
Logical Hierarchical Hidden Markov Models For

Modeling User Activities

Sriraam Natarajan∗, Hung H.Bui+, Prasad Tadepalli∗, Kristian Kersting#,
Weng-Keen Wong∗

* School of EECS, Oregon State University, Corvallis USA ⋆ ⋆ ⋆

+ AI Center, SRI International
Fraunhofer IAIS, Schloss Birlinghoven, Germany†

Abstract. Hidden Markov Models (HMM) have been successfully used
in applications such as speech recognition, activity recognition, bioin-
formatics etc. There have been previous attempts such as Hierarchical
HMMs and Abstract HMMs to elegantly extend HMMs at multiple levels
of temporal abstraction (for example to represent the user’s activities).
Similarly, there has been previous work such as Logical HMMs on ex-
tending HMMs to domains with relational structure. In this work we
develop a representation that naturally combines the power of both rela-
tional and hierarchical models in the form of Logical Hierarchical Hidden
Markov Models (LoHiHMMs). LoHiHMMs inherit the compactness of
representation from Logical HMMs and the tractability of inference from
Hierarchical HMMs. We outline two inference algorithms: one based on
grounding the LoHiHMM to a propositional HMM and the other based
on particle filtering adapted for this setting. We present the results of
our experiments with the model in two simulated domains.

1 Introduction

Activity recognition is a problem that has long been the focus of researchers and
has a wide range of applications from surveillance[8] to intelligent interfaces[11]
to assisting the elderly[1]. Accordingly, several kinds of approaches ranging from
domain-specific hand-coded solutions to the more general Hidden Markov Mod-
els(HMM) have been proposed for such activity recognition problems. Hidden
Markov Models and their several extensions are among the most popular meth-
ods for activity recognition. The main advantage of HMMs and their extensions
lies in the fact that they define a clear probabilistic semantics for the problem.
Also, efficient inference algorithms have been proposed for HMMs making them
very attractive for this problem. The different extensions of HMM like the Hier-
archical HMM (HHMM) [5] and abstract HMMs (AHMM) [3] are being widely
used in activity recognition for a variety of applications.

The main drawback of HMMs is that they do not take into account the
complete structure of the problem. The objects in the domain may be related
by specific relationships and these relationships govern the action that the user
performs in the current state. For example, a user is more likely to send a paper

⋆ ⋆ ⋆ Sriraam is currently at University of Wisconsin, Madison
† Kristian was at CSAIL, MIT when the work was performed

that he is writing to his co-authors and not to random email addresses. Also,
since the HMMs are inherently propositional, they do not allow for generalization
among the objects of the domain. For instance, the models cannot be shared
among multiple users of the desktop, as a separate HMM needs to be constructed
for every user in a propositional setting. Also in several cases, the user might
decompose his goal of submitting a proposal or writing a paper by a similar
methodology of running experiments, writing the paper, writing the abstract,
sending it to one’s co-authors etc.

The goal of this work is to extend the HMM with a logical model that al-
lows for generalization of the objects in the domain and a hierarchical model
that allows for richer structure of the user’s tasks. The use of logical models will
allow us to specify the models at an abstract level that can later be instanti-
ated with specific instances and to perform inference on them. Also, it allows
parameter sharing between the objects of the same type thus requiring a smaller
number of examples for learning. The hierarchical structure will enable us to
elegantly represent the user’s goal-subgoal decomposition and allows for efficient
inference. Kersting et al.[7] earlier introduced a logical extension to HMMs. In
this paper, we extend their work in 2 ways: allowing conditional transitions and
more importantly incorporating hierarchies in the logical models.

Our first contribution is to introduce the Logical Hierarchical HMMs (LoHiH-
MMs) and outline their syntax and semantics. In many real-world applications,
the user chooses his action based on some conditions in the environment. For
example, a user who goes shopping might prefer the nearest store to shop from.
If the product that he wants to buy is not available in that store, he might go to
another one. If it was available, he might buy the product and return home. The
availability of the product can be observed by looking at the inventory. But, it
is not possible to observe the mental state of the user. Hence, some parts of the
state space are completely observed while some others are not. In our model, we
consider the current state as having two components: an observable component
(called the world state) and an unobservable component (called the user state).
Note that the names of world and user are specific to our applications but they
mean the observable and the unobservable parts of the state space. One of our
critical assumptions is that the world state is completely observable. This would
make it possible to perform tractable inference (as we show later in the paper)
in large domains. In our model, we naturally model such conditional transitions
that take place based on the observable part of the state space.

Logical models have generally been unrolled to their ground formulations and
inference was performed using these ground models. We present an algorithm
for unrolling the LoHiHMM to the corresponding ground HMM which will make
it possible to perform exact inference in the model. But, in very large domains,
the state space of the ground HMM could be prohibitively large and can make
the inference hard. HMM inference is quadratic in the number of states and a
very large state space can make the inference impractical if not infeasible. Hence,
in this work, we avoid complete unrolling of the LoHiHMM. Our second major
contribution is to adapt particle filtering to this logical setting. The filter avoids

considering all the possible states by exploiting the conditions in the transitions
and restricting the set of possible next states. We compare the performances of
the exact inference on the ground HMM and the particle filter on 2 simulated
domains: a grid world domain where the user has to navigate the grid to achieve
his tasks and a kitchen domain where the user follows some recipes to cook his
dishes. The results demonstrate that the particle filter performs comparably to
that of the exact HMM with much less overhead.

