Data Mining for Early

Disease Outbreak Detection

Weng-Keen Wong

January 2004
CMU-CS-04-125

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Andrew Moore,
Scott Fahlman,
Jeff Schneider,
Gregory Cooper, University of Pittsburgh
Michael Wagner, University of Pittsburgh

Copyright © 2004 Weng-Keen Wong

This research is supported by DARPA grant F30602-01-2-0550 and by the State of Pennsylvania.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the sponsors.



Keywords: Anomaly Detection, Syndromic Surveillance, Biosurveillance, Bayesian
Networks



For my mother who encouraged me to be the first one in her family to get a PhD.






“...much learning doth make thee mad.” - Acts 26:2/



vi



Contents

1 Introduction 1
2 Privacy Issues 5
3 Related Work 7
3.1 Time Surveillance . . . . . . . . . .. Lo 8
3.1.1 Clustering Techniques . . . . .. .. ... ... ... ..... 10

3.1.2 Statistical Quality Control . . . . . . . .. ... ... .. ... 14

3.1.3 Regression . . . . .. ... Lo e 19

3.1.4 Time Series Methods . . . . . .. .. ... ... ... ... 23

3.1.5  Compound Smoothing . . . .. ... ... .. ... ... .. 27

3.1.6 Change point Detection . . . .. .. ... ... ... ..... 27

317 Wavelets . . . . . .. 29

3.2 Space Surveillance . . . . .. ... L 32
3.2.1 General Clustering Tests . . . . . . ... ... ... ...... 33

3.2.2 Specifictests . . . . ... L 35

3.3 Space-Time Surveillance . . . . . . . ... ... ... ... ...... 42
3.3.1 Clustering in Space-Time . . . . . .. ... ... ... ..... 42

3.3.2 Koch and McKenna . . . . .. ... ... ... ... ... 43

3.3.3 Spatial CUSUM . . . . .. ... ... ... .. 43

3.3.4 Space-Time Scan Statistic . . . .. .. ... ... ....... 45

vii



3.4 Space-Time-Person Surveillance . . . . . . .. ... ... ... ....

3.5 Other Work Related to WSARE . . . . . . . . .. .. ... ... ...

WSARE 2.0

4.1 Introduction . . . . . . . . .. L

4.2 Rule-based Anomaly Pattern Detection . . . . . . .. ... ... ...
4.2.1 Overview of WSARE . . . . . ... .. ... ... ... .. ..
4.2.2 One component rules . . . . . .. .. ...
4.2.3 Scoring each one component rule . . . .. ... ...
424 Two component rules . . . . . .. . ... ...
4.2.5 Ncomponentrules . ... ... ... ... ... ... ....
4.2.6 Finding the p-value forarule . ... ... ... ... .....
4.2.7 Using FDR to determine which p-values are significant

4.3 Computational Issues . . . . . . . . ... ... ... ...
43.1 Racing . . . . . . . .o
4.3.2 Early computation cutoff for p-value calculation . . . . . . ..
4.3.3 Differential Counting . . . . . . . ... .. ... ...

4.4 Conclusion . . . . . . . . .

WSARE 3.0

5.1 Introduction . . . . . . .. . Lo

52 WSARE 3.0 . . . . . . .. .
5.2.1 Creating the baseline distribution . . . . . . ... ... .. ..
5.2.2  Optimal Reinsertion . . . . . ... ... ... .. .......

5.2.3 Dealing with new hospitals coming online. . . . . ... .. ..

Evaluation
6.1 The Gridworld Simulator . . . . . . . . . . . . .. ...

