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Abstract—Citizen scientists, who are volunteers from the
community that participate as field assistants in scientific
studies [3], enable research to be performed at much larger
spatial and temporal scales than trained scientists can cover.
Species distribution modeling [6], which involves understanding
species-habitat relationships, is a research area that can benefit
greatly from citizen science. The eBird project [16] is one of
the largest citizen science programs in existence. By allowing
birders to upload observations of bird species to an online
database, eBird can provide useful data for species distribution
modeling. However, since birders vary in their levels of exper-
tise, the quality of data submitted to eBird is often questioned.
In this paper, we develop a probabilistic model called the
Occupancy-Detection-Expertise (ODE) model that incorporates
the expertise of birders submitting data to eBird. We show that
modeling the expertise of birders can improve the accuracy of
predicting observations of a bird species at a site. In addition,
we can use the ODE model for two other tasks: predicting
birder expertise given their history of eBird checklists and
identifying bird species that are difficult for novices to detect.

Keywords-Applications, Species Distribution Modeling, Citi-
zen Science, Graphical Models, Contrast Mining

I. INTRODUCTION

The term Citizen Science refers to scientific research
in which volunteers from the community participate in
scientific studies as field assistants [3]. Since data col-
lection by citizen scientists can be done cheaply, citizen
scientists allow research to be performed at much larger
spatial and temporal scales than trained scientists can cover.
For example, species distribution modeling (SDM) [6] with
citizen scientists allows data to be collected from many
geographic locations, thus achieving broad spatial coverage.
Most citizen scientists, however, have little or no scientific
training. Consequently, the quality of the data collected
by citizen scientists is often questioned. Recent studies
have shown that citizen scientists were able to provide
accurate data for easily detected organisms [4]. However,
for difficult-to-detect organisms, Fitzpatrick et al. [7] found
differences between observations made by volunteers and by
experienced scientists led to biases in their results.

The eBird project [16], launched in 2002 by the Cornell
Lab of Ornithology and National Audubon Society, is one

of the largest citizen science programs in existence. The
eBird project maintains an online database that allows bird
watchers (known as birders) to submit checklists that record
the bird species they have seen or heard. eBird’s goal is to
maximize the utility and accessibility of the vast numbers
of bird observations made each year by recreational and
professional birders. As an example of the volume of data
submitted, in January 2010, participants reported more than
1.5 million bird observations across North America.

SDM can, in theory, benefit greatly from data collected by
eBird. The goal of SDM is to predict the presence/absence
or abundance of a species at a geographic site. SDMs pro-
vide insight into species-habitat relationships, which in turn
helps ecologists predict biodiversity, design reserves, predict
species invasions, and identify areas at risk. A variety of
methods have been used for SDM including envelope models
[2], Genetic Algorithms [18], GLMs/GAMs [1], Hierarchical
Bayesian models [12], Boosted Regression Trees [8], and
Maximum Entropy models [17].

Since eBird data is contributed by citizen scientists, can
accurate species distribution models be built from this data?
Checklists submitted to eBird undergo a data verification
process which consists of automated data filters which screen
out obvious mistakes on checklists. Then, the checklists
go through a review process by a network of experienced
birders. Nevertheless, biases still exist due to differences
in the expertise level of birders who submit the checklists.
In our work, we show that modeling the expertise level of
birders can be beneficial for SDM.

In order to incorporate birder expertise into a species
distribution model, we need to distinguish between two
processes that affect observations: occupancy and detection.
Occupancy determines if a geographic site is viable habitat
for a species. Factors influencing occupancy include environ-
mental features of the site such as temperature, precipitation,
elevation and land use. Detection describes the observer’s
ability to detect the species and depends on factors such
as the difficulty of identifying the species, the effort put
in by the birder, the current weather conditions, and the
birder expertise. Neglecting to model the detection process



can result in misleading models [9]. For instance, a bird
species might be wrongly declared as not occupying a
site when in fact, this species is simply difficult to detect
because of reclusive behavior during nesting. Although the
focus of this paper is on species distribution modeling, the
occupancy / detection problem is representative of a more
general problem in domains such as object recognition and
surveillance in which a detection process, conditioned on a
set of features, corrupts a “true” value with noise to produce
an observed value.