The rest of the paper is organized as follows: the next section provides the
background for the work. Section 3 first presents the LoHMM, its syntax and
semantics and then extends them to the Logical Hierarchical HMMs. Section
4 outlines the inference algorithm based on particle filtering and the algorithm
for unrolling it to a ground HMM. Section 5 presents the experimental results
on the domains. The final section concludes the paper by reviewing the related
work and outlining some areas of future research.

2 Background

In this section, we briefly review the background work namely, HMMs, Hierar-
chical HMMs, Particle Filtering and the previous work on Logical HMMs.

Hidden Markov models (HMMs) are used to model systems that follow a
Markov process which is essentially a process with no memory. In a Markov
process, the next state of the system is independent of the past states given
its current state. In HMMs, there are 2 kinds of variables: a state variable that
follows a Markov chain and an observation variable whose value is generated by
the current state. As the name implies, in an HMM the states are assumed to be
unobserved(hidden). Hence, one of the important tasks is to infer the distribution
of the current state conditioned on the values of the observations (known as
filtering). Formally, an HMM is defined using the 5-tuple 〈S,Π,O,Ω, I〉, where S
is a set of states, Π(s′|s) is the next-state distribution, O is a set of observations,
Ω(o|s) is the probability of observing o when in state s and I is the initial state
distribution. The HMM starts in one of the states s chosen according to I(s),
at every step transitions to next states according to Π, and emits observation o
with probability Ω(o|s).

It is clear that while considering the problem of activity recognition, the goal
is to infer the distribution over the states given the current set of observations
p(s|o1:t). Hence the activity recognition problem is posed as performing inference
in an HMM. Although a HMM is a very good choice for the problem, there
are applications where the number of states can be arbitrarily large. It is also
difficult to model situations where some states take more than one time-step
to be executed. For instance, editing a particular document might take several
time-steps and it is not possible to fix the number of time-steps in advance. In
addition, the user’s tasks could have a well-defined hierarchical structure that can
be exploited if captured explicitly by the model. Though these can be captured
by a HMM, the structure in the problem cannot be exploited efficiently.

Hierarchical HMMs[5] extend HMMs to include a hierarchical structure for
the states. Each state in a HHMM is a self-contained probabilistic model. One

way to understand a Hierarchical HMM is to think of each state of the HHMM
being an HHMM in itself. So when the HHMM transitions to the current state,
the sub-HHMM is activated which in turn activates a HHMM at the lower level.
This would mean that at each state, the HHMM will emit a sequence of ob-
servation symbols rather than a single symbol. The key difference to a normal
HMM is the notion of end states. Each sub-HMM has a set of end states that
can terminate the HMM at the current level and return the control to the calling
state of the parent HMM.

Any HHMM can be converted to a HMM[10]. The state of the HMMs corre-
spond to the state stack of the HHMMs(S1:D), where D is the number of levels
of the HHMM. If the HHMM structure is a tree, it would imply that there are
no repetitive substructures. The corresponding HMM then contains one state
for every combination of the parent and child states. If the HHMM has repeated
substructures, they have to be duplicated in the HMM resulting in a large model.
We refer to [2],[10] and [5] for more details on converting a HHMM to a HMM.

Since in large HHMMs (or even large HMMs), performing exact inference
might be impractical, sampling methods became popular. The key innovation
in these methods is to focus the set of samples on high probability regions of
the state space i.e., generate more samples in high posterior regions. Among the
sampling methods, particle filtering [4] methods are very popular. The general
approach to particle filtering works as follows: Samples are generated according
to the prior distribution and propagated to the next step according to the tran-
sition distribution. The samples are then re-weighed according to the observed
evidence probabilities and new samples are generated. We present the generating
distributions later in the paper when we discuss the particle filter for the logical
setting.

Logical HMMs: Given that the HMMs are inherently propositional, Ker-
sting et al. introduced Logical HMMs [7] to combine ideas from SRL[6] and
dynamic models. In their framework, the states of the HMM are abstract states
rather than propositional states. An abstract state consists of a predicate name
and a set of parameters that can be instantiated with constant ground values.
The transition distribution in the logical HMM now consists of two kinds of
distributions: an abstract transition distribution that specifies the probability of
the next abstract state given the current abstract state and a selection distribu-
tion that specifies the probability of the instantiation of the parameters for the
current state. In their work, the observations are generated from state transitions
and the selection distribution is specified using a Naive Bayes function.

3 Logical Hierarchical Hidden Markov Models

In this section, we present our formalism of LoHiHMMs. Since this formalism
extends the HMM in two dimensions, we present the logical extension (LoHMMs)
as a first-step and later extend it to include hierarchies. We refer to our logical
extension as LoHMMs and that of Kersting et al. as Logical HMMs. We contrast
our formalism to theirs after we introduce our model.