6.1.1 Simulator Description . . . .. ... ... ... ........

49
49
52
93
54
54
95
26
o7
28
60
60
60
61
62

63
63
65
66
67
70



6.1.2 Simulation Settings . . . . . ... ... oL 76

6.1.3 Evaluation of performance . . . . . . .. ... ... ... ... 76
6.1.4 Results from Simulated Data . . . ... ... ... .... .. 78
6.2 The Bayesian Network Simulator . . . . . ... ... ... ...... 85
6.2.1 Simulator Description . . . . .. .. ... ... 85
6.2.2 Algorithms . . . . .. ... oo o 88
6.23 Results. . . . .. .. 91
6.3 DARPA Challenge . . . . .. .. .. .. ... 99
6.4 Annotated Output of WSARE 3.0 on Actual ED Data for 2001 . . . 104
6.5 Annotated Output of WSARE 3.0 on Actual ED Data July 18, 2002 -
July 18,2003 . . . . . .. 105
6.6 Timing . . . . . . . . . . 107
Improvements to the Randomization Test 109
7.1 Faster methods to account for multiple hypothesis testing . . . . . . . 111
7.2 Reporting more than the best scoring rule for theday . . . . . . . .. 113
An Efficient Algorithm for Clustering with Clutter 117
8.1 The CFF Algorithm . . ... .. ... ... ... ... ........ 120
8.1.1 Scaling Step One: Nonparametric Density Estimation . . . . . 121
8.1.2  Scaling Step Two: Connected Components . . . . . .. .. .. 121
8.2 Well-Separated Pair Decomposition . . . . . .. ... ... ... ... 122
83 GeoMST2 . . . . . . . . 123
8.3.1 CFF-specific optimizations . . . . . . . ... ... .. ..... 125
84 Results. . . . . .. . 127
8.5 Related Work . . . . . . ... 127
8.6 Conclusion . . . . . . . . ... 131
8.7 Acknowledgements . . . .. ... . L 132

X



9 Future Work and Conclusions 133

9.1 Future Work . . . . . . . ..o 133
9.1.1 Accounting for Uncertainty in the Bayesian network . . . . . . 133

9.1.2 Incorporating the Spatial Scan Statistic. . . . . . ... .. .. 134

9.1.3 Multiple time windows . . . . . .. .. ... ... ....... 135

9.1.4 WSARE in higher dimensions . . . . . ... ... ....... 135

9.1.5 Non-biosurveillancedata . . . . . . .. ... ... ... 135

9.2 Conclusions . . . . .. .. .. 136

A A sample Bayesian network learned from simulator data 141



List of Figures

3.1
3.2

3.3
3.4

3.5

4.1

2.2

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8

An illustration of the Scan Statistic . . . . . . . . . . . . . ... ...

An example of a Shewhart Control Chart on a set of observations drawn

from a normal distribution with mean 50 and standard deviation 10 .
A plot of y(¢) = 30.66 + 0.083¢ + 1.50sin(2I1z;) + 6.90cos(2I1=)

The different resolution levels used by MWAR on cough decongestant
data with an artificially injected spike (Goldenberg, 2001) . . . . . . .

Taxonomy of spatial surveillance techniques . . . . . ... ... ...
The baseline for WSARE 2.0 if the current day is December 30, 2003
Optimal Reinsertion . . . . . . . .. ... ... ... .. .......

The number of Epidemic0 cases over time in the gridworld data

AMOC curves with errorbars for gridworld data . . . . . ... .. ..
AMOC curves for gridworld data . . . . . . ... ...
ROC curves for gridworld data . . . . .. ... ... .. .......

The effect of varying the maximum number of components for a rule
on the AMOC curve for gridworld data . . . . . ... ... ......

AMOC curves for greedy versus exhaustive search on gridworld data .

The effect of varying the number of iterations in the randomization
test on an AMOC curve on gridworld data . . . . . .. ... ... ..

AMOC curves for Fisher’s exact test versus information gain for grid-
worlddata . . . . . . .. oL

xi

15
20

31
33

93

68

78
80
80
81

82
82

83



6.9
6.10
6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21
6.22

6.23

6.24
6.25
6.26
6.27

City Status Bayesian Network . . . . . . ... ... ... .......
Patient Status Bayesian Network . . . . . .. .. ... ... .....

AMOC curves with error bars comparing WSARE 3.0 to non-WSARE
algorithms operating on total daily counts of cases from the CityBN

simulator . . . . . . . e

AMOC curves with error bars comparing WSARE 3.0 to non-WSARE
algorithms operating on counts of respiratory cases from the CityBN

simulator . . . . ..,

AMOC curves with error bars for WSARE variants operating on CityBN
data . . ..

AMOC curves comparing WSARE 3.0 to non-WSARE algorithms op-

erating on total daily counts from the CityBN simulator . . . . . ..

AMOC curves comparing WSARE 3.0 to non-WSARE algorithms op-
erating on data with respiratory symptoms only from the CityBN sim-

ulator . ..o Lo
AMOC curves for WSARE variants operating on CityBN data . . . .

ROC curves comparing WSARE 3.0 to non-WSARE algorithms work-
ing on total daily counts from the CityBN simulator . . . . . . . . ..

ROC curves comparing WSARE 3.0 to non-WSARE algorithms work-

ing on counts of respiratory cases from the CityBN simulator . . . . .
ROC curves for WSARE variants operating on CityBN data . . . . .

