
Modeling Experts and Novices in 
Citizen Science Data

Jun Yu, Weng-Keen Wong, Rebecca Hutchinson
{yuju,wong,rah}@eecs.oregonstate.edu



Introduction
Species Distribution Modeling 

important for:
• Understanding species-

habitat relationships
• Conservation and reserve 

design
• Predicting effects of 

climate / land use change

Many research questions require data to be collected at broad 
spatial and temporal scales

Predicted distribution of tree swallows across 
North America (from D. Fink)



Introduction

Pros:
• Inexpensive
• Can collect data over 

large spatial areas and 
long time periods

Citizen science: scientific research in which 
volunteers from the community participate as field 
assistants [Cohn 2008]

Cons
• Reliability of data



Introduction

• One of the largest citizen science programs
• Online checklist database developed by 

Cornell Lab of Ornithology and National 
Audubon Society

• Birders submit checklists of birds observed 
(> 1.5 million checklists in Jan 2010)



Introduction

Can we use eBird data for accurate SDM?
• Main issue: birders have different levels of 

expertise

• How reliable is the data?
– Data reviewed through a verification process
– But biases still exist

Novice Expert



Methodology
Labeled Training Set

Birder ID: 42

Expertise: Expert

Birder ID: 56

Expertise: Novice
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Train model

Use model 

32 experts (2532 checklists)

88 novices (2107 checklists)
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Methodology

Start with Occupancy-Detection (OD) model 
[Mackenzie et al. 2006]
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Methodology

Assumptions on OD model
• Site closure assumption: species occupancy 

status stays the same over the site visits
• No false detections: can’t detect a bird if it 

doesn’t occupy the site
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Methodology

Occupancy-Detection-Expertise (ODE) model
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Methodology
ODE model details
• Allow for false detections. Results in four sets of parameters: 

– True detection and false detection parameters for experts
– True detection and false detection parameters for novices

• Introduces an identifiability problem
– Add constraint during training

• Train using Expectation-Maximization



Results
1. Want to predict occupancy (Zi) but ground 

truth not available. Instead, predicting 
observation (Yit)

– eBird data from NY, breeding season (2006-2008)
– Expertise nodes observed in training data, unobserved 

in test data
– Evaluating spatial data is challenging: use 

checkerboarding
– Compare with Logistic Regression and OD model



Results
Average AUC on four hard‐to‐detect bird species
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Average AUC on four common bird species
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Results

2. Predict Expertise (Ej) of birder given 
checklist history
– Site occupancy (Zi) is unobserved in both 

training and testing
– Two-fold cross-validation on birders
– Repeat 20 times and report average AUC
– Compare against Logistic Regression



Results

Average AUC on four common bird species
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Average AUC on four hard‐to‐detect bird species
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Results

Hard-to-detect birdsCommon birds

3. Discovering differences between experts and 
novices



Future work

• Discover sources of novice bias 
• Improve accuracy of species distribution 

models by adjusting for this novice bias
• Incorporate tree-models in occupancy and 

detection components
• Semi-supervised version of ODE model
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