operations
pop inputs from the stack and push their results; and method inputs and outputs are
passed via the operand stack. There are many ways variation could be encoded in operand
stacks. For example, one possibility is to keep the stack implementation as-is and but
manage multiple versions dependent on the variational context (i.e. a choice of stacks).
Another possibility is to make the entries in the stack variational (i.e. a stack of choices).
Both implementations can represent the same data, but have different, non-obvious, and
scenario-dependent effects on performance.

Since the operand stack is central to the JVM, the design of a variational stack has
immediate effects on the performance of the interpreter. In chapter 4 of this paper, we
explore different designs of a variational stack and investigate how the design decisions
affect performance in different scenarios.

10

Chapter 3: Holes in Variational Data Structures

3.1 Holes in Variational Data Structures

In this section, we introduce a technique for implementing variational data structures
using holes. A variational data structure can be implemented in a number of different
ways. The simplest way is Conditional<D> where D stands for a plain data structure, for
example, Conditional<List<T>> represents a variational list. Now we can represent a
list [1, 2, 3] under variation context A and [2, 3] under ¬A as Choice(A, [1, 1, 3], [2, 3]) as
shown in Figure 3.1a. Each variant in Conditional<List<T>> is independent, which means
any operations on the specific variants do not have any impact on other variants. For
example, in Figure 3.1a, deleting the first element under the context A changes the left
(upper) branch to list [1, 3], but the right branch under the context ¬A stays unchanged.
This representation is straightforward. However, one main drawback is that it duplicates
the shared part of the data structures.

(a) Conditional<List<T>> (b) List<Conditional<T>> with holes

Figure 3.1: Two representations of variational lists.

An alternative way of representing variational lists that supports sharing is changing
Conditional<List<T>> to List<Conditional<T>>. In this way, we can represent the vari-
ational list with variant [1, 2, 3] under A and [1, 2, 4] under ¬A as [1, 2, Choice(A, 3, 4)]
instead of Choice(A, [1, 2, 3], [1, 2, 4]). The advantage of this representation is that it
supports sharing common subparts. However, this representation requires all variants

11

have the same length. For example, we cannot represent the variational list in Figure 3.1a.
Therefore, List<Conditional<T>> is not expressive enough.

To fix this problem in the List<Conditional<T>> representation, we introduce holes
[Smeltzer and Erwig, 2017]. A hole indicates that an element is not present in some
variants, and is written ⊥. For example, adding an element 1 under the context A into
a variational list, we can simply add Choice(A, 1,⊥) into the list directly. Figure 3.1b
also shows how to share the common 3 value among different variants and shows how
holes allow us to represent unbalanced variational lists. However, an issue regarding holes
is that it may need some extra computing to assemble the return value when retrieving
data from data structures. For example, when calling popFirst(True) in Figure 3.1b, it
should return Choice(A, 1, 2) instead of Choice(A, 1,⊥). So, we need traverse the data
stored in the list to eliminate the holes in the return value. The details will be discussed
in the next section where we also show that the holes strategy is a general idea that can
be applied to different variational data structures. In this thesis, we focus on variational
lists, stacks, and priority queues.

In conclusion, the key advantage of the List<Conditional<T>> representation with holes
is that the holes implementation supports more sharing compared to the naive imple-
mentation and it is more expressive than the pure List<Conditional<T>> implementation.
However, some operations in the holes-based implementation are more expensive since
they require filling holes and traversing data structures. In the next section, we give two
different ways for retrieving data from variational data structures with holes and compare
the tradeoffs between them.

3.2 Retrieving Data

One way of retrieving data from variational data structures is to specify the variation
context ctx. The ctx in function foo(ctx) is to indicate in what variational context the
operations are performed. Figure 3.2a shows the general process of foo(ctx). Basically,
users call the function foo with context ctx and data structures return the values for
all variants where the context is true. This method is flexible and can be used for all
programs since users can get the values under the context they provided. However, in

12

most cases, foo(ctx) requires extra work to fill the holes in the return value. To avoid the
extra computations, we introduce another method in Section 3.2.2, called fooImpl(). Its
general idea is shown in Figure 3.2b. When users call fooImpl(), the data structure itself
decides the return value and ctx. Thus, fooImpl() method is not used for all programs
since users cannot predict the context of the data they get. We will illustrate the details
and usage of these two approaches in the next two subsections.

(a) General process of foo(ctx) (b) General process of fooImpl()

Figure 3.2: Two ways for retrieving data from variational data structures.

3.2.1 The foo(ctx) Method

Since users get the data directly with the context ctx, the return value should be filled as
much as possible under the given context. To eliminate the holes in the return value, the
algorithm will traverse the whole data structure to find the part under ctx until there are
no holes in the return values. During the traversal, it may change several data items in
the list since we fill the holes from the rest of the data structure. For simplicity, we take
the variational list in Figure 3.1b as an example.

The popFirst(ctx) function is used to get the first element from all variants under ctx
and remove it. When calling popFirst(True), it eventually returns Choice(A, 1, 2) rather
than Choice(A, 1,⊥). Since the leftmost element has a hole under ¬A, the algorithm
will keep traversing the items in the rest of the list until finding the part under ¬A to
fill the holes in the return value. In this example, it finds the 2 in the second element
of the implementation list. Since we only cut the part under ¬A off, the left branch
under A remains unchanged and the right branch will change to a hole. After calling
popFirst(True), the remainder of the variational list is [Choice(A, 1,⊥), One(3)].

13

Similarly, if we call popFirst(¬A) on the list in Figure 3.1b, the hole under ¬A is filled by
the value 2 from the second item. The part of value corresponding to the A will be kept in
the list. However, calling popFirst(A) on the list in Figure 3.1b will remove the leftmost
item and directly return the value 1 since 1 does not have a hole. The following Table 3.1
shows the sequence of variational lists produced by two successive popFirst(¬A) calls.

List popFirst(¬A)
[Choice(A, 1,⊥), Choice(A, 1, 2), One(3)] 2

[Choice(A, 1,⊥), Choice(A, 1,⊥), One(3)] 3
[Choice(A, 1,⊥), Choice(A, 1,⊥), Choice(A, 3,⊥)] ⊥

Table 3.1: popFirst(¬A) states

The major advantage of this representation is that users can get any data they want for a
given variation ctx, which is flexible. However, as illustrated above, this method takes
extra computations to eliminate holes, assemble return values and update the rest of
variational list, all of which may require traversing the whole data structure.

3.2.2 The fooImpl() Method

To avoid extra work on fillings holes, we introduce another method fooImpl() for retrieving
data and removing data from the data structure. Rather than allowing the user to select
the variation context, we let the data structure pick a convenient context and return
the corresponding value. One example of this approach for variational list is to have
the popFirst operation simply return and remove the whole leftmost item. We call
this implementation popFirstImpl(). When calling popFirstImpl() on the example in
Figure 3.1b, it returns the Choice(A, 1,⊥) as a result. The rest of the list remains
unchanged. Next, we will discuss a common scenario where we can use operations
implemented with either approach.

Listing 3.1 shows a plain program. This program continues to get elements from a plain
data structure and processes all elements until the data structure is empty. To translate
this framework to a variational version, we use get(ctx) to retrieve the elements from a
variational data structure. Line 4 in Listing 3.2 shows that the program initializes the

14

context ctx as all configurations for which its variant is not empty. For example, if we
have a variational list Choice(A, [1, 2],⊥), the context ctx will be set as A since we cannot
get elements from ⊥ under ¬A. Then, we get the data from the data structure under ctx
and the procedure in Line 7 takes data and ctx as an input.

1 while(!isEmpty()) {
2 T data = get();
3 procedure(data);
4 }

Listing 3.1: A common pattern in a plain program

1 while(true) {
2 FeatureExpr ctx;
3 Conditional<T> data;
4 ctx = non-empty configurations;
5 if(ctx == False) break;
6 data = get(ctx);
7 procedure(data, ctx);
8 }

Listing 3.2: A variational version of the program in Listing 3.1 using get(ctx)

After reviewing the whole program, we find that it is not necessary to get the data under
all non-empty configurations in Line 4. Instead of forcing the data structure to return
all non-empty data, we can let the data structure return whatever is most convenient.
Listing 3.3 shows the idea of how to change the program with foo(ctx) to the program
with fooImpl(). The isEmpty() function in Line 1 is to check whether the underlying
representation is empty or not. Line 4 shows that the data structure will decide which
part of the data should be returned.

1 while(!isEmpty()) {
2 FeatureExpr ctx;
3 Conditional<T> data;
4 data, ctx = get();
5 procedure(data, ctx);
6 }

Listing 3.3: A variational version of the program in Listing 3.1 using get()

15

One more trick for Listing 3.3 is that the ctx returned by get() can be merged into a
conditional value as shown in Listing 3.4 since we can represent the empty part as a hole.
This framework looks like a normal program, but the data structure and procedure are
variational.

1 while(!isEmpty()) {
2 Conditional<T> data = get();
3 procedure(data);
4 }

Listing 3.4: An improved version of the program in Listing 3.3

To give an intuitive understanding of the pattern we illustrated before, we give a simple
concrete example. Suppose our goal is to sum up all the elements in the variational list in
Figure 3.1b. Table 3.2 and Table 3.3 shows the sequence of steps using the popFirst(ctx)

method and the popFirstImpl() method respectively. Table 3.2 follows the pattern in
Listing 3.2 and Table 3.3 follows the pattern in Listing 3.4. We will get the same results
using two ways.

