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Abstract

The state of the art in traffic incident de-
tection is dominated by approaches that re-
quire significant manual tuning. Our hypoth-
esis is that these time-consuming solutions
can be sucessfuly eliminated with the help
of machine learning methods and past traf-
fic data collected nowadays on major high-
ways. We show that combining the output
of a set of simple, imperfectly tuned, “off-
the-shelf” detectors via classification meth-
ods is a promising way to obtain a detector
with an acceptably low false-positive rate and
high and fast recall. We evaluate the perfor-
mance of a number of simple and combined
detectors on real-traffic data and incidents
recorded for a section of highway in the Pitts-
burgh metropolitan area. We show that a rel-
atively simple support vector machine clas-
sifier solution outperforms the widely used
baseline, the California 2 algorithm. Finally,
we discuss the possibilities of improving de-
tector performance by accounting for certain
untimeliness of accident recording.

1. Introduction

The cost of highway accidents is significantly reduced
by their prompt detection. While public reporting and
911 phone calls remain the major source of traffic acci-
dent reporting, an automated detection of accidents is
becoming an increasingly viable option, thanks to, pri-
marily, the recent increase in the deployment of sensor
networks on US roadways.

Appearing in Proceedings of the Workshop on Machine
Learning Algorithms for Surveillance and Event Detection
at the 23 rd International Conference on Machine Learn-
ing, Pittsburgh, PA, 2006. Copyright 2006 by the au-
thor(s)/owner(s). This research was supported by the Na-
tional Science Foundation grants ANI-0325353 and CMS-
0416754.

Incident detection systems (IDS) are complex arrange-
ments of technological, organizational and human re-
sources and rely on a variety of inputs, including, but
not limited to, sensing and camera equipment, radio
reports from police patrols and cell phone calls from
the driving public. Our data show that there cur-
rently exists a significant delay between the occurence
of an accident and the incept of the traffic management
response. The traffic management center, through
which the sensor measurements flow, nevertheless of-
ten learns about an accident from police reporting.

When an accident occurs, it may reduce the capac-
ity of the affected roadway by blocking one or several
lanes. If the highway is operating near its capacity,
a congestion forms. It is this unexpected congestion
that we may hope to observe in the stream of sensor
readings.

There are several traditionally recognized families of
incident detection algorithms [8]. The most widely de-
ployed one is that of “pattern recognition” algorithms.
These algorithms, represented in our study by the so-
called California #2 algorithm, typically employ com-
binations of simple thresholding detectors. However,
the tuning of these thresholds requires extensive in-
volvement of traffic experts, as the settings typically
do not transfer to a new site and need to be set man-
ually for each traffic sensor location.

While traffic engineers are an expensive resource, large
volumes of traffic data have been recorded and are
readily available. Our hypothesis is that we can do
without the time-consuming human calibration of the
detector and instead extract the necessary knowledge
from the data using machine learning techniques.

The purpose of this paper is to investigate whether in-
cident detection can profitably be approached as a su-
pervised classification problem and explore the classifi-
cation power of a set of simple “out-of-the-box” traffic
features and their combinations. To test the hypothe-
sis we examine traffic data for Pittsburgh metropolitan
area and related incident reports.
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We demonstrate that for the available data, a ma-
chine learning approach can outperform manually con-
structed detectors and does not require per-sensor
manual tuning.

2. Data

The data are collected by a network of sensors that
use a host of physical principles to detect passing ve-
hicles (inductive loop detector, microwave and laser
detectors, among others). Three traffic quantities are
normally observed and aggregated over a time period:
the average speed, the volume (number of passing ve-
hicles) and occupancy (the percentage of road length
taken up by cars – “traffic density”). The typical ag-
gregation period ranges from 30 seconds to 5 minutes;
we have 5 minute aggregates available. We refer to the
collection of aggregated measurements from one time
interval as a datapoint. A set of datapoints is referred
to as a dataset.

The evaluation takes place on the most accident-
prone segment of highway in Pittsburgh. The train-
ing dataset was obtained by considering traffic and
accident data for the westbound lanes of I376 in a
(approximately) 1-mile segment including the Squirrel
Hill Tunnels. The segment is defined by the positions
of two sensors, to which we will henceforth refer as
the upstream and downstream sensors. There are 37
incidents in this segment verified by hand to leave a
signature in the sensor measurements.