Mackenzie et al. [15] proposed a well-known site oc-
cupancy model that separates occupancy from detection.
We refer to this model as the Occupancy-Detection (OD)
model and describe it in detail in Section II-A. Recent
work [10] has applied the OD model to citizen science
checklist data similar to those from eBird. In our work, we
introduce the Occupancy-Detection-Expertise (ODE) model
which extends the OD model by incorporating the expertise
of citizen scientists. We will show that the ODE model
improves the prediction of observations of a bird species at a
site, allows prediction of the expertise level of a birder given
his or her submitted checklists, and identifies bird species
that novices under/over-report as compared to experts.

II. METHODOLOGY

In this section, we first describe the OD model [15], [14]
before extending it to incorporate birder expertise.

A. The Occupancy-Detection Model

Figure 1 illustrates the OD model for a single species as
a graphical model [11], in which nodes represent random
variables and directed edges can be interpreted as a direct
influence from parent to child. Circles represent continuous
random variables while squares represent discrete random
variables. In addition, shaded nodes denote observed vari-
ables and unshaded ones denote latent variables. As shown
in Figure 1, the true site occupancy at site i (Zi) is latent
while all other nodes are observed. The dotted boxes in
Figure 1 represent plate notation used in graphical models
in which the contents inside the dotted box are replicated as
many times as indicated in the bottom right corner. The outer
plate represents N sites and the inner plate represents the
number of visits Ti to the ith site. In addition, oi represents
the occupancy probability of site i and dit being the true
detection probability at site i, visit t. The OD model is
parameterized by occupancy parameters α and detection
parameters β.

We model the relationship between the occupancy of the
ith site (ie. the node Zi) and the occupancy features Xi

at that site using a logistic regression with parameters α.
Occupancy features are environmental factors determining
the suitability of the site as habitat.

The detection component captures the conditional prob-
ability of the observer detecting the species (ie. random

Figure 1. Graphical model representation of the Occupancy-Detection
model for a single bird species.

variable Yit), during a visit at site i and at time t conditioned
on the site being occupied ie. Zi = 1 and the detection
features Wit. The detection features include factors affecting
the observer’s detection ability. We model the detection
variable Yit as a function of the detection features using
logistic regression with parameters β.

Under the OD model, sites are visited multiple times and
observations are made during each visit. The site detection
history includes the observed presence or absence of the
species on each visit at this site. The OD model makes two
key assumptions. First, the population closure assumption
[15] assumes that the species occupancy status at a site
stays constant over the course of the visits. Second, the
standard OD model does not allow for false detections.
False detections occur when observers incorrectly declare
a species to be present at a site when the site is in fact
unoccupied by that species. Hence under the OD model,
reporting the presence of a species at a site makes the site
occupied by that species. Reporting the absence of a species
at a site can be explained by either the site being truly
unoccupied or the observer failing to detect the species.

B. The Occupancy-Detection-Expertise Model

The ODE model incorporates birder expertise by extend-
ing the OD model in two ways. First, we add to the OD
graphical model an expertise component which influences
the detection process. Birder expertise strongly influences
the detectability of the species, such as when experts are
more proficient at identifying certain bird species by sound
rather than by sight. The occupancy component of the ODE
model stays the same as in the OD model because the site
occupancy is independent of the observer’s expertise. The
second extension we add to the OD model is to allow false
detections by both novices and experts. A graphical model
representation of the ODE model for a single bird species
is shown in Figure 2.