3.1 LoHMMs

Consider the HMM presented in Figure 1. In this example, a user receives a
document to edit through an email, edits the document and sends it back to
the sender. The semantics is that when the conditions in the arcs are satisfied
the HMM transitions to the next state with the probability indicated by the
number on the arcs. In this section, we first define the states and transitions of
this HMM and then formally define LoHMM. In our model, the state in the

Start SaveAs(D1,D)
Recv_Edit_Request(E), Attach (E,D1)

1.0

Edit(D)

1.0

NotEdited(D)

1.0

Edited(D)
1.0

ReplyTo(E,E1)
1.0

Attach(E1,D)

Send(E1)

1.0

Fig. 1. A Logical Hidden Markov Model for editing a document. The logical conditions
on the arcs indicate the conditions under which the transitions take place. The numbers
on the arcs indicate the probability of the transition.

model consists of two components, the state of the user and the state of the
environment. The state of the user is assumed to be a single ground predicate
that indicates the activity of the user. The user is restricted to be in only one
state at any given instant of time. The state of the environment could be a
conjunction of several predicates. An example of user state is edit(D), where
edit is the logical predicate and D is the parameter (variable) associated with
this state. The environment state could include information about the current
time, the deadlines, the set of projects that the user is involved with or as in
Figure 1 whether a request for edit has been received etc.

State: A state consists of two components: the user state which is a predicate
that represents the current activity of the user and the environment state which
is a set of predicates describing the environment. We aim to capture transitions
between user states conditioned on some states of the environment. This will
enable us to model the user’s activity conditioned on the context of the execu-
tion. For example, if the document that the user is currently editing is a long
document, the user might prefer to print the document, while if it is a short one,
the user might just read it off the monitor. Observing the length of the document
will enable us to predict the user’s next action. Though there are several ways
of modeling the conditions in the transitions between the states, we use a model
that is similar to decision lists or the case statements in programming languages.

Table 1. Structure of an Logical transition in our model. The current user state is
A(X, Y) and transitions to one of the successor states based on the condition and
logical transition probability.

A(X, Y) 7→

if C1

1 (X, Y) ∧ C1

2 (Y, Z)... then

{

p1

1 : B1

1(X, Z)

p1

2 : B1

2(Y, Z)

else if C2

1 (X, Y) ∧ C2

2 (X, Y, Z)... then

{

p2

1 : B2

1(X, Z)

p2

2 : B2

2(Y, Z)

else ...

Associated with each state predicate we can define a set of observation pred-
icates and an associated observation distribution. The observations in our model
are similar to the state predicates. The observation consists of a predicate name
and a set of variables. The observation may or may not consist of the same
variables that are present in the state predicate.

The transitions in our model are called logical transitions and are of the form
presented in Table 1. The transition occurs between the current state of the user
(called as source user state) and the next state of the user (called as target user
state) conditioned on some of the predicates of the environment. As shown in
the figure, there could be several logical test predicates that can be conjunctions
of several predicates (shown as C in the figure) based on which transition could
take place.

The most important constraint is that exactly one branch of the transition
will be always taken for the given state. Once a particular branch, say k, eval-
uates to true and the corresponding branch is taken, the target atom is chosen
according to the transition distribution (called ‘’logical transition distribution”)
p

k for the current branch k. p
k is a well-defined distribution i.e,

∑

i∈S pk
i = 1,

where S is the set of target abstract states for the given logical transition. In the
statement presented in Table 1 for instance, p1

1 + p1
2 = 1. An example transition

is presented in Table 2. In this example, the user downloads a document P and
if it is a long paper, the user prints the document with a probability 0.9 or reads
it off the webpage with a probability 0.1. If not, he reads from the webpage.

The branches can be understood as similar to decision lists in programming
languages. Given the instantiations of the current user state, the branch that
first evaluates to true is taken. Once a branch is chosen, the logical transition
distribution is used to choose the next user state predicate. The last branch has
the key word else and has no conditions. It is a default one that will be taken if
the other branch conditions fail to evaluate to true (for example see Table 2).
This is to ensure that the conditions in at least one branch would evaluate to
true and hence one branch will always be taken for the given user state.

Logical Transition: A logical transition consists of the current user state S
as the source and a set of logical predicates of the environment. Corresponding to
each predicate is a set of target user states and a corresponding set of probability

Table 2. Example of a Logical transition. The user prints the document if it is a long
document or reads it off the webpage.

Download(P) 7→

if LongPaper(P) ∧ URL(Z, P) then

{

0.9 : Print(P)

0.1 : Read(P, Z)

else if URL(Z, P)
{

1.0 : Read(P, Z)

else
{

1.0 : DoNothing

distributions called the logical transition distributions. For each of the target
user states, there is an associated instantiation distribution (µ) that specifies
the probability of the values of the variables associated with the target state.
We discuss the instantiation distribution later.

One potential issue is that there could exist several transitions that can be
matched with the current instance. For example, ignoring the conditions there
could be 2 different abstract transitions defined as follows:

A(X,Y) −→ B(X,Z)

A(x, Y) −→ C(Y,Z)

The second transition is more specific when compared to the first transition.
If we use a substitution {θ = X/x, Y/y}, we could match the two rules and there
is a question of which transition to choose. In order to avoid multiple matching
rules, we require that these 2 rules are ordered and combined to a single decision
list as follows

A(X,Y)

{

If (X = x) 1.0 : C(Y,Z)

else 1.0 : B(X,Z)

The idea is to encode the more specific instances as well in the transition.
This is natural in our formalism as we always assume that only one branch can
be true for any ground instantiation. This means that no two different logical
transitions can exist with the same predicate name as its source.