Incidents that the Traffic Management Center (TMC)
was aware of are noted in the data: their approximate
location, time of accident and time of clearing by emer-
gency responders. These incidents are recorded with a
delay, so often the accident’s effect is apparent in the
data well before the “official” starting time, often as
much as one hour ( Figure 1 ). In a supervised frame-
work, we need to label the data as to the occurence
of the accident. Given the unreliability in incident
time detection, any datapoint up to 15 minutes prior
to the accident is labeled as “accident”. As the effects
of an accident persist for some time, we also label all
datapoints up to 5 minutes after accident clearing as
“accident”.

3. Traffic features and detectors

In this paper, a detector is any algorithm that takes
as input the sensor readings, current and past, and
produces a continous stream of binary outputs signi-
fying the presence of an incident. Conceptually, we
associate a detector with a physical sensor location
when we consider sensors in isolation. More realisti-
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Figure 1. A section of the raw data (best viewed in color
at magnification). The red, green and blue lines repre-
sent average occupancy, average speed and total volume
observed in and aggregated over 5 minute intervals. Num-
ber of interval is on the horizontal axis, the vertical axis
is scaled to accomodate all curves for two sensors. The
vertical pale orange stripes are accidents as recorded by
PennDOT. Some accidents square with congestions per-
fectly (incident beginning around interval 7950), but some
leave no observable trace in the data (cca 7420) or their
dynamics is unclear (cca 7530).

cally, we associate detectors with roadway segments
between sensors when we work with data from more
than one sensor.

In most incident detection applications, simple thresh-
olding detectors and their expert-designed combina-
tions are the state of the art. There are two types of
features widely regarded as useful in incident detec-
tion. The first type captures deviations from normal
conditions and the threshold values are typically char-
acterized in terms of distance of the current reading
from its mean, measured in standard deviations. The
features of the second type characterize the dynamics
of the system and are based on temporal diferences of
sensor readings.

Activity monitor operating characteristic (AMOC)
curves are traditionally used for evaluation of rare
event detection performance. AMOC curves relate
false alarm rate (FAR) to time-to-detection and can be
drawn under the assumption that all events are even-
tually detected. This may be the case in, for instance,
disease outbreak detection [4], where every outbreak is
eventually detected, but we cannot hope to detect all
accidents. We have to introduce an artificial time-to-
detection limit for accidents that remain undetected.
For the sake of readability, we will not use AMOC
curves in this evaluation, but rather provide them in
an online supplement 1.

A false alarm occurs when the system raises an alarm,

1http://www.cs.pitt.edu/~tomas/papers/icml06w
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but no accident is present. The FAR is the number
of false alarms divided by the number of detector in-
vocations. The detection rate (DR), is the number of
accidents actually detected, divided by the number of
accidents that occured; thus higher DR is more de-
sirable. These measures are conflicting in the sense
that we can typically increase one at the expense of
the other. A performance envelope curve relates FAR
and DR and gives a more appropriate description of a
detector’s performance. However, the curve can be de-
ceiving as the cardinality of the dataset is much larger
than the number of incidents. As a consequence, the
curve is sensitive to prevalence of incidents and the
intuition that the random guess will achieve a curve
close to the (0, 0) − (1, 1) diagonal, which holds true
for ROC curves [7], does not transfer to performance
envelopes. With a performance envelope or an ROC
curve, the area under the curve (AUC) is a scalar sum-
mary statistic, suitable for comparisons.

Accidents are observed indirectly, via their effect on
the traffic flow. Their interference with traffic is strong
when the highway is near its operating capacity and
when the accident is major and blocks at least a sin-
gle lane. However, it is fundamentally difficult to de-
tect non-blocking accidents and those that occur un-
der light load, as the deviation from normal traffic pat-
terns may be negligible. The aggregation period of our
data is 5 minutes. This also limits the achievable per-
formance, as in minor accidents, the roadway if often
blocked only for a few minutes before it is cleared. For-
tunately, missing such minor incidents carries smaller
cost.

The target performance at which a system is consid-
ered at least marginally useful depends on where the
system is to be deployed. A study [9] surveying traf-
fic managers found that would seriously consider using
an algorithm that achieves a DR over 88% and FAR
under 2%. Perhaps an even better metric for measur-
ing how many false alarms the users will accept is the
positive predictive value (PPV), also know as preci-
sion. It is plausible that users will find it preferable
to say what proportion of unsubstantiated alarms (to
the total number of alarms) they are willing to tolerate
than to say the same about FAR. Moreover, tolerabil-
ity of FAR will depend on the time interval between
successive ID algorithm invocations. 2

Finally, not all false alarms are bad. While some
alarms will not be caused by accidents, they often will

2 The users in the above study were very liberal in their
tolerance of false alarms. A medium-sized city will have
hundreds of detector sites. A 2% FAR would require the
managers to tend to several alarms per minute, most of
them false. The users were victims to the base rate fallacy.

indicate unusual traffic conditions that, by definition,
should be of concern for the traffic managers.