The effect on the AMOC curve of varying the maximum number of

parents allowed for a Bayesian network node for CityBN data

The effect of varying the maximum number of components for a rule
on the AMOC curve for CityBN data . . . .. ... ... .......

An example of a large scale outbreak in the CityBN data . . . . . . .
An example of a medium scale outbreak in the CityBN data . . . . .
An example of a small scale outbreak in the CityBN data . . . . . . .

An example of an outbreak that was not detected in the CityBN data
by WSARE 3.0 with an alarm threshold of 0.03 . . . . ... .. ...

xii

92

92

93

93

94

94

95

95
96

97

97
98
98
98



6.28 AMOC curves for greedy versus exhaustive search for CityBN data . 100

6.29 The fraction of cases on Thursdays in the fall (excluding holidays)

involving patients aged 71 and up in the Seattle ED data . . . . . . . 103
6.30 The total number of cases on Thursdays in the fall (excluding holidays)

involving patients aged 71 and up in the Seattle ED data . . . . . . . 103
7.2 Number of significant p-values per day for CityBN data . . . . . . .. 115
8.13 The GeoMST2 algorithm . . . . . .. .. .. ... ... ... .... 125

A.1 A learned Bayesian network from the CityBN data . . . . ... ... 141

xiil



xiv



List of Tables

4.1
4.2
4.3
4.4

6.1

6.2
6.3
6.4

6.5

7.1

A Sample 2x2 Contingency Table . . . . . ... ... ... ... ... 55
2x2 Contingency Tables for a Two Component Rule . . . . . . . . .. 56
2x2 Contingency Tables for a Three Component Rule . . . . . . . .. o7
2x2 Contingency Tables for an N Component Rule . . . . . . . . . .. o8

The geographic regions in the CityBN simulator with their populations

in parentheses . . . . . . . . ... .. 85
Examples of two records in the PSdataset. . . .. ... ....... 87
Timeliness in Days as a Function of Specificity . . . . .. .. .. ... 101
Sensitivity (number of outbreaks detected / total number of outbreaks)

as a function of Specificity . . . . .. .. ... o000 101
A summary of timing results . . . . . .. ... 0oL 108

A summary table for the multiple hypothesis testing problem as given
in (Geetal,2003) . . ... ... . ... ... ... 110

XV



xvi



Abstract

This thesis presents an early disease outbreak detection algorithm
called What’s Strange About Recent Events (WSARE). Unlike traditional
disease outbreak detection algorithms that look for peaks in a univariate
time series of health-care data, WSARE tries to improve its timeliness of
detection by taking a novel multivariate approach. Current health-care
data used for surveillance are no longer simply a time series of aggregate
daily counts. Instead, a wealth of spatial, temporal, demographic, and
symptom information is available. WSARE incorporates all of this in-
formation using a rule-based approach that compares recent health-care
data against data from a baseline distribution and finds subgroups of the
data whose proportions have changed the most in the recent data. In
addition, health-care data also pose difficulties for surveillance algorithms
because of inherent temporal trends such as seasonal effects and day of
week variations. WSARE approaches this problem using a Bayesian net-
work to produce a baseline distribution that accounts for these temporal
trends. The algorithm itself incorporates a wide range of ideas, including
association rules, Bayesian networks, hypothesis testing and permutation
tests to produce a powerful detection algorithm that is careful to evaluate

the significance of the alarms that it raises.
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Chapter 1
Introduction

Disease outbreak detection algorithms have historically been used for retrospective
analysis (Farrington & Beale, 1998; Sonesson & Bock, 2003), in which the identifica-
tion of the outbreak occurs after the outbreak has already taken place. In retrospective
analysis, the aim is to identify outbreak periods in a data set that has been accumu-
lated over some historical time period. Algorithms performing this type of analysis
operate on either mortality data associated with some disease (Serfling, 1963; Choi &
Thacker, 1981) or lab report data containing counts of specimens of various microor-
ganisms received (Stern & Lightfoot, 1999). Both of these data sources are specific
to the disease in the sense that the disease has already been accurately diagnosed
when the data are compiled. In addition, these data sources take the form of either a
univariate time series, with the single dimension being aggregated counts over some
time interval (Serfling, 1963; Choi & Thacker, 1981), or spatial data accumulated
over some time interval (Marshall, 1991; Lawson, 2001). The main criteria for evalu-
ation of these retrospective algorithms is sensitivity, which is related to the detection
capability of the algorithms and specificity, which is related to the false positive rate.