List Non-empty Context popFirst(ctx) Sum
[Choice(A, 1,⊥), Choice(A, 1, 2), One(3)] True Choice(A, 1, 2) Choice(A, 1, 2)

[Choice(A, 1,⊥), One(3)] True Choice(A, 1, 3) Choice(A, 2, 5)

[Choice(A, 3,⊥)] A 3 One(5)

Table 3.2: popFirst(ctx) states

List popFirstImpl() Sum
[Choice(A, 1,⊥), Choice(A, 1, 2), One(3)] Choice(A, 1,⊥) Choice(A, 1,⊥)

[Choice(A, 1, 2), One(3)] Choice(A, 1, 2) One(2)

[One(3)] One(3) One(5)

Table 3.3: popFirstImpl() states

Theorem 1. Suppose a program G which conceptually maps a function f over all variants
where f consumes all elements of the data structures in order, then the program G can be
run correctly with either fooImpl() or foo(ctx).

Proof. Conceptually, we consider all variants separately. For each variant, both fooImpl()
and foo(ctx) will return the same elements in the same order. Then the function f will

16

get the same output with the same input. Thus, the program G can be run correctly with
either fooImpl() or foo(ctx).

(a) machine for popFirst(ctx). (b) machine for popFirstImpl().

Figure 3.3: The input order of program G by using head(True) and headImpl()

For example, referring back to the example shown in Table 3.2 and Table 3.3, we can
conceptually consider two variants under A or ¬A separately as shown in Figure 3.3.
Figure 3.3a shows the popFirst(ctx) operations takes the data into the two variants at
the same time. However, the popFirstImpl() method in Figure 3.3b will first feed the
data to the variant under A but the input order of each machine by using the two different
methods is the same. Thus, both methods will have the same outputs. In summary, the
difference between the two retrieval methods is the time for programs that process all of
the data. The foo(ctx) function guarantees the data can be sent at the same time under
ctx but fooImpl() method cannot control the time that data will be sent.

In conclusion, foo(ctx) is more flexible and precise since the ctx can be provided by the
programmer. However, it has to compensate for the underlying representation of the
variational data structure. The fooImpl() approach saves some work by returning the
data for the most convenient context, but it has constrains on programs. We have shown
that one common programming pattern can work correctly with fooImpl() in Theorem 1.
There still exists an unexplored space for future work identifying other kinds of programs
that can run with fooImpl() correctly.

17

3.2.3 Comparison

In this section, we provide a method for comparing two retrieval methods by counting
different operations that each implementation takes. For example, we can count how
many elements need to be filled during filling holes and how many choices need to be
merged using two different implementations. Table 3.4 give the count information for
the sum example using two retrieval ways illustrated in Section 3.2.2. We also count the
number of addition operations in this example.

popFirst(ctx) popFirstImpl()
additions 3 2
merges 1 1

holes-filled 2 0

Table 3.4: comparison for Figure 3.1b

popFirst(ctx) popFirstImpl()
additions 2 4
merges 3 1

holes-filled 3 0

Table 3.5: comparison for Figure 3.4

The following parts show how to get the Table 3.4:

1. additions To count the number of addition operations using the popFirst(ctx)

method, we can easily count it by summing all the elements in the third column of
Table 3.2. For the left branch under A, we execute addition operations two times
to get 5, and one time to get 5 in the right branch. So, it total takes 3 addition
operations.

2. merges After summing all elements, we get Choice(A, 5, 5) as an intermediate
result. So, it also takes one merge time to reach One(5).

3. holes-filled During the whole process, we fill the holes in the return value twice.

Then, We can easily get the information for the popFirstImpl() method using the
similar technique. Totally, popFirstImpl() takes one less addition operation and two less
assemblies than the popFirst(ctx) method.

Table 3.4 shows that the popFirstImpl() method works better than popFirst(ctx). How-
ever, the popFirst(ctx) method can also save operations in some cases. Consider the
example in Figure 3.4, it generates the data in Table 3.5.

18

Figure 3.4: A simple example.

In Table 3.5, we can see that the popFirst(ctx) method saves two addition operations
compared to the popFirstImpl() method, but the number of merges and holes to be
filled are still higher than using the popFirstImpl() method. However, if we generalize
this situation to a longer example [Choice(A, 1,⊥), Choice(A, 2, 1), Choice(A, 3, 2), ...
Choice(A,n− 1, n− 2), Choice(A,n, n− 1), Choice(A,⊥, n)], using popFirst(ctx) takes
(n−1) times addition operations but popFirstImpl() takes twice times than popFirst(ctx),
which is 2(n− 1) times.

In conclusion, both representations have their advantages. foo(ctx) can decrease the
number of operations in some cases but it usually need more merges and more holes filling
than the fooImpl() implementation. However, filling the holes might be the most time-
consuming part since the computing on configurations is complicated. Thus, fooImpl()
implementation may have a significant advantage. We will discuss and evaluate both
implementations for a real world example in later sections.

19

Chapter 4: Variational Stacks

To explore the dimensions of the design space of variational data structures, and to evaluate
their impact on performance, we need some implementations. In this section, we describe
a small family of variational stack data structures, illustrated by the feature diagram in
Figure 4.1. It consists of two mutually exclusive core variational stack implementations
and two conceptually independent, optional optimizations, leading to eight different
variational stacks.

Variational Stack

BufferedCore Stack Hybrid

Choice of
Stacks

Stack of
Choices

Figure 4.1: Feature diagram for variational stacks.

Throughout this section, it is important not to confuse the variation between the different
variational stack implementations described in Figure 4.1, which is an implementation-
time concern about which variational stack to pick, and the variation within a particular
variational stack, which is the runtime concern that variational stacks are designed to
handle efficiently.

Each variational stack implements the interface shown in Listing 4.1. For simplicity, we
only discuss the operations push and pop. Note that both push and pop take an argument
ctx to indicate in what variational context the operations are performed. The main
challenge of designing an efficient variational stack is that the height of the variant stacks
can differ if values are pushed and popped in different contexts. In the rest of this section,
we show how unbalanced variant stacks can be managed with different tradeoffs, and how

20

1 interface VariationalStack {
2 void push(FeatureExpr ctx, Conditional value);
3 Conditional pop(FeatureExpr ctx);
4 }

Listing 4.1: Interface for variational stacks.

these implementations can be further optimized by exploiting properties of different usage
profiles. Implementation details and other stack operations, such as peek and switch, are
available as open source at http://meinicke.github.io/VarexJ/.

4.1 Choice-of-Stacks

One way to implement a variational stack is as a choice among non-variational stacks.
Since each stack may be a different size, this design represents unbalanced stacks naturally.

In Figure 4.2a, we illustrate how a choice-of-stacks stores variational data for a sequence
of three conditional push operations. On the second push, the stack splits because of the
non-trivial context. Since it only splits on the relevant configuration option A, these two
alternative stacks will be shared among all configurations that differ in other, irrelevant
options. Also note that as the stacks split, the original value 1 is redundantly stored in the
first position of all variant stacks. If operations are performed in many different variational
contexts, the number of variant stacks and potential redundancy grows exponentially.

(a) Choice-of-stacks. (b) Stack-of-choices.

Figure 4.2: Comparison of two different core variational stack implementa-
tions.

http://meinicke.github.io/VarexJ/

21

1 class ChoiceOfStacks implements VariationalStack {
2 Conditional<Stack> stack;
3 void push(FeatureExpr ctx, Conditional value) {
4 value.foreach((FeatureExpr c, Object v) -> {
5 push(c.and(ctx), v);
6 });
7 }
8 private void push(FeatureExpr ctx, Object value) {
9 stack = stack.flatMap((FeatureExpr f, Stack s)->{

10 if (f.and(ctx).isContradiction()) {
11 return new One(s); }
12 if (f.andNot(ctx).isContradiction()) {
13 s.push(value);
14 return new One(s); }
15 final Stack clone = s.copy();
16 clone.push(value);
17 return new Choice(ctx, clone, s);
18 });
19 }}

Listing 4.2: Implementation of choice-of-stacks.

Listing 4.2 shows the implementation of push for choice-of-stacks. The underlying data
structure for the choice-of-stacks implementation is Conditional<Stack>, that is, a choice
calculus expression with stacks at the leaves. Since the argument value is also variational,
the push operation first iterates over all of the plain values in the argument (line 5).

The push helper method pushes a plain value to all of the variant stacks. For each variant
stack, it checks the variational context of the stack, f, against the variational context of
the push operation, ctx. There are three possibilities: at line 10, the push applies in no
contexts that include this stack, so it is returned unchanged (the One constructor builds
a Conditional value with just one variant); at line 12, the push applies in all contexts
that include this stack, so the value is simply pushed; at line 15, the push applies to some
contexts that include this stack, so we must clone the stack to capture the two different
execution paths going forward.

The major drawback of the choice-of-stacks implementation is that if just one value of a
stack differs in two contexts, all of the values common to both contexts must be duplicated,
which has both space and time implications. If the two variant stacks later converge,

22

identifying and merging them is expensive since we must iterate over all of the variants.

4.2 Stack-of-Choices

The next implementation inverts the relationship of stacks and choices by representing a
variational stack as a stack of conditional values (stack-of-choices). The idea is to avoid
the cloning required by the choice-of-stacks implementation by using a single stack and
using choices within that stack to encode differences among entries in different contexts.

Figure 4.2b illustrates how stack-of-choices shares the common 1 value among different
contexts. To handle unbalanced stack sizes, We use the holes implementations. For
example, when the number 2 is pushed under context A, we push the choice Choice(A, 2,⊥).
The rest of this subsection describes how the push and pop operations handle holes in the
stack.

The push operation is straightforward. If a value is pushed for the trivial context true
(meaning the same value is pushed in all contexts), the value can be pushed directly onto
the stack. However, if a value is pushed with a non-trivial context, such as A, we must
introduce a hole to represent the absence of the value under the contradictory context,
¬A.