3.1. Train/test splitting

Our dataset is one long sequence. It matters how we
split it up into shorter sequences that will be used as
learning instances. The straightforward random split
cannot be used as it relies on the iid assumption. It
is better to divide the train/test split by incidents,
making sure an entire incident sequence makes it into
one and only one of the sets.

To create the training set, we first select Itrain “in-
cident” sequences of preset length L so that the re-
ported time of the incident falls in the middle of the
incident sequence. C “control” sequences without an
incident are selected so that no incident is recorded
within additional L/2 datapoints before and after the
control sequence. This safeguards against the impre-
cise accident recording. By choosing Itrain and C,
the class prior in the training set can be biased to-
wards incident occurences. The testing set consists of
the Itest = Iall − Itrain incident sequences that were
not selected for the training set. Additional sequences
without accidents are added so that the testing set has
class prior equal to that in the entire dataset.

To obtain the experimental statistics, we use 10 differ-
ent train/test splits using the above method. All sta-
tistics reported are averages and standard deviations
accross this splits. Error bars in the graphs represent
one standard deviation.

3.2. Univariate detector methods

Virtually every “pattern recognition” detection algo-
rithm is built on basic threshold detectors. Let us ex-
amine what detection power they have. We first look
at detectors that are local, in that they use informa-
tion from only one sensor, and oblivious, in that they
forget all about the past.

We note that the results in this paper were obtained
on data that was in no way “preprocessed”. The most
obvious such step, supressing diurnal trends by sub-
tracting the daily mean [3], perhaps surprisingly did
not result in significant changes in the reported per-
formance.

In Figures 2 and 3, we see the performance of the most
basic detectors. Detector Occ(sup, t0) detects an ac-
cident whenever the occupancy sensor reading at the
upstream sensor sup exceeds a threshold. The second
argument in parentheses, t0, is to denote that the algo-
rithm uses measurement most recent at the time of the
detector invocation. Detector Spd(sup, t0) outputs 1
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Figure 2. Performance envelope and ROC curve for a sim-
ple detector: Spd(sup, t0), operating on the upstream sen-
sor. Threshold is varied from the minimal to the maximal
value of the reading found in data.
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Figure 3. Performance envelope and ROC curve for
Occ(sup, t0). The threshold is varied from 0 to 5 standard
deviations above the mean occupancy.

if the speed falls below a detection threshold.

To improve on the false positive rate, we can combine
these detectors via an AND-conjunction. Similarly, to
improve on the detection rate, it is natural to combine
them with an OR-gate. More generally, we might re-
quire that k of the ensemble of m predictors output 1
for the combined detector to output 1.

3.3. Temporal variation

Now we consider, in isolation, features that capture
temporal variation in flow. Intuitively, sharp changes
in flow characteristic may be indicative of accident,
while congestion from capacity saturation should have
a more gradual onset. The temporal derivative fea-
tures are designed to enable this distinction.

Both the detectors utilizing spatial differences and
those using temporal differences outperform the local
detectors, as seen in Figure 4. The detector of occu-
pancy spike in particular shows a DR of about 30%
around FAR 1%.
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Figure 4. Performance envelope and ROC curves of tem-
poral derivative detectors: top – occcupancy spike de-
tector Occ(sup, t0 − t1), bottom – speed dip detector
Spd(sup, t0 − t1). Threshold varied from µ to µ + 5σ.

3.4. Spatial relations

The intuition behind including, as an input to a de-
tector, the reading of the neighboring sensor is that
accidents and benign congestions can be distingushed
by the flow characteristics at the downstream sensor.
When an accident constricts the roadway capacity, we
observe a congestion upstream of the accident. Un-
like a benign congestion, an accident should cause a
drop in the downstream sensor volume measurement.
The power of the difference detectors alone is shown
in Figure 5.

There is hope in these curves: the detection rate ex-
ceeds 50% and the area under ROC curve indicates
significantly nonrandom detection behavior, but the
0.5% target FAR still only yields about 30% detection
rate and the coverage is sparse, indicating high sensi-
tivity to threshold setting.