In the expertise component, Ej is a binary random vari-
able capturing the expertise (ie. 0 for novice, 1 for expert)
of the jth birder and there are M birders in total. We use
logistic regression, with parameters γ, to model Ej as a
function of the expertise features Uj associated with the jth
birder. Expertise features include features derived from the
birder’s personal information and history of checklists, such



Figure 2. Graphical model representation of Occupancy-Detection-
Expertise Model for a single bird species.

as the total number of checklists submitted and the total
number of bird species identified on these checklists.

In order to incorporate birder expertise, we modify the
detection process such that it consists of a mixture model
in which one mixture component models the detection
probability by experts and the other mixture component
models the detection probability by novices. Each detection
probability has a separate set of detection parameters for
novices and for experts. These two separate feature sets
are useful if the detection process is different for experts
versus novices. For instance, experts can be very skilled
at identifying birds by sound rather than by sight. Let
B(Yit) be the index of the birder who submits checklist
Yit. In Figure 2, the links from Ej to Yit only exist if
B(Yit) = j ie. the jth birder is the one submitting the
checklist corresponding to Yit.

In addition, we allow for false detections by both ex-
perts and novices. This step is necessary because allowing
for false detections by experts and novices improves the
predictive ability of the model. Experts are in fact often
over-enthusiastic about reporting bird species that do not
necessarily occupy a site but might occupy a neighboring
site. For instance, experts are much more adept at identifying
and reporting birds that fly over a site or are seen at a
much farther distance from the current site. As a result, the
detection probabilities for novices and experts in the ODE
model are now separated into a total of 4 parts: true and
false detection probabilities for experts (dex

it and fex
it respec-

tively), and true and false detection probabilities for novices
(dno

it and fno
it respectively). Each of these probabilities is

modeled using logistic regression with an associated set of
parameters. For more details, we refer the interested reader
to the extended version of this paper [19].

C. Parameter Estimation and Regularization

The ODE model requires a labeled set of expert and
novice birders to estimate the model parameters using Ex-

pectation Maximization [5]. In the E-step, EM computes the
expected occupancies Zi for each site i using Bayes rule.
In the M-step, EM determines the values of parameters that
maximize the expected joint log-likelihood in Equation 1;
we use L-BFGS [13] to perform the optimization. A more
complete description of the parameter estimation process for
the ODE model can be found in [19].

Q = EP (Z|Y ,E)[log P (Y ,Z,E|X,U ,W )] (1)

D. Inference

The ODE model can be used for three main inference
tasks: prediction of site occupancy (Zi), prediction of ob-
servations on a checklist (Yit) and prediction of a birder’s
expertise (Ej). Although ecologists are extremely interested
in the true species occupancy at a site, ground truth on
site occupancy is typically unavailable. Consequently, we
evaluate the ODE model on the latter two inference tasks,
which we describe in detail below.

1) Predicting observations on a checklist: To pre-
dict Yit, we compute the detection probability P (Yit =
1|Xi,Wit,UB(Yit)). During prediction, we treat the exper-
tise node Ej as a latent variable.

2) Predict birder’s expertise: Prediction of birder ex-
pertise can alleviate the burden of manually classifying
new birders as experts and novices. Let Y j be the set of
checklists that belong to birder j (with Y j

it and Y j
i· extending

our previous notation), let W j
it be the detection features for

Y j
it and let Zj be the set of sites at which birder j submitted

checklists. We treat Zj as latent variables during prediction
and marginalize them out. To predict the expertise of birder
j, we compute P (Ej = 1|X,Y j ,W ,Uj).

III. EVALUATION

In this section, we evaluate the ODE model over two
prediction tasks: predicting observations on a birder’s check-
list and predicting the birder’s expertise level based on the
checklists submitted by the birder. In both evaluation tasks,
we report the area under the ROC curve (AUC) as the
evaluation metric. We also include results from a contrast
mining task that illustrates the utility of the ODE model.