The pop operation is more complicated, since it might need to eliminate holes in order to
return meaningful values. For example, consider the rightmost stack of Figure 4.2b; a pop
in context true cannot simply return Choice(B,⊥, 3), since there are still values on the
stack under context B. Thus, pop first fills the hole with Choice(A, 2, 1) then removes
and returns the value Choice(B,Choice(A, 2, 1), 3).

To handle holes, the pop operation traverses the stack top-down and assembles values
from different contexts until either there is no hole in the return value, or the whole stack
is traversed. For example, consider again popping a value from the rightmost stack in
Figure 4.2b. When calling pop under context ¬B, the top element can be removed and the
value 3 returned directly, since 3 is a value with no holes. However, if pop is called under
B, the hole is filled by traversing the rest of the stack, eventually returning Choice(A, 1, 2).
Since pop is applied under context B, the part of the top entry corresponding to context

23

1 class StackOfChoices implements VariationalStack {
2 Conditional[] stack;
3 int top = -1;
4 void push(FeatureExpr ctx, Conditional value) {
5 stack[++top] = new Choice(ctx, value, null);
6 }
7 Conditional pop(FeatureExpr ctx) {
8 Conditional pop = null;
9 for (int i = top; i >= 0; i--) {

10 Conditional current = stack[i].get(ctx);
11 pop = new Choice(ctx, current, pop);
12 stack[i] = new Choice(ctx, null, stack[i]);
13 if (i == top && stack[i].isNull()) top--;
14 ctx = ctx.and(getCtxOfNull(current));
15 if (ctx.isContradiction()) break;
16 }
17 return pop;
18 }}

Listing 4.3: Implementation of stack-of-choices.

¬B must be kept on the stack.

Listing 4.3 shows the implementation of stack-of-choices. The member variable stack is an
array of conditional values, and top is the index of the topmost element. The method push

adds an entry to the stack as a choice with a hole (null). Popping a value from the stack
works as follows: The variable pop is used to incrementally collect values while traversing
the stack. Starting from top, the value under the current context is retrieved (line 10) and
stored in the current pop variable (line 11). Next, the popped value is removed from the
current position in the stack. If this leaves the top entry empty, top can be decremented.
To fill the remaining holes in pop, the context of the null value is determined by calling
getCtxOfNull, and this context is used for the next iteration, until there are no holes left
(i.e. ctx is a contradiction) or all entries are traversed. Finally, the value pop is returned.

Stack-of-choices supports more sharing than the choice-of-stacks implementation, but this
comes at the cost of complicating stack operations (e.g. pop). In the best case, the pop
operation can simply return part of the topmost entry if it does not contain a hole in the
given context. In the worst case, however, the whole stack must be traversed to pop a
value. We discuss and evaluate these tradeoffs in the next chapter.

24

4.3 Buffered Stack Decorator

Both choice-of-stacks and stack-of-choices support push and pop operations with arbitrary
contexts. During the development of VarexJ, we discovered that values are usually
popped from the stack under the same context as they were pushed. We turn this insight
into a decorator for an underlying core variational stack that exploits this property.

The idea is to buffer pushed values in a plain stack as long as the variational context
doesn’t change. When several sequential pushes and pops are called in the same context,
we can just push and pop from the buffer, saving the cost of manipulating variational
values. When a push or pop is invoked in a different variational context, the buffered-stack
decorator default to the core variational stack implementation, pushing all currently
buffered values to the core stack in the context associated with the buffer.

1 class BufferedStack implements VariationalStack {
2 LinkedList buffer;
3 FeatureExpr bufferCTX;
4 VariationalStack coreStack;
5 void push(FeatureExpr ctx, Conditional value) {
6 if (!bufferCTX.equals(ctx)) {
7 debufferAll();
8 bufferCTX = ctx;
9 }

10 buffer.push(value);
11 }
12 Conditional pop(FeatureExpr ctx) {
13 if (bufferCTX.equals(ctx) && !buffer.isEmpty()) {
14 return buffer.pop();
15 } else {
16 debufferAll();
17 }
18 return coreStack.pop(ctx);
19 }}

Listing 4.4: Buffered-stack decorator.

The implementation of the buffered stack is shown in Listing 4.4. The push and pop

25

operations check whether they were invoked in the same context as the buffer. If not,
they fall back to the core implementation using debufferAll. As the implementation
illustrates, when pushes and pops occur in the same context, there are no map calls at all,
so even very large choice values can be pushed and popped with no performance overhead.

4.4 Hybrid Stack Decorator

All of the implementations described so far assume that the stack always needs to handle
variational values and operations in different variational contexts. During the development
of VarexJ, it was discovered that most calls to the stack do not involve variation at
all. To exploit this property, we implemented the hybrid stack decorator, shown in
Listing 4.5. The hybrid stack uses a plain stack until a variational stack is necessary. The
implementation of push checks whether the context is different from the plain stack or
whether the pushed value is variational. If neither is true, it keeps using the plain stack.
Otherwise, it switches to a variational stack initialized by the current contents of the
plain stacks.

1 class HybridStack implements VariationalStack {
2 FeatureExpr stackCTX;
3 VariationalStack stack = new Stack();
4 boolean switched = false;
5 void push(FeatureExpr ctx, Conditional value) {
6 checkParameter(ctx, value);
7 stack.push(ctx, value)
8 }
9 void checkParameter(FetureExpr ctx, Conditional value) {

10 if (switched) return;
11 if (!ctx.equals(stackCTX) || !value.isOne()) {
12 // create a variational stack
13 // push all current values
14 switched = true;
15 }
16 }}

Listing 4.5: Hybrid-stack decorator.

26

The hybrid stack decorator exploits the fact that in many scenarios, stack operations are
simple and do not need a variational stack. The decorator exploits these cases by working
with more efficient plain values as long as possible.

27

Chapter 5: Experimental Analysis on Variational Stacks

Choosing the right data structure for an application often depends on both the particular
data that will be stored in the data structure, and on patterns of its usage within the
application. The same is true for variational data structures, except we must also take
into account properties of data and usage related to variability. In this section, we identify
a few of these properties and present two sets of experiments to analyze their impact and
evaluate the performance of the family of variational stacks described in Chpater 4.

In the first set of experiments, described in Section 5.1, we focus on understanding how
individual properties of data and usage influence the performance of variational stacks
in order to help recommend a specific variational stack for a particular use case. In
the second set of experiments, described in Section 5.2, we evaluate the performance of
variational stacks in a real-world setting, when used as the operand stack of the VarexJ

interpreter.

5.1 Analyzing Tradeoffs in Generated Data

In principle, we can view the range of applications for variational data structures as an
n-dimensional space, where each dimension represents a different property of data or usage
that influences which variational data structure to choose. If we fully understood this
space, we could partition it into regions for each class of data structure (e.g. variational
stacks) and then prescribe a particular variational data structure for a given application.

Examples of data and usage properties that impact the performance of variational data
structures include: the number of configuration options and unique variants, the density
and complexity of variation points within the data, and the ratio and distribution of
variational operations. In this subsection, we experimentally analyze the impact of two of
these properties on variational stacks: number of configuration options and one aspect of
the distribution of variational operations.

28

5.1.1 Number of Configuration Options

The most efficient variational data structure for an application with only two variants (e.g.
in delta execution [Tucek et al., 2009]) is unlikely to be the same as an application where
the data varies in 10s or 100s of independent configuration options (e.g. when analyzing
software product lines [Kästner et al., 2011]). Within our family of variational stacks, we
expect this tradeoff to be illustrated by the choice of which core stack implementation to
choose. For a small number of variants, we expect the directness of the choice-of-stacks
implementation of Section 4.1 will win out over the relatively more complicated stack-
of-choices implementation of Section 4.2. For a large number of variants with enough
commonalities, we expect the increased sharing in the stack-of-choices implementation
has a chance to pay off. This experiment attempts to identify the threshold of variants
where the stack-of-choices core stack implementation pays off.

Experimental setup. For each number of configuration options from 0 to 8, we
artificially generate a sequence of 500 push/pop operations. The generated operation
sequences are constrained to prevent stack underflow errors, and also to approximate
realistic data by preferring simple variational contexts [Liebig et al., 2010] and sequential
operations in the same variational context (see Section 4.3). More specifically, each
operation sequence is generated in the following way: start by generating a push operation
with a random feature selected from among the 0–8 available configuration options and the
trivial true context; for operation n+ 1, 90% of operations will use the same variational
context while the remainder will choose a new random feature; if any variant stack in the
chosen context is empty, produce a push operation, otherwise randomly push or pop; for
push operations, choose a random integer or, in 10% of cases, push a choice in a random
configuration option between random integers.

For each operation sequence, we measure the runtime1 and the maximum memory
consumption2 of four of the variational stacks produced by the product line described
in Chapter 4. Each operation sequence is executed on each stack 10 times, choosing the
fastest execution. We omit the four stack variants that include the hybrid optimization

1All measurements throughout the paper were performed on a machine with an Intel Core i7-5600
CPU (4 cores, 2.6 GHz), 11.6 GB of RAM, running 64-bit Ubuntu Linux.

2https://github.com/meinicke/ObjectSizeMeasure.

https://github.com/meinicke/ObjectSizeMeasure

29

0 2 4 6 8

102

103

104

105

Number of configuration options

R
un

ni
ng

ti
m
e
(µ
s)

CoS CoS+B
SoC SoC+B

0 2 4 6 8

104

105

Number of configuration options

M
em

or
y
co
ns
um

pt
io
n
(b
yt
es
)

CoS CoS+B
SoC SoC+B

Figure 5.1: Comparing variational stacks on artificially generated operation
sequences with different numbers of configuration options that may appear
in the variational contexts. Y-axes are on a logarithmic scale.

since this optimization cannot provide benefits (and only causes small overhead) in such
a variation-dense scenario.