Now, we define a generalized LoHMM to consist of set of states S, a set of
observations O and a set of logical transitions ∆. This definition of the LoHMM
is too general for many problems. If we assume that the logical predicates are
unobserved along with the user states, the problem of user activity recognition
includes performing inference over the environment states as well. Hence, we
consider a restricted model in which we assume that the environment states
are completely observed and the user state is assumed to be unobserved. This
assumption is not unreasonable in many domains such as a desktop domain,
video surveillance etc where the effects of the user’s actions in the environment
are completely observable while the user’s mental states are not.

Definition 1 (LoHMM). A LoHMM consists of

– a set of states S which has two components: the user state Su that is a single
predicate and is unobserved and the environment state Sw that can possibly
consist of many predicates and is completely observed1

– a set of observations O and the associated observation distributions
– a set of logical transitions ∆.

Note that the assumption of the state being composed of the observable
environment states and the unobserved user state predicate makes the inference
process easier. This will enable us to ignore the changes to the environment
predicates and just focus on the changes to the user state. The key thing to note
here is that the logical conditions are the observable part of the state space.
Hence given a current user state, it would be easy to evaluate the different logical
predicates conditioned on the current user state. The LoHMM can be understood
as defining a distribution over the set of ground predicates (interpretations). The
ground interpretation consists of two parts: the user activity interpretation that
is not observed and the environment interpretations that are observed and are
fixed and do not change with time. The transitions can be understood as a
stochastic mapping between two ground interpretations that depends on certain
parts of the state.

Global Variables: There could be some variables in the LoHMM whose
value should not change as the HMM evolves. For instance, consider the example
in Figure 1. The user, after editing the document, has to reply to the email in
which he received the request to edit. This means that the value of the variable
E once set to the value of the email that has the request should not be changed.
In our model, some of the variables are declared as global and their values do
not change over time.

Substitution: Substitution in LoHMMs is defined exactly as in first-order
logic. A substitution θ is defined as assignment of values to all the variables
in the LoHMM. The set of variables is the union of all the variables in all the
predicates of all the user states and the environment states.

Ground HMM: A ground HMM is a HMM constructed by substituting
the values for all the variables of a LoHMM. We refer to the user state that has
been substituted for its variables as an instantiated user state. The state-space
of this ground HMM consists of two components: the instantiated user states
and the global list. The transition distribution specifies a distribution over the
next ground user states and the values of the global variables.

Theorem 1 (Existence of a ground HMM). A ground HMM can be con-
structed for every LoHMM.

The proof is trivial and follows from the theorem in Kersting et al [7] and we
omit the proof for brevity. The motivation behind stating the existence of a HMM

1 The names user state and environment state are chosen for the activity recognition
purposes only. They mean the unobservable and observable part of the state space
in general.

is that, since a HMM defines a unique distribution over the trajectories, it follows
that the LoHMM also defines a unique distribution over the trajectories. This
ensures that there is a well-defined model-theoretic semantics for the LoHMM.
In fact, HMMs are a special case of the LoHMMs with the states having an
arity of zero, no conditional branches and no instantiation probability. Hence
LoHMMs generalize HMMs.

We now present the relationship to the Logical HMMs of Kersting et.al [7].
In their model, there was an abstract transition distribution p, which chooses
the target predicate to transition to. In our model, first the logical conditions
are evaluated, the corresponding branch is taken and then the target predicate
is chosen according to the distribution p

k. Their model does not allow for con-
ditional branches. Thus their model can be considered as a special case of our
LoHMMs where the default (else) branch is always taken. Recall that since they
restrict their states to be predicates as well, the conditions cannot be captured
in their Logical HMMs. Yet another difference is the presence of the global vari-
ables in our model. In their model, a variable has to be present in all the states
for it to retain its value. Declaring a variable as global is useful in particular for
the hierarchical setting as we explain in the next section.

3.2 LoHiHMMs

In many real-world situations, users solve difficult problems by decomposing
them into a set of smaller ones. For example, proposal writing might involve
writing the project description, preparing the budget, and then getting signa-
tures from proper authorities. The tasks to be completed by the user have a nat-
ural hierarchical structure. To capture this kind of knowledge using LoHMMs,
the state predicate should include the user’s current task at all the levels of
the hierarchy. This is not very elegant and it would be difficult for the domain
expert to specify this kind of LoHMM; also, the inference process can be very
difficult due to the explosive state space. A representation that could capture
such a hierarchical structure cleanly can be used to perform efficient inference.
In this section we introduce the Logical Hierarchical HMMs.

Recall that in a LoHMM, there are logical (horizontal) transitions between
user states while in the Logical Hierarchical HMM (LoHiHMM) in addition to
the horizontal transitions, there are vertical (task-subtask) transitions between
parent and child tasks2. It should be mentioned that LoHiHMMs impose the
hierarchical structure on the user’s states and not on the environment state
predicates as we are interested in modeling the user’s activities and not how the
environment evolves.

Instantiation Probability and Global Variables: The distribution that
is used for grounding the state predicates to their ground values is called the
Instantiation Distribution and denoted by µ. The constraints in the abstract
transition serve as hard constraints for this distribution. In addition, in the
hierarchical setting, the variable instantiation of the parent state should stay
the same in all transitions made by its child states, i.e., the variables of the

2 We refer to the states of the LoHiHMM as tasks and subtasks

Table 3. The syntax of the selection transition statements. The keywords parent and
child denote the parent and child task respectively. The other parts of the statements
are similar to LoHMM

parent : A(X, Y) 7→

if C1

1 (X, Y) ∧ C1

2 (X, Y, Z)... then

{

sp1

1 : child : B(X, Z)

sp1

2 : child : C(Y, Z)

...

else ...

parent state should be“global”. Their values cannot change once instantiated
until that state finishes its execution. The global list thus includes variables that
are declared global along with the values of the parent variables.