A. Data description

The eBird dataset consists of a database of checklists
associated with a geographic site. Each checklist belongs
to a specific birder and one checklist is submitted per visit
to a site by a birder. In addition, each checklist stores the
counts of all the bird species observed at that site by that
birder. We convert the counts for each species into a Boolean
presence/absence value. A number of other features are also
associated with each site-checklist-birder combination: 1)
the occupancy features associated with each site, 2) the
detection features associated with each observation, and
3) the expertise features associated with each birder. The



observation history of each birder is used to construct two
expertise features – the total number of checklists submitted
and the total number of bird species identified. We use 19
occupancy features, 3 detection features and 2 expertise fea-
tures in the experiment. For more details on these features,
we refer the reader to [19] and [16].

In our experiments we use eBird data from New York
state during the breeding season (May to June) in years
2006-2008. We choose the breeding season because many
bird species are more easily detected during breeding and
because the population closure assumption is reasonably
valid during this time period. Furthermore, we group the
checklists within a radius of 0.16 km of each other into
one site and each checklist corresponds to one visit at that
grouped site. The radius is set to be small so that the site
occupancy is constant across all the checklists associated
with that grouped site. Checklists associated with the same
grouped site but from different years are considered to be
from different sites. Ornithologists working with the eBird
project at the Cornell Lab of Ornithology hand-labeled the
expertise of birders in our training set using a variety of
criterion including personal knowledge of birder reputation,
number of checklists rejected during data verification, and
manual inspection of eBird checklists. This training set
consists of 32 expert and 88 novice birders with 2352 and
2107 total checklists respectively.

There are roughly 400 bird species that have been reported
over the NY state area. Each bird species can be considered
a different prediction problem. We evaluate our results over
3 groups with 4 bird species in each group. Group A
consists of common bird species that are easily identified
by novices and experts alike. Group B consists of bird
species that are difficult for novices to detect; most of
these birds are detected by sound rather than by sight.
Finally, Group C consists of two pairs of birds – Hairy
and Downy Woodpeckers and Purple and House Finches.
Novices typically confuse members of a pair for each other.

B. Task 1: Prediction of observations on a checklist

Since the occupancy status of the site Zi is not available,
we can use the observation of a bird species as a substitute.
We evaluate the accuracy of the ODE model when predicting
detections against a Logistic Regression (LR) model and the
classic OD model found in the ecology literature.

Evaluating predictions on spatial data is a challenging
problem due to two key issues. First, a non-uniform spatial
distribution of the data introduces a bias in which small
regions with high sampling intensity have a very strong
influence on the performance of the model. Secondly, spatial
autocorrelation allows test data points that are close to
training data points to be easily predicted by the model. To
alleviate the effects of both of these problems, we superim-
pose a 9-by-16 checkerboard (each grid cell is roughly a 50
km x 33 km rectangle) over the data. The checkerboard grids

the NY state region into black and white cells. Data points
falling into the black cells are grouped into one fold and
those falling into the white cells are grouped into another
fold. The black and white sets are used in a 2-fold cross
validation. We also randomize the checkerboarding by ran-
domly positioning the bottom left corner to create different
datasets for the two folds. We run 20 such randomization
iterations and within each iteration, we perform a 2-fold
cross validation. We compute the average AUC across all
20 runs and show the results in Table I. Boldface indicates
the best results. The ? and † symbols indicate that the ODE
model is a statistically significant improvement (paired t-test,
α = 0.05) over the LR and OD models respectively.

We use a validation set to tune the regularization terms
of three different models. Data in one fold is divided
into a training set and a validation set by using a 2-by-2
checkerboard on each cell. More specifically, each cell is
further divided into a 2-by-2 subgrid, in which the top left
and bottom right subgrid cells are used for training and the
top right and bottom left subgrid cells are used for validation.