Results and analysis. The results of the experiment are presented in Figure 5.1.
The independent variables are: (1) the number of configuration options, plotted on the
x-axis, and (2) the choice of stack, indicated by separate lines (CoS represents the core
choice-of-stacks implementation, SoC is the stack-of-choices implementation, and +B
indicates a stack decorated by the buffered optimization); the dependent variable is the
runtime of the operation sequence in the left graph and amount of memory consumed in
the right graph.

In general, the precise threshold where the stack-of-choices core stack implementation
pays off can depend on many variables that are fixed in the experiment, such as the
ratio of operations with a non-trivial context. However, what we observe in the results
is that this threshold is quite low for the values of these variables that we analyzed. In
our experiment, the stack-of-choices core stack implementation outperforms the choice-
of-stacks implementation at three configuration options, and outperforms the buffered
choice-of-stacks implementation at five configuration options.

Despite the low threshold for switching from choice-of-stacks to stack-of-choices, we expect

30

there are many applications where this threshold is not exceeded, either because the
number of configuration options is low [Austin et al., 2013,Tucek et al., 2009] or because
they do not interact much [Meinicke et al., 2016].

In the memory measurement of Figure 5.1, we observe the stack-of choices outperforms
the choice-of-stacks already for three features. As expected, the choice-of-stacks imple-
mentation requires memory that is exponential in the number of configuration options.
In contrast, the memory consumption of the stack-of-choices stays almost constant, inde-
pendent of the number of involved configuration options. This is because adding more
configuration options does not increase redundancy in the stack-of-choices, but instead
just changes the context associated with each choice in the stack.

5.1.2 Distribution of Variational Operations

In Figure 5.1 we observe that the buffered implementations outperform their unbuffered
counterparts. This is not surprising since in the generated sequences, 90% of operations
are in the same variational context as their predecessor, which is exactly the situation
the buffered optimization is intended to exploit. In the next experiment we attempt to
measure the runtime and memory performance of this optimization with respect to each
of our core variational stacks and to the ratio of sequential operations in the same context.

Experimental setup. For r from 0 to 100 in increments of 5, we artificially generate a
sequence of 500 push/pop operations where exactly r% of sequential pairs of operations
occur in the same variational context. We arbitrarily fix the variation space at six
independent configuration options. As before, we constrain the operation sequences to
avoid stack underflow errors. For each operation sequence, we measure the runtime of
four variational stacks: the two core stacks and the two core stacks decorated by the
buffered optimization. As before, each operation sequence is executed on each stack 10

times, choosing the fastest execution.

Results and analysis. The results of the experiment are presented in Figure 5.2. The
independent variables are: (1) the ratio of sequential operations in the same variational
context, plotted on the x-axis, and (2) the choice of stack, indicated by separate lines,

31

020406080100
0

20

40

60

80

Ratio of same context in next operation (%)

R
un

ni
ng

ti
m
e
(m

s)

CoS CoS+B
SoC SoC+B

020406080100

104

105

Ratio of same context in next operation (%)

M
em

or
y
co
ns
um

pt
io
n
(B

yt
e)

CoS CoS+B
SoC SoC+B

Figure 5.2: Comparing variational stacks on randomly generated operation
sequences with different probability that an operation is executed in the same
variational context as the previous operation.

labeled as before; the dependent variables are runtime and memory consumption of the
operation sequence.

We observe that for the choice-of-stacks core implementation, the buffered optimization
has a significant effect on runtime and remains profitable all the way until the ratio
is nearly zero. In contrast, the buffered optimization has a very small effect for the
stack-of-choices core implementation, and the effect nearly vanishes at a relatively high
ratio of sequential operation in the same context. This reflects the fact that the stack-
of-choices implementation already supports relatively well the scenario that the buffered
optimization addresses; for example, pushing and popping a value in the same context will
simply push and pop a corresponding choice from the stack. In contrast, the choice-of-
stacks implementation would require splitting and copying all variant stacks on the push
operation, even if the next pop operation is in the same context (rendering the copied
variants irrelevant).

In the graph of memory consumption in Figure 5.2, we can see that the memory required
by choice-of-stacks is significantly higher than the memory required by stack-of-choices
for all ratios except for 100%. For all ratios below 100%, the memory consumption
of choice-of-stacks is approximately 21 kilobytes since the stack has to represent all 26

variant stacks. The stack-of-choices is again more efficient since common values are shared

32

across variant stacks. For both implementations, the buffered-stack optimization has only
minimal effects on memory consumption.

Neither of the experiments in this subsection analyzed variational stacks containing the
hybrid optimization described in Section 4.4. The improved performance of hybrid stacks
depends on whether variability occurs at all in each stack instance. This is something
that is best measured on real-world examples, which we do in the next subsection.

5.2 Variational Stacks in VarexJ

In this subsection we consider how our variational stacks perform in practice, when used
as the operand stack in the variational Java interpreter VarexJ (see Section 2.4). We
use VarexJ to execute all configurations of four systems that have previously been used
as benchmarks in research on configurable software: the systems Email [Hall, 2005] and
Elevator [Plath and Ryan, 2001] are small academic Java programs that were designed with
many interacting configuration options, ZipMe3 is a small open-source library for accessing
ZIP archives, and GPL [Lopez-Herrejon and Batory, 2001] is a small-scale configurable
graph library often used for evaluations in the software product line community.

Choice-of-stacks Stack-of-choices
Core +H +B +HB Core +H +B +HB

Email 556.8 492.0 499.7 517.8 508.1 502.6 506.2 501.7
Elevator 792.2 645.3 610.2 596.4 786.3 651.2 643.7 582.8
ZipMe 8 385.6 4 687.7 5 244.7 4 549.8 6 482.7 4 599.3 5 077.6 4 588.8
GPL 35 962.1 21 043.5 25 866.5 20 466.0 29 188.5 20 822.5 25 637.8 20 713.3

Table 5.1: Running time (ms) of each variational stack used as the operand
stack in VarexJ while executing different variational programs. Each row
measures the overall running time of VarexJ using each stack in-situ.

Experimental setup. We use VarexJ to execute each of the four systems, using each
of the eight possible variational stacks described in Chapter 4 as VarexJ’s variational
operand stack. For each combination of system and stack, we configure VarexJ to use

3https://sourceforge.net/projects/zipme/

https://sourceforge.net/projects/zipme/

33

LOC Opt Conf Stacks λH λB λHB
Email 644 9 40 4 938 195 21 18
Elevator 730 6 20 14 154 1 772 1 499 1 454
ZipMe 2 827 15 10 76 392 93 169 28
GPL 662 15 146 533 162 7 345 500 497

Table 5.2: Overview of four variational programs. Columns indicate: lines
of code (LOC), number of configuration options (Opt), and total number of
configurations (Conf) for each example; the total number of operand stacks
created while executing the example in VarexJ (Stacks); and the failure rates
for the hybrid optimization (λH), buffered optimization (λB), and both opti-
mizations combined (λHB).

the corresponding stack implementation as its operand stack, then use VarexJ to execute
all configurations of the system 10 times, choosing the fastest execution.

Additionally, we count how many total operand stacks are created during the execution
of each system. For each stack implementation that includes either the hybrid or buffered
optimization, we count how many times these optimizations miss during the execution of
each system. For the hybrid optimization, the optimization misses when a variational
operation is first performed on a particular operand stack. For the buffered optimization,
the optimization misses when an operation is first performed on some operand stack in a
different variational context than the previous operation.

Results and analysis. The runtime results are presented in Table 5.1, while Table 5.2
presents some basic characteristics of each system: lines of code, number of configuration
options, and number of unique configurations. Table 5.2 also shows the number of operand
stacks created during the execution of each system in VarexJ, the miss rates for each
optimization in isolation (columns λH and λB), and the miss rate of both optimizations
combined (λHB).

In the runtime results, we observe that the stack-of-choices core implementation outper-
forms the choice-of-stacks core implementation for all systems. More interestingly, we
observe that both optimizations are highly relevant in practice—either optimization alone
produces substantial speedups with the choice-of-stacks implementation, and including
both optimizations renders the choice of core stack implementation moot. This suggests

34

that the optimizations capture an overwhelming majority of the cases in this application
scenario. This observation is confirmed by the miss rates in Table 5.2. A core stack is
created only when the included optimizations miss, and we observe that the miss rate for
both optimizations combined (λHB) is less than 1% of the total operand stacks created in
3 out of 4 systems. The exception is the Elevator system, which was specifically designed
to exhibit many interactions [Plath and Ryan, 2001], and has a miss rate for the combined
optimizations of approximately 10%. This still seems low enough that the choice of core
stack is insignificant. For larger applications we expect even higher success rates for the
optimizations since such systems tend to have fewer interactions between configuration
options and lower variation density than our test cases [Meinicke et al., 2016].

Overall, the results demonstrate that choosing the right implementation of a variational
data structure can have a significant impact on the overall performance of a variational
computation, even if that data structure is only a relatively small part of the tool, as is
the case for the operand stack in VarexJ. For example, when executing GPL, switching
from the choice-of-stacks to the stack-of-choices implementation saves 19% of the overall
runtime and adding both optimizations saves overall 43% of the runtime.

35

Chapter 6: Variational Priority Queues

In this chapter, we introduce another useful variational data structure: variational priority
queues. Like variational stacks, variational priority queues can be represented in a
number of ways. Each variational priority queue implements the interface shown in
Listing 6.1. The push function and popMin functions take an argument ctx to indicate
in what variational context the operations are performed. Unlike the stacks section, we
focus on two different implementations of popMin called popMin(ctx) and popMinImpl().
The popMinImpl() method itself decides in what variational context the operations are
performed and users can not retrieve the variational data by providing a context. In the
rest of section, we will show how the two different implementations of popMin affect the
performance of variational priority queues.