4. The California algorithm

The algorithm known as “California” TSC-2 is a pop-
ular baseline model against which new detection algo-
rithms are most often compared. Improvements over
TSC-2 have been proposed [10], but it remains a widely
used algorithm. TSC-2 proceeds as follows:

• Let Occ(si) denote occupancy at the upstream
sensor si and Occ(si+1) the same at the down-
stream sensor. If Occ(si) − Occ(si+1) > T1, pro-
ceed to the next step.
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Figure 5. ROC curves for two difference detectors:
Occ(sup − sdown, t0) for one road segment in the top row;
Spd(sup − sdown, t0) for another segment in the bottom
row. Threshold is varied in the range (µ, µ + 5σ).

• If (Occ(si) − Occ(si+1))/Occ(si) > T2, proceed
to the next step. The rationale behind this step
is while a capacity-reducing accident will always
produce large absolute differences in occupancy,
these may also be produced under almost stalled
traffic conditions.

• If (Occ(si)−Occ(si+1))/Occ(si+1) > T3, wait un-
til the next reading. If T3 is still exceeded, flag
an alarm. The wait is introduced to cut down on
false alarms.

Thresholds T1, T2, T3 need to be calibrated manually
for each road segment. We calibrated the TSC-2 algo-
rithm for one segment by inspecting the ROC curves
drawn for each threshold parameter T1 through T3,
holding the remaining parameters fixed. Since the al-
gorithm uses a conjuction of conditions, we used the
setting giving the highest DR before drawing the ROC
curves for the next parameter. The best performance
was 0.288 DR at 0.001 FAR at the final calibration
T1 = 13.0, T2 = 0.77, T3 = 5.0 and verified by an ex-
haustive procedure trying all possible settings of the
three parameters on a discrete grid covering a wide
range of parameter values. The performance charac-
teristics of the California 2 detector are in Figure 6.

The steep slope of the initial section of the ROC curve
is very desirable as the most difficult challenge here is
the low FAR. However, the model only detects a third
of the incidents at best. This is hardly acceptable for
practical purposes unless more fine-grained data are
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Figure 6. Performance of the California 2 algorithm with
performance envelopes and ROC curves. Top, varying the
T1 threshold in the (1, 10) range; middle, T2 threshold,
range (0.2, 1); bottom, T3 threshold, range (1, 10).

made available that could boost its performance.

5. Support vector machines

Naturally, the next step is to combine all of the fea-
tures. Unfortunately, there is no clear method of doing
this. There are too many combinations - do we look
at derivatives of spatial differences? Spatial differences
of derivatives? Some complex Boolean formula of all
of these? Noting that all the threshold detectors are
special cases of linear combinations, a support vector
machine (SVM) is their proper generalization.

Since we use SVM code designed for equal misclassifi-
cation cost, we supersample the minority (“accident”)
class training datapoints to simulate unequal cost.

In the first SVM experiment, the learner gets as fea-
tures all the readings at sensors sup and sdown at the
current time. In subsequent experiments, this basic set
is extended with other classes of features. The results
can be seen in Figure 7.
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Figure 7. Performance of the SVM model for different fea-
ture sets. The features are: (a,b) All readings for the two
sensors defining the monitored road segment. (c,d) Only
readings that are used to calculate California 2 features.
(e,f) California 2 features (the occupancy ratios). (g,h) All
of current and previous step measurements. (i,j) All cur-
rent measurements together with differences and propor-
tions of the corresponding readings at the upstream and
downstream sensors. For drawing the curves, the intercept
of the SVM hyperplane is varied in the (-1,1) range, giving
a lower estimate on the “true” ROC curve [1].
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Figure 8. Performance at low FAR: (a,b) California 2 (c,d)
the SVM detector without the persistence check, (e,f) the
SVM detector with persistence check: incident must be
detected in two consecutive datapoints for an alarm to be
raised.

It appears that for Pittsburgh traffic data, the un-
processed sensor readings afford the most detection
leverage. Addition of the temporal and spatial differ-
ence (and proportion) features affects the performance
minimally.

The results suggest that a succesful model can be built
atop the sensor measurements alone and that there is
little value in including a wealth of more elaborate fea-
tures, at least for this class of models. This is mildly
surprising in light of Figures 5 that demostrates that
spatial difference is among the best single features.
The whole appears to be more than the sum of the
parts.