Selection Probability: The selection probability specifies the probability
distribution over the child tasks given the parent tasks. We call the transition
between a parent task and a child task a selection transition and the syntax is
presented in Table 3.

The syntax is similar to the LoHMM syntax except that we now use special
keywords namely, parent and child to identify the respective tasks. The rule that
is presented in Table 3 is interpreted as: “If the current user task is A(X,Y), then
it chooses one of the possible next child tasks by evaluating the branch predicates
(shown as Cj

i in the rule) and then chooses the child user task (example B or
C) based on the selection distribution”. This rule is similar to the transition rule
in LoHMMs except that in this case, it defines a task-subtask transition of a
HMM. The branch predicates are handled in a manner similar to a decision list
such that the first satisfied branch is always taken. The selection probability is
well defined, i.e., the sum of the probabilities of the different child abstract tasks
for a given branch is 1 (

∑

i spj
i = 1). Note the presence of a default branch that

is chosen if all the other branch conditions fail to evaluate to true.

Transition Probability: The transitions are similar to the LoHMMs with
one difference: the transitions must include the task of the parent. Hence, the
horizontal transition is conditioned on the instantiated value of the parent tasks.
The syntax of the horizontal transition is presented in Table 4. The statement
is similar to the ones presented for the LoHMMs except that these statements
include the parent tasks (shown using the keyword pa). These statements can be
interpreted as follows: “If the current parent task is A(X,Y) and the current child
task is B(X,Z), then it chooses one of the possible logical transitions by evaluating
the branch predicates (shown as Cj

i in the rule) and chooses the abstract child
task based on the transition distribution”. For instance, the next child could
be of the form C(x, y, z, w) with probability p1

1.µ(w), where p1
1 is the abstract

transition probability for C(X,Y,Z,W) and µ(w) is the instantiation probability
for w. Note that the variables in the parent (X,Y) will be “global”, since its
binding will stay the same until the current parent terminates.

Table 4. The syntax of the horizontal transition statements. The keywords pa, ch and
nch denote the parent the current child and the next child abstract tasks respectively.
The other parts of the statements are similar to LoHMM

pa : A(X, Y); ch : B(X, Z) 7→

if C1

1 (X, Y, Z) ∧ C1

2 (X, Y, Z)... then

{

p1

1 : nch : C(X, Y, Z, W)

p1

2 : nch : D(X, Y, Z, W)

...

else ...

As with the selection transition of LoHiHMM, the set of branch predicates
for a particular parent-child combination transition rule is part of a decision-list
so that the first branch that evaluates to true is taken. The conditions on the
transitions could also serve as hard constraints on the instantiation distributions.
Similar to the LoHMMs, the transition distribution is well defined i.e.,

∑

i pj
i = 1.

Ending Probability: If the LoHiHMM at a lower level terminates at some
task, the control would return to the parent task. For example, it is possible that
the user might take a break from running the experiments and instead work on
the abstract. It is possible that the current task might terminate in more than
one task. Hence there is a necessity to define a distribution over the possible
end tasks at a particular level. We specify the ending probability as a function
β from the set of ground tasks (at any given level) to [0, 1].

Execution semantics: The execution semantics of the LoHiHMM is as fol-
lows: When control reaches the current user state, it chooses a child state to
transition to based on the selection distribution and the instantiation distribu-
tion. Once all the lower level HHMMs terminate, the control reaches back to the
current state and it chooses a horizontal transition as with the case of LoHMMs.
The main intuition is that at each level we have a LoHiHMM and the selection
distribution chooses the LoHiHMM to execute. Each vertical transition (selec-
tion of a child) also has logical conditions that need to be evaluated to choose
the child. LoHiHMMs are to LoHMMs what HHMMs are to HMMs. They can be
viewed as either incorporating hierarchies to LoHMMs or adding logical models
to Hierarchical HMMs. Similar to the LoHMMs, it is possible to state and prove
the existence of a ground Hierarchical HMM for every LoHiHMM.

It must be mentioned that since a HHMM exists for every LoHiHMM and
since a HMM exists for every HHMM, there exists a HMM for every LoHiHMM
but with a prohibitively large state space. LoHiHMM provides 2 further sig-
nificant advantages: first, it is easier for the domain expert to elucidate the
knowledge as it is difficult to encode all the relationships and the task hierarchy
into the CPTs of the HMM. Second, learning can be easier since the parameters
are shared in the LoHiHMM.

4 Inference

In this section we present two methods for inference in these models. The first
is to unroll the LoHiHMM to a ground HMM and use a sparse matrix package.
Our second method avoids explicit unrolling and adapts particle filtering for
the logical setting. Although we present the algorithm for unrolling to a ground
HMM, we do not do that automatically in our experiments and instead use an
equivalent hand-crafted HMM for comparison.