1 public interface VPQ{
2 public void push(int v, FeatureExpr ctx);
3 public Conditional<Integer> popMin(FeatureExpr ctx);
4 public Conditional<Integer> popMinImpl();
5 }

Listing 6.1: Interface for variational priority queues

6.1 Implementation

The simplest implementation of variational priority queues is using Conditional<PriorityQueue>.
This implementation is simple and uses the same technique as the the implementation of
choice-of-stacks. We will skip the redundant explanation and implementation. Instead, we
provide an idea of the design considerations for implementing variational data structures
with holes. Since holes in the return value may need to be filled, the underlying imple-
mentation should be able to find what parts should be filled. For example, the underlying
implementation of stack-of-choices is an array, which always stores the potential parts for

36

filling the holes in the next adjacent position. Then we can simply use a for loop to find
the parts for filling holes from top to bottom.

Similarly, when implementing variational priority queues with holes, two aspects should
be considered. First, we need to pick the right data structure, which should be able to
find the parts for filling the holes in the return value. Second, the elements in the data
structure need to preserve the priority information and the ctx information to indicate in
what context that priority exists. Next, we show how to design a possible implementation
of variational priorities queues.

Figure 6.1: Two possible ways for representing variational priority queues
using a heap

We started with heap as an underlying data structure, since a heap is a common way to
implement plain priority queues. However, we found that a heap is not a good choice.
For example, Figure 6.1 shows two possible ways of representing the same variational
priority queue using a heap. Each node in the heap preserve the priority information and
the ctx information. When calling popMin(¬A), it should return 3 as result. However,
using the heap implementation, we cannot efficiently locate the parts for filling the holes
since they can be stored in the left child or right child as shown in Figure 6.1. A list
sorted by priorities can solve this problem since it can find the parts for filling holes
easily as shown in Figure 6.2. But inserting a priority into this sorted list takes O(n)
complexity. Thus, a balanced binary search tree seems more appropriate for our needs.
First, new priorities can be inserted in O(log n) complexity. Second, it maintains an order,
the inorder traversal of a BST is an increasing sequence, which makes the hole-filling

37

algorithm easy. Next, we show the idea of how to represent variational priority queues by
a balanced BST.

Figure 6.2: Representing variational priority queues using a list

Figure 6.3a shows the implementation of variational priority queues using a balanced BST.
To support duplicate priorities under the same context, we can change the FeatureExpr in
Figure 6.3a to a conditional value that represents the number of the same priorities under
different configurations, as shown in Figure 6.3b. Now, each node in Figure 6.3b records
a priority and the count information. For example, the conditional value Choice(C, 2, 1)

in priority 5 states that there exists 2 priorities 5 under the context C and one priority 5
under the context ¬C.

(a) (b)

Figure 6.3: Two ways for representing variational priority queues using a BST
(a) An BST implemenataion of variational priority queues (b) BST implemen-
tation with duplicate priorities under the same context

38

In the next section, we detail the implementation of variational priority queues using a
balanced binary search tree.

6.2 Insertion and Deletion

The insertion and deletion operations cause the priorities in the tree to change. The data
structure must be modified to reflect this change. As we shall see, modifying the tree to
insert a new priority is relatively straightforward, but handling deletion is somewhat more
intricate.

Insertion. Listing 6.2 shows the implementation of the push operation for a variational
priority queue. We use the Java built-in library TreeMap to implement our variational
priority queue. TreeMap is Red-Black tree based implementation which supports insertion
and deletion in O(logn) time. The key in the map stands for the priority and the value
stands for the count, as shown in Line 1. Lines 2-8 shows how to push priorities into
this variational priority queue. There are two cases. First, if the variational priority
queue already exists the same priority, it only needs to change the counts recorded in
the corresponding node by using the vadd function introduced in Section 2.2. Second, if
the variational priority queue does not contain such priority, the algorithm creates a new
node and puts it into the map.

1 private Map<Integer, Conditional<Integer>> map = new TreeMap();
2 public void push(int v, FeatureExpr ctx) {
3 Conditional<Integer> c = map.get(v);
4 if(c == null) {
5 c = new One<>(0);
6 }
7 c = vadd(c, ctx, 1);
8 map.put(v, c);
9 }

Listing 6.2: Implementation of the push function

Deletion. The popMin(ctx) operation is a bit more complicated than inserting a node.
Before introducing the popMin(ctx) implementation, it is helpful to understand how

39

peek(ctx) works, as shown in Listing 6.3. The peek(ctx) operation is using the same
technique as the pop(ctx) operation of stack-of-choices in Section 4.2. The only difference
is that peek(ctx) does not remove the corresponding values in the data structure.

1 public Conditional<Integer> peek(FeatureExpr ctx) {
2 List<Integer> lc = new ArrayList();
3 List<FeatureExpr> lf = new ArrayList();
4

5 for(Map.Entry<Integer, Conditional<Integer>> e : map.entrySet()) {
6 Conditional<Integer>[] s = e.getValue().split(ctx);
7 if(s[0].equals(One.ZERO)) continue;
8 FeatureExpr fe = s[0].getFeatureExpr(0);
9 lc.add(e.getKey());

10 lf.add(fe.not());
11 ctx = ctx.and(s[0].getFeatureExpr(0));
12 if(ctx.isContradiction()) {
13 break;
14 }
15 }
16 Conditional<Integer> ret = (One<Integer>)One.NULL;
17 for(int i = lc.size() - 1; i >= 0; --i) {
18 ret = ChoiceFactory.create(lf.get(i), One.valueOf(lc.get(i)), ret);
19 }
20 min = ret;
21 return min;
22 }

Listing 6.3: Implementation of the peek(ctx) function

Then the following steps show the procedure for popMin(ctx), which is based on the
peek(ctx) method:

1. First call the peek(ctx) function to get the result ret. The variable ret records the
priorities that need to be popped.

2. After retrieving ret, the algorithm needs to decrease the corresponding counts.
Listing 6.4 shows how to decrease counts by using a flatMap. If the count is changed
to One(0) in Line 7, it means this priority does not exist in any context. Then, the

40

node in the map will be removed. Otherwise, it calls the vadd function to decrease
1 for each variant that popped.

Since the peek(ctx) needs to fill the holes until there are no holes in the return value, the
worst case complexity for popMin(ctx) is O(n).

1 public Conditional<Integer> popMin(FeatureExpr ctx) {
2 Conditional<Integer> ret = peek(ctx);
3 ret.flatMap((FeatureExpr f, Integer v)->{
4 if(v != null && !f.isContradiction()) {
5 Conditional<Integer> c = map.get(v);
6 c = vadd(c, f, -1);
7 if(c.equals(One.ZERO)) {
8 map.remove(v);
9 } else {

10 map.put(v, c);
11 }
12 }
13 return (One<Integer>)One.NULL;
14 });
15 return ret;
16 }

Listing 6.4: Implementation of the popMin(ctx) function

Compared to the popMin(ctx) operation, the implementation of popMinImpl() for vari-
ational priority queues is simple. It does not need to traverse the data structure. One
implementation we provide here is to return one single piece of the value with the highest
priority as shown in Listing 7.3. First, on Line 5, we check the count in the leftmost node
to get the context the priorities exist, then simply return the priorities under that context.

1 public Conditional<Integer> popMinImple() {
2 Map.Entry<Integer, Conditional<Integer>> e = map.firstEntry()
3 if(e == null) return (One<Integer>)One.NULL;
4 Integer t = e.getKey();
5 FeatureExpr fe = e.getValue().getFeatureExpr(0).not();
6 Conditional<Integer> nv = vadd(e.getValue(), fe, -1);
7 map.put(t, nv);

41

8 return ChoiceFactory.create(fe, One.valueOf(e.getKey()),
(One<Integer>)One.NULL);

9 }

Listing 6.5: Implementation of popMinImpl()

42

Chapter 7: Variational Priority Queues Evaluation

In this chapter, we present two sets of experiments to analyze the performance of the two
different ways implementing priority queues. In Section 7.1, we analyze how individual
properties of data (numbers of features) influence the performance of variational heapsort
using the two approaches.

In the second set of experiments, described in Section 7.2, we evaluate the performance of
variational priority queues in a real-world airlines example.

7.1 Heapsort

Since our underlying implementation is a balanced BST, the data is sorted when pushing
elements into the variational priority queues. Thus, this experiment is actually directly
comparing the efficiency between two approaches to add and retrieve data as we defined
in Section 6.2.

Experimental setup. For each number of configuration options from 1 to 15, we
artificially generate a variational list with 50 elements and push the variational list to
our variational priority queues using two different implementation. For a balanced BST
implementation, we provide two approaches, popMin(ctx) and popMinImpl(), to get the
results. For Conditional<PriorityQueue> implementation, we provide the popMin(ctx)

method. For each variational list we generated, we measure the runtime of those three
approaches by computing the fastest over 10 executions of heapsort.

Results and analysis. The results of the experiment are presented in Figure 7.1. The
independent variables are: (1) the number of configuration options, plotted on the x-
axis, and (2) the three implementations: popMin(ctx) and popMinImpl() using a balanced
BST implementation and popMin(ctx) using Conditional<PriorityQueue> implementation,
indicated by separate lines. The dependent variable is the runtime of variational heapsort

43

on a generated variational list.

For a balanced BST implementation, the runtime of the popMin(ctx) method increases
with the number of configuration options since the time of context computations and the
number of features are positively correlated. Comparatively, the popMinImpl() is more
stable since it avoids most context computations. However, popMinImpl() can only be
used under the conditions described in Section 3.2.2.

Compared to Conditional<PriorityQueue> implementation, the popMinImpl() approach in
a balanced BST implementation outperforms the Conditional<PriorityQueue> implemen-
tation at two features and the popMin(ctx) approach in a balanced BST implementation
outperforms Conditional<PriorityQueue> implementation at 7 features.