The California 2 algorithm, which uses differences and
proportions between occupancies at the upstream and
downstream sensors, without incorporating the actual
values, does poorly in the higher FAR portion of the
curve. However, in the very low FAR rates, California
2 beats the SVM detectors. This occurs because it only
signals an incident after it has been verified by the last



step, a persistence check. The other detectors tend to
quickly spit out the alarm around a suspect datapoint.
However, a persistence check can be applied to any
detector and dramatically improve its low FAR rate, as
demonstrated in Figure 8 for the SVM-based detector.

6. Summary and future work

The design of incident detection algorithms is ex-
tremely sensitive to particularities of the deployment
location. For this reason, it requires much expert effort
to put an IDS in place.

In this paper, we examined the performance of simple
detectors and their combinations. Most simple predic-
tors are weak and need to be combined to yield usable
incident detection algorithms.

A simple support vector machine learning scheme was
able to outperform the model underlying much current
practice. Moreover, this performance is achieved in
presence of significant noise in the class labeling.

It appears that simple sensor measurements are quite
sufficient for the achieved level of detection perfor-
mance and the value of constructing more elaborate
features is questionable.

Many questions remain open whose answers promise
to improve incident detection. For instance, Coupled
Hidden Markov Models have somewhat disappointed
researchers [2, 5] in the past. Yet, CHMMs seem to
be just the right generative probabilistic model. Why
exactly does this natural model underperform? Might
the question be profitably sidestepped if we learn a
discriminative model such as a CRF instead?

Finally, the challenging problem of noisy data label-
ing remains open and we believe it is the immediate
obstacle to further improvements. The most promis-
ing avenue of attack is to treat the true state of the
road as a hidden variable. The concluding subsection
is devoted to an illustration of the concept.

6.1. Accounting for label shifts with Dynamic
Naive Bayes

An incident is typically recorded some time after it
happens, when the TMC learns about it. Therefore,
the onset of the incident will typically be labeled as
incident-free. The class label is therefore noisy, in a
skewed way. This implies that we should not regard
the incident records as the ground truth, but rather as
an observation of the hidden state of the accident and
track the progression of the accident.

We define an dynamic Bayesian network model, with a
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Figure 9. The Dynamic Naive Bayes graphical model.

p(i = v|s = ns) ae) as) rp)
v = 0 0.01 0.30 0.90 0.10
v = 1 0.99 0.70 0.10 0.90

Table 1. The “anchoring” conditional probability table

single discrete hidden state variable s and a number of
conditionally independent univariate Gaussian obser-
vation nodes o1, . . . , on. There is also a distinguished
binary observation i, which is the incident state as ob-
served by the TMC (Figure 9).

We attribute the following semantics to the values of
the hidden state variable: Normal steady state ns is
expected to undergo slow changes. The accident ef-
fect buildup ae captures the first minutes after an ac-
cident, characterized by a rapid spike in occupancy
at upstream sensor, volume drop at the downstream
sensor and a drop in speed at the upstream sensor.
In the accident steady state as, capacity remains im-
paired, the upstream occupancy remains at the satu-
ration limit, speed and throughput are lowered. The
recovery phase rp is characterized by increasing speed
at the upstream sensor and volume hovering near ca-
pacity at the downstream sensor.

The conditional distribution p(i|s) is set by hand (Ta-
ble 1) and intended to anchor the rows and columns
of the inter-slice transition matrix p(sn|sn−1) to their
intended interpretation. The inter-slice transition ma-
trix as well as the conditional probabilities p(on|s

n)
are learned from data.

An alarm threshold θa is set and alarm is triggered at
time n if p(sn = ae|on) + p(sn = as|on) ≥ θa.

Unfortunately, the performance of the simple Dynamic
NB models falls short of the SVM detector perfor-
mance. This is most likely so because the Naive Bayes
structural assumptions are a poor fit for the data.
While it may also be the case that the coarse grain
of the data does not warrant such fine distinction, a
similarly subpar performance was seen in a model with
only 2 states.

On the other hand, it is unclear how to assign a prob-
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Figure 10. Performance envelopes and ROC curves for a
Dynamic NB using both sensors’ measurements and their
differences and proportions. The curve is drawn by varying
θa in the range (0.8, 1).

abilistic interpretation to the SVM so that it may be
integrated into a framework that considers time. Here
lies a challenge for future work: a well performing clas-
sifier that can be “dynamized”, such as a Bayesian
network.

Promise can be also found in bootstrapping ap-
proaches, where the output of a classifier learned on
noisy data, could be used to improve the estimate of
when the accident begins and thus, thanks to better
quality of labeling, lead to more a more powerful detec-
tor. One advantage of this technique is its generality,
any classifiers, even of different type, can be used.
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