4.1 Particle Filter with Logical querying

Particle Filter[4] samples the next state based on the evidence and computes the
weight of the samples. The state at time t is denoted by xt and the observation
at time step t is denoted by yt. Samples are drawn according to the optimal
proposal distribution P (xt|x

i
t−1, yt) given that i is the current level of the goal

stack where,

P (xt|x
i
t−1, yt) =

P (yt|xt)P (xt|xt−1)
∑

xt

P (yt|xt)P (xt|xt−1)
(1)

and the weight wt is given by,

wt ∝ P (yt|x
i
t−1) =

∑

xt

P (yt|xt)P (xt|xt−1)

The states are then re-sampled based on the weights of the samples. In this
section, we modify the algorithm for the LoHiHMMs. The main bottleneck is
computing the summation over all the next states (xt)

3 in the equation 1. In
a logical model, the number of possible ground states can be very large. Thus
it might not even be possible to enumerate all the states for the summation to
be computed. For instance, in a desktop there could be a very large number
of files and emails. It is impractical to enumerate all possible combinations of
files that can be attached to an email. Hence we propose to use a method that
avoids enumeration of the complete state space. In our model, given the value
of the previous sample and the values of the elements in the global list, a query
answering procedure would return the set of possible next states. The intuition
is that the conditions in the abstract transitions would greatly reduce the set of
possible next states.

Given a particular ground state and the values of the global list, the selec-
tion procedure would first determine the set of logical transitions that have the
current user state predicates as the source and obtain the set of the possible
next user state predicates (task-subtask combinations) based on the logical con-
ditions. For each of the next predicates, possible instantiations are considered
using the instantiation distribution. The probability of the next ground state is
the product of the selection probability and the instantiation probability. In some
cases, if we are only interested in the current user state predicate (for instance,

3 In the case of LoHiHMMs, xt corresponds to the user’s goal stack

whether the user is composing an email or editing a document), we ignore the
instantiation distribution and sample only from the selection distribution.

For instance, consider the example presented in Figure 1. Let us assume that
the user just completed editing the document say d1. So when the particle filter
queries for possible next states, the condition edited(d1) is satisfied. Since the
email E is in the global list, the selection procedure returns the next state as
replying to email E. This greatly reduces the computation that is otherwise
needed to sum over all the states.

Our inference procedure can be understood as a lazy evaluation procedure
where the HMM is constructed on the fly based on the values that have been
assigned to the variables and the conditions that are satisfied. The main goal of
this procedure is to avoid the explicit construction of a ground HMM. This is
because as we have pointed out earlier, the number of objects in the real-world
is very large which in turn leads to huge transition and observation matrices.
But considering the objects lazily based on the current state and the values of
the variables, we are able to perform effective inference in real time.

4.2 Constructing a ground HHMM

It is clear that the LoHiHMMs extend the LoHMMs similar to the way in which
Hierarchical HMMs (HHMMs) extend HMMs. Hence it is conceivable that a
LoHiHMM can be unrolled into a ground HHMM. The basic idea of grounding
to a HHMM is as follows: once the current abstract state at level d has been
instantiated with the corresponding values subject to the constraints, it chooses
a child abstract state at level d + 1 based on the logical conditions and the
selection distribution. The child state then chooses its instantiation based on
the instantiation distribution and the global list of variables. It then chooses its
child state at depth d+2 recursively. If the current state at d is a primitive state,
it chooses the next state at the subsequent time-step based on the conditions
and transition distribution. If the child state terminates, the control returns to
the parent state, which makes an abstract transition to the next state at the
same level based on the conditions and the transition distribution.

The key thing to note is that the process is very similar to the execution
of a HHMM. Since at any time a particular condition can only be true for any
particular transition, we obtain a HHMM at the ground level. We now proceed
to define this ground HHMM and the process of unrolling. The states of the
ground HHMM at level d correspond to the possible ground instantiations of
the atoms of all the possible predicates at level d. Let us consider the selection
of a ground child state given the parent state. Assume that the current abstract
state is A(X,Y) and the selection transition is defined by the rule in Table 3.
Then, for all substitutions of X,Y,Z, i.e, ∀θ = X/x, Y/y, Z/z

If BP1(θ) = True,

{

P(Bθ | Aθ) = sp1
1 · µ(θ)

P(Cθ | Aθ) = sp1
2 · µ(θ)

else...

Hence the idea is to consider all the substitutions of the current parent states
and evaluate the branch conditions and choose the next child ground state based
on the selection and instantiation distributions. The above step takes place if
the state A(X,Y) is instantiated at the previous time-step and it has to choose
the ground child state in the current time-step.

If the current state is B(X,Y) and the child state finishes executing, it will
make an abstract transition to the next state at the same level. For exam-
ple, consider the transition in Table 4 and assume that the current state at
level d is B(x, z) and then child tasks at level d′ > d are completed. B(x, z)
then makes an abstract transition. For all substitutions of X,Y,Z,W i.e,∀θ =
X/x, Y/y, Z/zW/w

If BP1(θ) = True,

{

P(Cθ | Bθ,Aθ) = p1
1 · µ(θ)

P(Dθ | Bθ,Aθ) = p1
2 · µ(θ)

else...

Here the current state considers all the substitutions, evaluates the branch
condition and chooses the next state based on the abstract transition and in-
stantiation distributions. Since it has been shown that a HMM exists for every
HHMM [5], we can use any standard HMM inference with a sparse matrix rep-
resentation for performing inference.

5 Experiments

In this section, we present our experiments with the particle filter and unrolled
(hand-crafted) HMM in 2 simulated domains: a grid world and a cooking domain.