7.2 Shortest path problems

In this section, we solve the shortest path problem on a variational graph using a Variational
Dijkstra’s algorithm. To do so, we first define a variational graph and introduce how
to change our general implementation of variational priority queues to key-value pair
priority queues. Then, evaluate how the two ways, popMin(ctx) and popMinImpl(), affect
the performance of the variational priority queues when used in Variational Dijkstra’s
algorithm.

The original shortest path problem is to find the minimum distance between two vertices
in a graph. There are several algorithms for solving this problem. Dijkstra’s algorithm is
one of the most famous algorithms and its classic implementation uses priority queues.
Before discussing how a Variational Dijkstra’s algorithm works, it is important to recall
how Dijkstra’s algorithm works. We shall break the procedure of Dijkstra’s algorithm
into three major steps. First, the algorithm assigns all vertices in a graph as infinity
distance except the source as 0 and marks all vertices as unvisited. Second, we shall get
an unvisited vertex v with the minimum distance by using a priority queue. Third, if v
is the same as the destination, the algorithm stops. Otherwise, it marks v visited and
traverses all its neighbors and calculates the new distances. Each time the algorithm
compares the new calculated results with the current distance for neighbors. If the new
value is smaller than the current value, it updates the current value to the new value.

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

105

106

107

108

109

Number of configuration options

R
un

ni
ng

ti
m
e
(n
s)

popMin() popMinImpl()
Conditional[PriorityQueue] + popMin(ctx)

Figure 7.1: Comparing variational heapsort on artificially generated varia-
tional lists with different numbers of configuration options that may appear
in the variational contexts.

45

Then the algorithm will jump to step 2 until getting the destination.

Next, we define a variational graph and a key-value variational priority queue for Varia-
tional Dijkstra’s algorithm.

7.2.1 Variational Graph

Analogous to variational stacks, variational graphs do not only represent one graph but
represents several different plain graphs [Erwig et al., 2013]. In a variational graph, the
variation can exist in vertices or edges. In this chapter, we only consider the variational
graphs with variations on edges. In a plain graph, an edge is represented as e = (v, u, w),
which means an edge from v to u with weight w. For building a variational graph, we can
simply add the context to each edge as e′ = (v, u, w, ctx), which means the edge exists
under ctx. Consider the example in Figure 7.2. In this graph, if we select the context
B, there exist one edge with weight 60 from vertex 1 to vertex 3. Consider the shortest
path from vertex 1 to vertex 5, selecting A ∧B makes the shortest distance 100, while
the result will be 460 under A∧¬B. There is no path found from node 1 to node 5 under
the context ¬A ∧ ¬B or ¬A ∧B.

Figure 7.2: One simple eaxample of variational graphs with all variations on
edges.

46

7.2.2 Key-Value Variational Priority Queue

Since the priority queue in Dijkstra’s algorithm needs to preserve the vertex information,
we also need change our general variational priority queue to a key-value priority for
supporting storing more information such as name or id in the variational priority queue.
Listing 7.1 shows the interface for key-value variational priority queues. update in Line 2
is to update the smaller shortest distance under certain ctx to the source and popMin(ctx)

is for getting nodes with the shortest distance from source under ctx. We can also provide
the popMinImpl() method since Dijkstra’s algorithm is supposed to run all variants
independently and consume all the data until it reaches the destination. The return value
of popMin(ctx) and popMinImpl() is a list of triples since several vertices can have the
same least distance from the source. The triple is a class which can store three information.
Here we use it to store the context ctx, priority, and the node label which has type of
FeatureExpr, Integer, and T receptively.

1 public interface IVPriorityKey<T> {
2 public void update(FeatureExpr ctx, final T k, final Integer p);
3 public List<Triple<FeatureExpr, Integer, T>> popMinImpl();
4 public List<Triple<FeatureExpr, Integer, T>> popMin(FeatureExpr f);
5 }

Listing 7.1: Interface of key-value variational priority queue

Suppose the variational graph does not contain duplicate vertices, we only need to replace
the count by a variational set to record all the vertices that have the same distance from
the source. Listing 7.2 shows the underlying representation of variational priority queues.
Now, priorityTable maintains a priority and a variational set. For example, after visiting
the vertex 1 in the priority queue in Figure 7.2, the leftmost node in the priority queue
will be a (60, {2 → A, 3 → B}), which means the distance from the source to vertex 2
under A and the distance to vertex 3 under B are the same, namely, 60. keyTable is an
index table which can quickly locate the corresponding node’s priority (distance) to enable
updates. For example, when updating the nodes in priority queues, the old distance in
the variational priority queue should be deleted. We can quickly find the node in the
variational priority queue with the old distance using the index table.

1 public class VPriorityKey<T> implements IVPriorityKey<T> {

47

2 Map<T, Conditional<Integer>> keyTable = new HashMap();
3 TreeMap<Integer, VHashSet<T>> priorityTable = new TreeMap();
4 ...
5 }

Listing 7.2: Implementation of variational priority queue

1 private Map.Entry<Integer, VHashTable<T>> popMinImpl() {
2 Map.Entry<Integer, VHashTable<T>> e = priorityTable.firstEntry();
3 if(e == null) return null;
4 removeKeyTable(e.getValue());
5 priorityTable.remove(e.getKey());
6 return e;
7 }

Listing 7.3: Implementation of the popMinImpl() function

The implementation of popMin(ctx) for a the key-value priority queue is almost the
same as the popMin(ctx) method we defined in Listing 6.4 except it needs to modify
the index table at the same time. We will not show the redundant code here. For the
popMinImpl() implementation, we can also use the same technique as before, which only
returns the piece of data in the leftmost node. However, this implementation can be
optimized after observing a property of priority queues in Dijkstra’s algorithm. Because the
minimum distance from the source is continuously increasing, the elements popped from
the priority queue are monotonically increasing. Based on this observation, we can pop all
elements with the minimum priority, which optimizes the popMinImpl() implementation
from popping one element in the leftmost node to popping all elements in the leftmost
node since the elements have the same shortest distance from the source vertex. So,
popping everything in the leftmost node in such a situation is safe. Listing 7.3 shows the
implementation of popMinImpl(). When we remove the leftmost node, we also need to
make the corresponding changes in the index table as shown in line 4.

Listing 7.4 shows an implementation of a variational update function. Basically, given an
object, the update function first gets the shortest path information from the keyTable

and compares the priority with the given priority. If the priority of the give priority is
higher than the current priority, it will update the priority and update the corresponding
entry in the keyTable.

48

1 public void update(FeatureExpr ctx, final T k, final Integer p) {
2 if(ctx.isContradiction()) return;
3 Conditional<Integer> cp = keyTable.get(k);
4 cp = cp.flatmap((FeatureExpr f, Integer v)->{
5 if(f.and(ctx).isContradiction() || v != null && p.compareTo(v) >= 0) {
6 if(v == null) return One.NULL;
7 return One.valueOf(y);
8 }
9 if(v != null && priorityTable.get(v) != null) {

10 priorityTable.get(v).remove(ctx, k);
11 if(priorityTable.get(v).isEmpty()) {
12 priorityTable.remove(v);}
13 }
14 if(priorityTable.get(p) == null) priorityTable.put(p, new

VHashTable());
15 priorityTable.get(p).put(ctx, k);
16 if(v == null) {
17 return ChoiceFactory.create(ctx, One.valueOf(p),

One.NULL).simplify();}
18 return ChoiceFactory.create(ctx, One.valueOf(p),

One.valueOf(y)).simplify();});
19 keyTable.put(k, cp);
20 }

Listing 7.4: Implementation of the update functions

7.2.3 Variational Dijkstra’s algorithm

After introducing the implementation of key-value priority queues and variational graphs,
we can translate Dijkstra’s algorithm to Variational Dijkstra’s algorithm. Variational
Dijkstra’s algorithm is similar to Dijkstra’s algorithm except the algorithm will run under
different contexts and maintains the solutions for all variants.

Listing 7.5 shows the implementation details of Variational Dijkstra’s algorithm. It
includes a variational graph and ids for the source (s) and destination (t). running in Line

49

4 has type FeatureExpr which stands for the environment the user specifies. For example,
setting running as ¬A means the algorithm will not compute the shortest path under ¬A.
vpq in Line 5 stands for a variational priority queue, which has type IVPriorityKey and
the key in map allDist is for recording all visited nodes. The value in the map is the
shortest distant under different contexts.

1 public class VDijkstra {
2 public VGraph graph;
3 public int s, t;
4 public FeatureExpr running;
5 public IVPriorityKey<Vertex> vpq;
6 public Map<Vertex, Conditional<Integer>> allDist;
7 }

Listing 7.5: The underlying implementation of VDijkstra

Listing 7.6 shows the implementation of Variational Dijkstra’s algorithm using two different
implementations. The code for each version is the same except for calling the different
functions popMin(ctx) or popMinImpl() in line 4. We use a slash to indicate the two
different implementations at line 4.

First, we will get a list of vertices which have the same shortest distance from the source
in Line 4. For convenience, we use an iterator for the list returned from the variational
priority queue. Then, we can get the ctx, distance, and node information from the triple
as shown from line 9 to Line 11. If the conjunction of ctx and running is a contradiction,
which means that this edge is not to be considered, we will discard the computations on
that vertex. For example, setting the running context as ¬A means to not consider the
vertices which can only be reached under the context A . If we meet an edge which is
labeled A, the algorithm will discard that vertex since A ∧ ¬A contradicts.

Line 14 to 17 show the case that it finds the destination. For a plain graph, the algorithm
stops. However, for a variational graph, we have only finished the part under the context
ctx. Thus, we need to set the running environment as the conjunction of running and
¬ctx. This means we already found the shortest path under the ctx and do not need to
consider the case under ctx in later steps.