In contrast to retrospective analysis, prospective surveillance requires monitoring
of health-care cases in order to detect a disease outbreak as soon as possible. The data
used in prospective surveillance do not come from a fixed historical time window but
from a stream of data containing the most recent events. There are obvious benefits to
the early detection of an epidemic as lives are saved and costs are reduced. However,
in order to achieve timely detection, there needs to be a tradeoff between specificity
and timeliness (Wagner et al., 2001a). Data sources that require diagnosis of the

disease, such as lab reports, can only be obtained several weeks after the samples are



submitted. By that point, the outbreak may have escalated into a large scale epidemic.
Instead of waiting for post-diagnosis data, we can monitor pre-diagnosis data, which
is often non-specific, such as the symptoms exhibited by patients. In doing so, we
risk increasing the false positive rate, such as mistakenly attributing an increase in
cases involving respiratory problems to an anthrax attack rather than influenza, but
we also have a potential gain in timeliness. This type of pre-diagnosis surveillance
is commonly referred to as syndromic surveillance (Mostashari & Hartman, 2003;
Sosin, 2003). The simplest form of syndromic surveillance involves sentinel physicians
(Feagin, 1971; Fitzner et al., 1999; Redondo et al., 2002; van Casteren & Leurquin,
1992) noticing an increase in the number of patients exhibiting certain symptoms
and then alerting the appropriate public health institutions. Naturally, this process
results in spotty coverage, a large possibility of missing an outbreak, and likely late
detection times. Several automated detection algorithms were subsequently developed
although these algorithms were fairly simple and operated on univariate time series
data (See Chapter 3 for a full review). Furthermore, these algorithms were evaluated

on specificity and sensitivity, without any consideration of the timeliness of detection.

Events in recent years have made timeliness the focus of new outbreak detec-
tion algorithms (Wagner et al., 2001b). After the October 2001 attacks, threats of
further terrorist activity through biochemical weapons made the early detection of
disease outbreaks an even more urgent issue. Moreover, the worldwide spread of the
SARS outbreak highlighted the importance of timely detection and containment of an
epidemic. However, improving the timeliness of an algorithm is difficult because out-
breaks have weak, non-specific signals at their outset, resulting in a tradeoff between

timeliness and specificity for detection algorithms as was mentioned above.

Strategies for improving timeliness without sacrificing too much specificity have
been aided by recent developments in technology and law. First of all, as health-care
records are becoming electronic, the quantity of data available for surveillance has
increased and the quality has improved as well. Secondly, legal guidelines for the use
of health-care records in surveillance and research have been established through the
Health Insurance Portability and Accountability Act. These guidelines are designed
to standardize electronic transfer of health information and also to protect patient

confidentiality. We will discuss the privacy issues in more detail in Chapter 2.

Two main approaches have been proposed for improving timeliness while still

maintaining reasonable specificity. The first strategy involves taking advantage of



all the attributes in the available data. Traditional detection methods simply rely
on detecting peaks in a univariate time series formed from aggregated daily counts.
Health-care records are now highly multivariate, containing time information in the
form of the case date and time, spatial information in the form of home, work, and
hospital locations, demographic information about patients, and symptom informa-
tion. Solely relying on aggregated daily counts would ignore almost all of these use-
ful attributes. By considering time, space, demographic and symptom information,
(Wagner et al., 2001a) suggest that we can improve the timeliness of detection. This
approach certainly makes sense for localized outbreaks such as food-borne illnesses
or an aerosolized anthrax release since the incorporation of spatial information would
help the detection. For large scale epidemics, this approach could detect the weaker
initial signals. Furthermore, suppose we know that a disease has a distinct fingerprint
in time, space, demographics and patient symptoms. Then finding patterns in non-
specific data which match this fingerprint would support our belief that an outbreak

of this specific disease is occurring.

The second strategy is to make use of a variety of available data sources, both
traditional and non-traditional. As an outbreak starts in a region, it will, over time,
leave behind a trail in a variety of databases. For example, signals could be seen in
Emergency Department cases, over-the-counter sales, absenteeism records for school
and work, veterinarian data, lab culture reports, poison control centers, and even
mortality rates. All of these data sources have some form of time lag between when
the outbreak takes place and when the signal actually appears in the data. By
monitoring all of these sources, (Wagner et al., 2001a) speculate that the additional

signals could also improve timeliness.