5.1 Doorman Domain

In this domain, the user is in a gridworld where each grid cell has 4 doors that the
user has to open to navigate to the adjacent cell. The LoHiHMM for the figure
is presented in Figure 2.a. The highest level goals of the user are to Gather a
resource or to Attack an enemy. To gather a resource, the user has to collect the
resource and deposit it at the corresponding location. Similarly, to destroy an
enemy, the user has to kill the dragon and destroy the castle. There are different
kinds of resources, namely food and gold. Each resource can be stored only in
a storage of its own type (i.e, food is stored in granary and gold is stored in
bank). These serve as constraints in the LoHiHMM and are shown as conditions
on the arcs in the Figure 2.a. There are 2 locations for each of the resources and
its storage. Similarly there are 2 kinds of enemy red and blue. The user has to
kill the dragon of a particular kind and destroy the castle of the same kind. The
actions that the user can perform are to move in 4 directions, open the 4 doors,
pick up, put down and attack.

The states of the LoHiHMM are the goal-subgoal combinations of the user.
The world state (observable) consists of the current square that the user is
in and the current door that is open. The observations are the user actions.

The observation distribution is generated using a Boltzmann distribution on
the number of actions to the goal. The results are presented in Figure 2.b. The
particle filtering method is compared against the ground HMM on 50 different
runs where the user chooses the top-level goal and starts acting towards achieving
it. The mean reciprocal rank (mean of the inverse of the rank of the current state)
was measured and presented. A MRR of 1 indicates that the correct state has
always been ranked as 1 by the algorithm.

EndGather(R) Attack(E)

Collect(R) Deposit(R,S)
Destroy(E)Kill(D)

Goto(L)

Move(X) Open(D)

Pickup(R) Dropoff(R,S) KillD(D) DC(E)

Start

R.Type =

S.Type

L = R.Loc

L = S.Loc
L = D.Loc

L = E.Loc

E.Type =

D.Type

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Number of user Actions

M
e

a
n

 R
e

c
ip

ro
c

a
l

R
a

n
k

Exact HMM

Particle Filter

Fig. 2. (a)LoHiHMM for the gridworld domain. (b)Results. The y-axis presents the
Mean Reciprocal Ratio of the correct user state

As can be seen, the grounded HMM (being an exact inference) method has a
slightly better performance than the particle filter. More precisely, when a sub-
goal has been achieved (or at the start of the run), particle filter can sample a
few of the incorrect subgoals. Once a few observations are obtained, the particle
filter performs as well as the ground HMM (in fact even better before the first
sub-goal has been achieved). On seeing a few observations, it converges to the
right state as evident from the slight dip in performance. On the other hand,
while the performance of the exact HMM inference is marginally better, it has a
large number of states. In this domain, the HMM had about 144 ground states
and about 2200 observations. Thus the transition matrix is of the size 144× 144
while the observation matrix is of the size 144 × 2200. It took about 3ms on
an average to perform inference using the ground HMM and a sparse matrix
representation while it was nearly 0ms using the filter. In larger domains, such
as a real-time desktop assistant or video survelliance, it is likely that this state
space can grow quickly and it could become infeasible for performing inference.

5.2 Kitchen Domain

The other domain is a kitchen domain where the user has to cook some dishes.
The user has 2 kinds of higher-level goals: one in which he could prepare a recipe
which contains a main dish and a side dish and the second in which he could
use some instant food to prepare a main dish and a side dish. There are 2 kinds
of main dishes and 2 kinds of side dishes that he could prepare from the recipe.

Similarly, there are 2 kinds of main dishes and 2 kinds of side dishes that he
could prepare from instant food. The LoHiHMM is presented in Figure 3.a.

EndRecipe(R) IFood(I)

MainDish(M)) SideDish(S)
SideDish(SI)MainDish(MI)

FetchIng(I)

Open(D) Fetch (I)

Start

Pour(I)

SetTemp(I)

Heat(I) Bake(I)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of User Actions

M
R

R Particle Filter

Exact HMM

Fig. 3. (a)The kitchen LoHiHMM. (b)Results of the particle filter and the ground
HMM inference

There are 2 shelves with 3 ingredients each. The shelves have doors that
must be opened before fetching ingredients and only one door can be open at a
time. The observable part of the state consists of the contents of the bowl, the
ingredient on the table, the mixing state and temperature state of the ingredient
(if it is in the bowl) and the door that is open. The user’s actions are: open the
doors, fetch the ingredients, pour them into the bowl, mix, heat and bake the
contents of the bowl, or replace an ingredient back to the shelf.

As with the previous domain, we present the Mean Reciprocal Ratio of the
correct state when using the particle filter and the exact inference using ground
HMM in this domain. The 2 algorithms were executed for 50 runs where the
user chooses the high-level goal randomly. In this domain, the performance of
the particle filter is better than the grid world domain. As can be observed,
the particle filter samples more correct states in the beginning and hence has
a better performance compared to the exact inference method. But like the
previous domain, once a sub-goal has been achieved, the filter samples some of
the incorrect states thus having a small dip in the MRR but then recovers by
using the observations to converge quickly on the true state. The ground HMM
had a larger number of states(64) and observations (> 700) respectively leading
to large transition and observation matrices and took about 2.5ms per inference
query when compared to nearly 0ms for the particle filter.