If we do not reach the destination, we get the node’s neighbors from the graph in Line 19

50

and traverse all the neighbors to update the shortest path from Line 20 to Line 28. For
each neighbor node, curCtx in Line 21 records the context environment which is initialized
by the conjunction of running and the condition on the edge to the neighbor.

In Line 23 and 24, we use the vmin function to compare the new distance and the recorded
distance of the neighbor node which is retrieved from the map allDist. Meanwhile,
the algorithm collects the context that its variants changed during the vmin function as
trackCtx. Thus, trackCtx records the configurations in which a shorter path was found.
If trackCtx is not null, we will update the priority queue. Last, we also need to update
the allDist map to update the shortest distance we already found.

Note that this algorithm only calculate the shortest distance from the source. Once we
found the destination, we can either print the results or use another data structure to store
the results. It does not record the whole path information. However, we can easily use a
hashmap, which has type of Map<Vertex, Conditional<Vertex>>, to record the previous
nodes and record the path. The implementation is available at https://github.com/lambda-
land/VPriorityQueue

51

1 public void run(FeatureExpr running) {
2 while(!running.isContradiction()) {
3 Iterator<Triple<FeatureExpr, Integer, Vertex>> e ;
4 e = vpq.popMin(running)/vpq.popMinImpl();
5 if(e == null) break; //No path found
6

7 while(e.hasNext()) {
8 Triple<FeatureExpr, Integer, Vertex> triple = e.next();
9 FeatureExpr ctx = triple.t1;

10 int curDist = triple.t2;
11 Vertex vertex = triple.t3;
12 if(running.and(ctx).isContradiction()) continue; // discard
13

14 if(vertex.id == t) {
15 System.out.println(running.and(ctx) + " " + currDist);
16 running = running.andNot(ctx);
17 continue;}
18

19 Map<Integer, Vertex> vertice = graph.nodesMap(vertex.id); // get
neighbors

20 for(Edge edge : vertex.edge) {
21 FeatureExpr curCtx = ctx.and(edge.fe).and(running);
22 if(!curCtx.isContradiction() & !allDist.containsKey(al.u)) {
23 Conditional<Integer> tmp = vmin(curCtx, allDist.get(edge.u),

curDist + al.weight);
24 FeatureExpr trackCtx = disjunction of the features that its value

changed in tmp during vmin function.
25 if(trackCtx != null) vpq.update(trackCtx.and(curCtx), al.u, y);
26 allDist.put(al.u, tmp);}
27 }
28 }
29 }
30 }

Listing 7.6: Variational Dijkstra’s algorithm

52

7.3 Case Study

In this subsection we consider a real world airlines example and compare the performance
of different versions of Variational Dijkstra’s algorithms. Table 7.1 shows the data format
of the airline information. It has the unique carrier and flight number information listed in
the second and third column. Also, it provides the departure city id, departure time, the
destination city id, and the arrival time. There are 14000 rows for one day. For simplicity,
we suppose the flight information is the same every day. Given a departure time and city
id, our goal is to find the earliest flight to the destination by specifying different carriers.

DATE CARRIER FLNUM ORIGIN_AIRPROT_ID DEST_ID DEP_TIME ARR_TIME CRS_ELAPSED_TIME
2017-01-01 AA 1766 13930 11298 710 948 158
2017-01-01 AA 1767 12889 11298 1235 1718 163
2017-01-01 AA 1768 11278 13303 1020 1313 173
2017-01-01 AA 1769 15304 13303 730 833 63

...
2017-01-01 UA 260 11292 14747 755 958 183
2017-01-01 UA 261 12892 13204 1037 821 284

Table 7.1: The original data from airlines

DATE CARRIER FLNUM ORIGIN_AIRPROT_ID DEST_ID DEP_TIME ARR_TIME CRS_ELAPSED_TIME
1/1/17 AA 1766 1 2 100 150 60
1/1/17 AA 1767 1 3 100 350 180
1/1/17 UA 1768 2 3 200 250 60
1/1/17 AA 1769 2 4 200 650 300
1/1/17 AA 1770 3 4 300 350 60
1/1/17 AA 1773 3 4 400 450 60

Table 7.2: A small example

This problem is a shortest path problem in a variational graph. To solve this problem, we
first build a variational graph illustrated in Section 7.2.1 from the data. For each city ci,
let Tc = {ti1, . . . , tik} be all possible arrival times at ci. We create k vertices {ci1, . . . , cik}
for all arrival time at ci. For each flight (ci, d, cj , a), d and a stands for the departure
time and arriving time separately, if tix < d and tjy = a, then we create an edge between
cix and cjy, the weight of the edge is tjy − tix, and the context of the edge is the carrier.
For example, suppose travelers plan to depart from vertex 1 at 0:50 to destination 4, we
can build the data in Table 7.2 to a variational graph as shown in Figure 7.3.

53

Figure 7.3: A variational graph for representing the example in Table 7.2

Each edge records the distance and the carrier encoded as a feature. For example, the
vertex 2 can be reached by taking AA airline at 1:50. So, we create an edge with feature
AA and distance 60 between node (1, 0:50) and node (2, 1:50). Using the same technique,
we can build a graph with 28531 vertices and 24376211 edges from Table 7.1.

7.3.1 Comparison

In this section, we present two sets of experiments to compare the performance of
variational Dijkstra’s algorithm using the Coniditional<PriorityQueue> implementation
and the balanced BST implementations. Moreover, we analyze how the two ways of
retrieving data impact the performance of the balanced BST implementation. In the
first set of experiments, we fix the number of configuration options, and evaluate the
algorithm by specifying the running context. In the second set of experiments, we fix
several running contexts and evaluate how the number of configuration options influences
the performance of Variational Dijkstra’s algorithm.

54

7.3.2 Different Running Context

Experimental setup. We first create a variational graph from the airlines data. When
creating the graph, we can control the number of features on the graph by simply intro-
ducing a Other feature to represent the airlines we do not consider. For this experiment,
we arbitrarily fix the variation space at six independent configuration options and ran-
domly choose the start city id and destination city id. The features we considered are:
United Airlines(UA), American Airlines(AA), Delta Airlines(DL), SkyWest Airlines(OO),
Hawaiian Airlines(HA) and Others. The departure city id and destination city id are
Dallas, TX(11298) and Philadelphia, PA(14100). Suppose we depart at 23:00 pm, we are
trying to get the earliest flight by running the Variational Dijkstra algorithm on it with
customer’s preference (specifying the different running context).

Results and analysis.

The results of the experiment are presented in Figure 7.4. The independent variables are:
(1) the different running context, plotted on the x-axis, and (2) the three implementations,
indicated by separate bars. The dependent variable is the runtime of the Variational
Dijkstra’s algorithm on the graph.

Figure 7.4 demonstrates that the popMinImpl() method can improve the performance
especially when users consider all possibilities. For example, the popMinImpl() uses less
than half of the time that popMin(ctx) and the naive implementation use in Figure 7.4.
The performance of popMinImpl() is comparatively stable and is hardly influenced by the
running context. However, both the naive implementation and popMin(ctx) do well when
the running context is more specific. For example, when we only consider the DL and
HA carriers, the popMin(ctx) only takes 3 seconds to calculate the results, which is 2
times faster than the popMinImpl() method. Another observation is that the performance
of the popMin(ctx) implementation is unstable and more influenced by a specific context
that users specify. For example, the third column and the fourth column in Figure 7.4
both consist of two configuration options but the runtime is dramatically different. The
naive implementation is more influenced by the number of features since the number of
priority queues will exponentially increase as the features increase. For example, if we fix
eight features and set running as True. The naive implementation will takes 839 seconds

55

True ¬UA ¬UA ∧
¬OO

¬UA ∧
¬AA

¬UA ∧
¬OO ∧
¬AA

0

20

40

60

R
u
n
ti

m
e(

s)

popMin(ctx) popMinImpl() Coditional<PriorityQueue>

Figure 7.4: A performance comparison between three different implementa-
tions

which is 8 times slower than the popMin(ctx) and 40 times slower than the popMinImpl()

method.

7.3.3 Number of Configuration Options

Experimental setup. Since we can control the number of configuration options on
the graph, we run Variational Dijkstra’s algorithm on different numbers of configuration
options, 6, 8 and 10. We fix several different running contexts. Like the first experiment,
we take the depart city id and destination city id as 11298 and 14100 and run Variational
Dijkstra’s algorithm on it.

Results and analysis. The results of the experiment are presented in the following
tables. For each table, we compare the performance of three different implementations
in different number of configuration options under a specific running context. The four
figures correspond to four different running contexts: True, ¬UA, ¬UA ∧ ¬OO, and
¬UA ∧ ¬OO ∧ ¬AA.

56

Number of features Conditional<PirorityQueue> popMin(ctx) popMinImpl()
6 104.3 42.0 14.4
8 839.9 135.4 20.3
10 17137.4 1030.4 26.0

Table 7.3: Comparing variational Dijkstra’s algorithm with different config-
uration options under True context

Number of features Conditional<PirorityQueue> popMin(ctx) popMinImpl()
6 25.3 29.0 11.7
8 237.4 88.2 17.4
10 3669.1 434.5 21.1

Table 7.4: Comparing variational Dijkstra’s algorithm with different config-
uration options under ¬UA context

From those 4 tables, we can see that all implementations take longer time as the number
of configuration options increase. However, the popMin(ctx) method and the naive
implementation are more influenced by the increasing number of configuration options
since the time of context computations and the number of configuration options are
positively correlated. For 10 options and True context, the naive implementation takes
around 600 times slower than the popMinImpl() version since the naive implementation
does not support sharing and the context computation becomes more complicated as
features increase. Comparatively, popMinImpl() is more stable since it avoids most context
computations. However, popMinImpl() does not work for all programs.