1. LR Model: A typical machine learning approach
to this problem is to combine the occupancy and detection
features into a single set of features. Since we are interested
in the benefit of distinctly modeling occupancy and detection
by having occupancy as a latent variable, we use this LR
model as a baseline as it does not separate occupancy
from detection. We use two LR models for our baseline.
The first LR model predicts the birder’s expertise using
the birder’s expertise features. The probability of the birder
being an expert is then treated as a feature associated with
each checklist from that birder. The second LR predicts the
detection Yit using the occupancy features, detection features
and the expertise probability computed from the first LR.

2. OD Model: In order to incorporate birder expertise
in the OD model, we also employ a LR to predict the birder
expertise from the expertise features. We treat the probability
of the birder being an expert as another detection feature
associated with each checklist from that birder. Then, we use
EM to train the OD model. To predict a detection, we first
compute the expertise probability using coefficients from the
first LR and then predict the detection using the occupancy
features, detection features and the predicted expertise as an
additional detection feature.

3. ODE Model: The ODE model is trained using EM
and we predict Yit as before. The birder expertise is observed
during training but unobserved during testing.

C. Task 2: Prediction of birder’s expertise

In this experiment, we compare the ODE model with LR
to predict the birder’s expertise.

1. LR Model: To train a LR to predict a birder’s
expertise, every checklist is treated as a single data instance.
The set of features for each data instance include occupancy
features, detection features, and expertise features. To predict



Table I
AVERAGE AUC FOR PREDICTING DETECTIONS ON TEST SET

CHECKLISTS FOR BIRD SPECIES

Group A Bird Species LR OD ODE
Blue Jay 0.6726 0.6881 0.7104?†

White-breasted Nuthatch 0.6283 0.6262 0.6600?†

Northern Cardinal 0.6831 0.7073 0.7085?

Great Blue Heron 0.6641 0.6691 0.6959?†

Group B Bird Species LR OD ODE
Brown Thrasher 0.6576 0.6920 0.6954?

Blue-headed Vireo 0.7976 0.8055 0.8325?†

Northern Rough-winged Swallow 0.6575 0.6609 0.6872?†

Wood Thrush 0.6579 0.6643 0.6903?†

Group C Bird Species LR OD ODE
Hairy Woodpecker 0.6342 0.6283 0.6759?†

Downy Woodpecker 0.5960 0.5622 0.6183?†

Purple Finch 0.7249 0.7458 0.7659?†

House Finch 0.5725 0.5809 0.6036?†

the expertise of a new birder, we first retrieve the checklists
submitted by the birder, use LR to predict the birder’s
expertise on each checklist, and then average the predictions
of expertise on each checklist to give the final probability.

2. ODE Model: The ODE model is trained using EM
and we predict the birder’s expertise using the model.

We evaluate on the same twelve bird species using a 2-
fold cross validation across birders. We randomly divide the
expert birders and novice birders into half so that we have
an equal number of expert birders as well as novice birders
in the two folds. Assigning birders to each fold will assign
checklists associated with each birder to the corresponding
fold. We use a validation set to tune the regularization terms
of both the LR model and the ODE model. Of all birders in
the training fold, half of the expert birders and the novice
birders in that fold are randomly chosen as the actual training
set and the other half serve as the validation set. Finally, we
run 2-fold cross validation on the two folds and compute
the AUC. For each bird species, we perform the 2-fold cross
validation using 20 different random splits for the folds. In
Table II we tabulate the mean AUC for each species, with
boldface entries indicating the best results and ? indicating
that the ODE model is a statistically significant improvement
(paired t-test, α = 0.05) over LR.

D. Task 3: Contrast mining

In this contrast mining task, we identify bird species that
are over/under reported by novices compared to experts.
We compare the average ∆TD values for Groups A and
B, where ∆TD is the difference of the true detection
probabilities between expert and novice birders. We expect
experts and novices to have similar true detection prob-
abilities on species from Group A, which correspond to
common, easily identified bird species. For Group B, which
consists of species that are hard to detect, we expect widely
different true detection probabilities. In order to carry out
this case study, we first train the ODE model over all the

Table II
AVERAGE AUC FOR PREDICTING BIRDER EXPERTISE ON A TEST SET OF

BIRDERS FOR BIRD SPECIES

Group A Bird Species LR ODE
Blue Jay 0.7265 0.7417?