6 Conclusion and Future Work

In this work, we motivated the need for the combination of the logical and hi-
erarchical versions of HMMs for performing activity recognition. To this effect,
we have developed and presented Logical Hierarchical HMMs. We outlined the

syntax and semantics of the conditional branching for the vertical and the hori-
zontal transitions that depend on certain attributes of the environment. We also
outlined a particle filter algorithm to perform efficient inference on these mod-
els and presented a procedure for unrolling the LoHiHMMs to HMMs. We then
evaluated our algorithms on 2 simulated domains and showed that the particle
filter can perform efficiently while sacrificing a small amount of accuracy.

Zettlemoyer et al. [13] consider the problem of filtering in relational HMMs
and propose the idea of logical particle filter for this case. In their model, the
states are conjunctions of propositions and/or functions. The observations and
the actions are propositions (i.e., unparameterized). The basic idea is to con-
struct a set of partitions (hypotheses) where each of the partitions represents a
set of states such that every state in a hypothesis has the same transition prob-
ability. The hypotheses at the current time step are split into a set of mutually
exclusive ones, the transition probability is then applied and the observations
are used to specialize the hypothesis. The expectation over the states in a hy-
pothesis is computed analytically while the hypotheses themselves are sampled.
The main bottleneck lies in the construction of these hypothesis. It is not clear
how to construct these mutually exclusive hypothesis in the presence of function
symbols for the state space. We sacrifice expressiveness for efficiency in our work
and consider only predicate symbols for the state space, hence making the parti-
cle filter simpler. Natarajan et.al [12] propose the use of relational hierarchies for
specifying prior knowledge to an assistant. We consider a representation that is
not specific to the assistant setting but propose a general method for extending
the HMMs in the relational and hierarchical settings.

One of the important directions for future research is to improve the accuracy
of the particle filter. One possible solution that we are currently exploring is the
use of Rao-Blackwellization (similar to that of Zettlemoyer et al. but in a simpler
setting using predicates for the states) to analytically marginalize out part of the
state space and then sample the rest. It is possible to sample the predicates at the
next time-step while inferring the values of the variables exactly. This would lead
to improved inference while not increasing the size of the state space drastically.
Recently Milch and Russell [9] presented an Metropolis-Hastings based MCMC
algorithm for relational structures. The algorithm considers states as partial
description of the world and uses context specific independences among the state
variables to factor out the acceptance probabilities. It remains an interesting
future work to explore the use of MCMC for the inference in LoHiHMMs. Such a
direction would provide more insights into the relative merits of particle filtering
and MCMC in relational domains. We are currently working on automating the
grounding of the LoHiHMMs to a ground HMM.

Yet another important direction is to evaluate on real-world domains. Cur-
rently the logical version of the model (LoHMM) is being deployed and evaluated
on a real-world assistant (name withheld for blind review) for activity recogni-
tion and initial results are promising. Our future goal is to use the LoHiHMMs
for the same purpose. In many real-world domains, the variables can possibly
take infinite values (such as filenames of the documents). There is a need for

the logical representations to handle these infinite variables. We are exploring
methods that can make our particle filter to handle these infinite variables in
a principled way. The principle advantage of Logical models lie in the fact that
they can exploit parameter tying while learning and our future goal is to design
efficient learning algorithms for LoHiHMMs.

Acknowledgements: This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through the Department of the
Interior, NBC, Acquisition Services Division, under Contract Nos. NBCHD030010,
FA8750-07-D-0185/0004 and FA8650-06-C-7606. Kristian was paritally sup-
ported by a Fraunhofer ATTRACT fellowship. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA, or the Air Force Research
Laboratory (AFRL).

References

1. J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis. A decision-
theoretic approach to task assistance for persons with dementia. In IJCAI, 2005.

2. H. Bui, D. Phung, and S. Venkatesh. Hierarchical hidden markov models with
general state hierarchy. In Proceedings of AAAI 04.

3. H. Bui, S. Venkatesh, and G. West. Policy recognition in the abstract hidden
markov models. JAIR, 17, 2002.

4. Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte
Carlo methods in practice. 2001.

5. S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model: Analysis
and applications. Machine Learning, 32:41–62, 1998.

6. L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT
Press, 2007.

7. K. Kersting, L. De Raedt, and T. Raiko. Logical hidden markov models. JAIR,
25:425–456, 2006.

8. M. Leo, T. D’Orazio, and P. Spagnolo. Human activity recognition for automatic
visual surveillance of wide areas. In VSSN ’04: Proceedings of the ACM 2nd inter-
national workshop on Video surveillance & sensor networks, 2004.

9. Brian Milch and Stuart Russell. General-purpose mcmc inference over relational
structures. In Proceedings of the 22nd Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI-06), 2006.

10. K. Murphy and M. Paskin. Linear time inference in hierarchical HMMs. In Pro-
ceedings of Neural Information Proceesing Systems, 2001.

11. K. Myers, P. Berry, J. Blythe, K. Conleyn, M. Gervasio, D. McGuinness, D. Morley,
A. Pfeffer, M. Pollack, and M. Tambe. An intelligent personal assistant for task
and time management. In AI Magazine, 2007.

12. S. Natarajan, P. Tadepalli, and A. Fern. A relational hierarchical model for
decision-theoretic assistance. In Proceedings of 17th Annual International Con-
ference on Inductive Logic Programming, 2007.

13. L. S. Zettlemoyer, H. M. Pasula, and L. P. Kaelbling. Logical particle filtering.
In Proceedings of the Dagstuhl Seminar on Probabilistic, Logical, and Relational
Learning, 2007.