Overall, we analyze how different implementations affect the performance of programs.
The popMinImpl() implementation is weakly influenced by the changes to the number
of configuration options and the running context. It is more stable compared to the

Number of features Conditional<PirorityQueue> popMin(ctx) popMinImpl()
6 6.4 4.3 5.0
8 46.8 17.2 11.6
10 653.0 75.4 14.8

Table 7.5: Comparing variational Dijkstra’s algorithm with different config-
uration options under ¬UA ∧ ¬OO context

57

Number of features Conditional<PirorityQueue> popMin(ctx) popMinImpl()
6 4.3 3.5 4.7
8 23.8 16.5 12.0
10 222.6 55.8 15.6

Table 7.6: Comparing variational Dijkstra’s algorithm with different config-
uration options under ¬UA ∧ ¬OO ∧ ¬AA context

popMin(ctx) method but with some constraints on the program design. The popMin(ctx)

method can work with all programs but its performance is more affected by the running

context and the number of configuration options in graphs, it only works well when users
have a very specific choice on airlines for example only considering one to three carriers.

58

Chapter 8: Conclusion

Variational data structures are needed to efficiently compute with variability in data
and code. Toward a systematic understanding of the design space for variational data
structures:

• We have presented a family of variational stack implementations. We evaluated
the performance of these variational stacks when used as the operand stack in the
variational interpreter VarexJ.

• We provided an optimization for retrieving data from variational data structures
with holes and evaluated the performance of variational priority queues when used
in variational Dijkstra’s algorithm.

Both results demonstrate that the choice of variational data structure can have a significant
impact on the performance of a program that computes with variability.

For variational stacks, variational priority queues and any other data structures with
holes, we provide a common patten that can run with the two different ways as illustrated
in Chapter 3. As future work we should explore some other situations which can run
correctly with the two ways of retrieving data.

A distinguishing feature of the application domain targeted by VarexJ is that it involves
the creation of many short-lived stacks, where relatively few contain variation in multiple
different variational contexts (see Section 5.2). As future work we should evaluate the
family of variational stacks in application scenarios that involve longer-lived variational
stacks with different variability profiles.

59

Bibliography

[Austin et al., 2013] Austin, T. H., Yang, J., Flanagan, C., and Solar-Lezama, A. (2013).
Faceted Execution of Policy-Agnostic Programs. In Proc. Workshop Programming
Languages and Analysis for Security (PLAS), pages 15–26. ACM.

[Chen and Erwig, 2014] Chen, S. and Erwig, M. (2014). Type-Based Parametric Analysis
of Program Families. In Proc. Int’l Conf. Functional Programming (ICFP), pages 39–51,
New York, NY, USA. ACM.

[Chen et al., 2014] Chen, S., Erwig, M., and Walkingshaw, E. (2014). Extending Type
Inference to Variational Programs. ACM Trans. Programming Languages and Systems
(TOPLAS), 36(1):1:1–1:54.

[Chen et al., 2016] Chen, S., Erwig, M., and Walkingshaw, E. (2016). A Calculus for Vari-
ational Programming. In Proc. Europ. Conf. Object-Oriented Programming (ECOOP).

[Erwig and Walkingshaw, 2011] Erwig, M. and Walkingshaw, E. (2011). The Choice
Calculus: A Representation for Software Variation. Trans. Software Engineering and
Methodology (TOSEM), 21(1):6:1–6:27.

[Erwig and Walkingshaw, 2013] Erwig, M. and Walkingshaw, E. (2013). Variation Pro-
gramming with the Choice Calculus. In Proc. Generative and Transformational Tech-
niques in Software Engineering, pages 55–100, Berlin, Heidelberg. Springer.

[Erwig et al., 2013] Erwig, M., Walkingshaw, E., and Chen, S. (2013). An abstract
representation of variational graphs. In Proceedings of the 5th International Workshop
on Feature-Oriented Software Development, pages 25–32. ACM.

[Hall, 2005] Hall, R. J. (2005). Fundamental Nonmodularity in Electronic Mail. Automated
Software Engineering (ASE), 12(1):41–79.

[Hubbard and Walkingshaw, 2016] Hubbard, S. and Walkingshaw, E. (2016). Formula
Choice Calculus. In Proc. Int’l Workshop Feature-Oriented Software Development
(FOSD), pages 49–57.

[Kästner et al., 2011] Kästner, C., Giarrusso, P. G., Rendel, T., Erdweg, S., Ostermann,
K., and Berger, T. (2011). Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation. In Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 805–824, New York, NY, USA. ACM.

60

[Kästner et al., 2012] Kästner, C., von Rhein, A., Erdweg, S., Pusch, J., Apel, S., Rendel,
T., and Ostermann, K. (2012). Toward Variability-Aware Testing. In Proc. Int’l
Workshop Feature-Oriented Software Development (FOSD), pages 1–8, New York, NY,
USA. ACM.

[Kim et al., 2012] Kim, C. H. P., Khurshid, S., and Batory, D. (2012). Shared Execution
for Efficiently Testing Product Lines. In Proc. Int’l Symposium Software Reliability
Engineering (ISSRE), pages 221–230, Washington, DC, USA. IEEE.

[Liebig et al., 2010] Liebig, J., Apel, S., Lengauer, C., Kästner, C., and Schulze, M. (2010).
An Analysis of the Variability in Forty Preprocessor-Based Software Product Lines. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 105–114, Washington, DC, USA.
IEEE.

[Lopez-Herrejon and Batory, 2001] Lopez-Herrejon, R. E. and Batory, D. (2001). A
Standard Problem for Evaluating Product-Line Methodologies. In Proc. Int’l Symposium
Generative and Component-Based Software Engineering (GCSE), pages 10–24, London,
UK. Springer.

[Meinicke, 2014] Meinicke, J. (2014). VarexJ: A Variability-Aware Interpreter for Java
Applications. Master’s thesis, University of Magdeburg.

[Meinicke et al., 2014] Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., and Saake, G.
(2014). An Overview on Analysis Tools for Software Product Lines. In Proc. Workshop
Software Product Line Analysis Tools (SPLat), pages 94–101, New York, NY, USA.
ACM.

[Meinicke et al., 2016] Meinicke, J., Wong, C. P., Kästner, C., Thüm, T., and Saake, G.
(2016). On Essential Configuration Complexity: Measuring Interactions in Highly-
Configurable Systems. In Proc. Int’l Conf. Automated Software Engineering (ASE),
pages 483–494. ACM.

[Meng et al., 2017] Meng, M., Meinicke, J., Wong, C.-P., Walkingshaw, E., and Kästner,
C. (2017). A choice of variational stacks: Exploring variational data structures. In
Proceedings of the Eleventh International Workshop on Variability Modelling of Software-
intensive Systems.

[Muslu et al., 2012] Muslu, K., Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D.
(2012). Speculative Analysis of Integrated Development Environment Recommendations.
In Proc. Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 669–682. ACM.

61

[Nguyen et al., 2014] Nguyen, H. V., Kästner, C., and Nguyen, T. N. (2014). Exploring
Variability-Aware Execution for Testing Plugin-Based Web Applications. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 907–918, New York, NY, USA. ACM.

[Plath and Ryan, 2001] Plath, M. and Ryan, M. (2001). Feature Integration Using a
Feature Construct. Science of Computer Programming (SCP), 41(1):53–84.

[Smeltzer and Erwig, 2017] Smeltzer, K. and Erwig, M. (2017). Comparisons and design
guidelines. In ACM International Workshop on Feature-Oriented Software Development.
To appear.

[Sumner et al., 2011] Sumner, W. N., Bao, T., Zhang, X., and Prabhakar, S. (2011).
Coalescing Executions for Fast Uncertainty Analysis. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 581–590. ACM.

[Thüm et al., 2014] Thüm, T., Apel, S., Kästner, C., Schaefer, I., and Saake, G. (2014).
A Classification and Survey of Analysis Strategies for Software Product Lines. ACM
Computing Surveys, 47(1):6:1–6:45.

[Tucek et al., 2009] Tucek, J., Xiong, W., and Zhou, Y. (2009). Efficient Online Validation
with Delta Execution. ACM SIGARCH Computer Architecture News, 37(1):193–204.

[Walkingshaw, 2013] Walkingshaw, E. (2013). The Choice Calculus: A Formal Language
of Variation. PhD thesis, Oregon State University.

[Walkingshaw et al., 2014] Walkingshaw, E., Kästner, C., Erwig, M., Apel, S., and Bod-
den, E. (2014). Variational Data Structures: Exploring Tradeoffs in Computing with
Variability. In Proc. Int’l Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward!), pages 213–226. ACM.

	Introduction
	Contributions and Outline

	Background and Related Work
	The Choice Calculus
	Variational Programming
	Variational Data Structures
	Variability-Aware Execution

	Holes in Variational Data Structures
	Holes in Variational Data Structures
	Retrieving Data
	The foo(ctx) Method
	The fooImpl() Method
	Comparison

	Variational Stacks
	Choice-of-Stacks
	Stack-of-Choices
	Buffered Stack Decorator
	Hybrid Stack Decorator

	Experimental Analysis on Variational Stacks
	Analyzing Tradeoffs in Generated Data
	Number of Configuration Options
	Distribution of Variational Operations

	Variational Stacks in VarexJ

	Variational Priority Queues
	Implementation
	Insertion and Deletion

	Variational Priority Queues Evaluation
	Heapsort
	Shortest path problems
	Variational Graph
	Key-Value Variational Priority Queue
	Variational Dijkstra's algorithm

	Case Study
	Comparison
	Different Running Context
	Number of Configuration Options

	Conclusion
	Bibliography