White-breasted Nuthatch 0.7249 0.7212
Northern Cardinal 0.7352 0.7442
Great Blue Heron 0.7472 0.7661

Group B Bird Species LR ODE
Brown Thrasher 0.7523 0.7761?

Blue-headed Vireo 0.7869 0.7981
Northern Rough-winged Swallow 0.7792 0.8052?

Wood Thrush 0.7675 0.7937?

Group C Bird Species LR ODE
Hairy Woodpecker 0.7056 0.7334?

Downy Woodpecker 0.7223 0.7307
Purple Finch 0.7481 0.7739?

House Finch 0.7279 0.7403?

Table III
AVERAGE ∆TD FOR GROUP A AND B.

Group A Bird Species Average ∆TD

Blue Jay 0.0118
White-breasted Nuthatch 0.0077
Northern Cardinal -0.0218
Great Blue Heron 0.0110
Group B Bird Species Average ∆TD

Brown Thrasher 0.1659
Blue-headed Vireo 0.1158
Northern Rough-winged Swallow 0.1618
Wood Thrush 0.0954

data described in Subsection III-A for a particular species.
Then for each checklist, we compute the difference between
the expert’s true detection probability and the novice’s true
detection probability. We average this value over all the
checklists. The results are shown in Table III.

IV. DISCUSSION

Since true site occupancies are typically not available for
real-world species distribution data sets, predicting species
observations at a site is a reasonable substitute for evaluating
the performance of a SDM. Table I indicates that the top
performing model over all 12 species is the ODE model. The
ODE model offers a statistically significant improvement
over LR in 12 species and over the OD model in 10 species.
The two main advantages that the OD model has over LR
are that it models occupancy separately from detection and
it allows checklists from the same site i to share evidence
through the latent variable Zi. However, in 3 species, the OD
model performs worse than the LR model. This decrease
in AUC is largely due to the fact that the OD model
does not allow for false detections. In contrast to the OD
model, the ODE model allows for false detections by both
novices and experts and it can incorporate the expertise
of the observer into its predictions. Since the ODE model
consistently outperforms the OD model, the improvement in
accuracy is mainly due to these two advantages.



As shown in Table II, the ODE model outperforms LR
on all species except for White-breasted Nuthatch when pre-
dicting expertise. The ODE model’s results are statistically
significant for almost all the Group B birds species, which
are hard to detect, but not significant for Group A birds,
which are much more obvious to detect. For Group C, the
ODE model results are statistically significant for Hairy
Woodpeckers, Purple Finches and House Finches. These
results are consistent with behavior by birders. Both Purple
Finch and Hairy Woodpeckers are rarer and experts are
better at identifying then. In contrast, novices often confuse
House Finches for Purple Finches and Downy Woodpeckers
for Hairy Woodpeckers. Overall, the AUCs for most species
are within the 0.70-0.80 range, which is an encouraging
result for using the ODE model to predict birder expertise.

Finally, the results in Table III indicate that experts and
novices appear to have very similar true detection probabil-
ities for the common bird species in Group A. However, for
the hard-to-detect bird species in Group B, the ∆TD values
are much larger. These results show that the ODE model is a
promising approach for contrast mining, which can identify
differences in how experts and novices report bird species.

V. CONCLUSION

We have presented the ODE model that has distinct
components that capture occupancy, detection and observer
expertise. We have shown that it produces more accurate
predictions of species detections and birder’s expertise than
other models. More importantly, we can use this model
to find differences between expert and novice observations
of birds. This knowledge can be used to inform citizen
scientists who are novice birders and thereby improve the
reliability of their observations.
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