In this thesis, we will deal with the first strategy of improving timeliness by mon-
itoring the full range of attributes in health-care data. The second approach will not
be discussed. Combining multiple data sources is still very much an open question
for the area of syndromic surveillance. The focus of this thesis will be the What’s
Strange About Recent Events (WSARE) algorithm. WSARE 2.0 is a multivariate
outbreak detection algorithm that finds differences between a baseline and a recent
data set through significant changes in the proportions of subgroups in the data.
This multivariate approach is completely different from the traditional univariate
biosurveillance algorithms which monitor a time series. WSARE is a non-specific
detector that is intended to play the role of a safety net when used with a suite of

specific disease detectors. WSARE 3.0 extends the previous version by accounting for



temporal fluctuations in the data, such as seasonal and weekend / weekday effects,
which is a challenging aspect of health-care data that must be dealt with by detection

algorithms.

The thesis hypothesis is as follows: New algorithms that combine association rule
search and Bayesian network distribution learning will perform better than traditional
univariate biosurveillance algorithms in terms of timeliness, sensitivity, and specificity

in most cases of disease outbreaks, as evaluated using various outbreak simulators.

This thesis will continue with a description of the privacy issues in syndromic
surveillance in Chapter 2. Chapter 3 contains a review of biosurveillance algorithms
in order to illustrate how WSARE relates to these other algorithms. In Chapter
4, the association rule approach of WSARE 2.0 for detecting anomalous patterns
will be described while the subsequent chapter will describe how WSARE 3.0 uses a
Bayesian network to model a changing baseline distribution. Chapter 6 will include
performance results based on data from a gridworld simulator, a Bayesian network
simulator and real world data from the DARPA challenge. We will also include the
output of running WSARE on actual ED data. Additionally, Chapter 6 includes
timing results for various computational optimizations we implemented in WSARE.
Improvements to the randomization test step of WSARE and ways to deal with
multiple hypothesis testing will be discussed in Chapter 7. Chapter 8 includes an
efficient algorithm for clustering with clutter, which we plan to modify for spatial
biosurveillance. Finally, Chapter 9 will contain future work and a conclusion to this

thesis.



Chapter 2
Privacy Issues

Before proceeding with the thesis, we will briefly discuss some of the privacy issues
that have a direct effect on all algorithms designed for early detection of disease
outbreaks. The Health Insurance Portability and Accountability Act (The Health
Insurance Portability and Accountability Act, 1996), enacted in August 21, 1996,
was aimed at standardizing the exchange of electronic health information between
health providers and insurers. Congress then established the HIPAA Privacy Rule
(45 CFR Parts 160 through 164, 2003) in August 14, 2002 in order to protect the
privacy and security of health information. The HIPAA Privacy Rule presents strict
guidelines for the use and disclosure of protected health information for research

purposes. Violations of these regulations can result in civil or criminal penalties.

One of the aims of the HIPAA Privacy Rule when applied to research is to establish
a balance between protecting the privacy of individually identifiable health informa-
tion while allowing researchers access to information essential to their research. The
privacy rule is an extensive document and we will only briefly mention the conse-
quences of these regulations on our research. Readers interested in the full details are
referred to (45 CFR Parts 160 through 164, 2003).

Due to the high volume of medical records required for surveillance, individual
research participant authorization is impractical. The HIPAA Privacy Rule per-
mits the use of protected health information without direct authorization by the
patient through several options. Two of these options include HIPAA Safe Har-
bor de-identification or the provision of a Limited Data Set (Research and Practice
Fundamentals, 2003). In HIPAA Safe Harbor de-identification, the information is



completely de-identified through removal of the following 18 identifiers: names, all
geographic subdivisions smaller than a state (except for the first three digits of a zip-
code under specific conditions), all dates that are directly connected to an individual,
telephone numbers, fax numbers, email addresses, social security numbers, medical
record numbers, health plan beneficiary numbers, account numbers, certificate/license
numbers, vehicle identifiers, device identifiers, URLs, IP address numbers, biometric
identifiers, full face photos, and any other unique identifying numbers. The zipcode
restriction is overly strict for most surveillance algorithms that have some spatial
aspect. As a result, we use a Limited Data Set in which all of the Safe Harbor iden-
tifiers are removed except for city, state, zipcode, and dates. Use of a Limited Data
Set requires a Data Use Agreement between the covered entity and the researcher.
This agreement specifies the uses of this information, the individuals with access to
this information, and a guarantee from the researchers that measures will be taken

to protect the privacy of this information.

These legal regulations have a direct effect on surveillance algorithms, with the
most significant result being that surveillance algorithms must operate on data with
some fields that are not as precise as they could be. As an example, spatial information
can contain either the exact locations of individuals or aggregate counts over an
administrative region such as a census tract or zipcode. Under the HIPAA Privacy
Rules, home and work locations in medical data are frequently given as zipcodes.
Spatial surveillance algorithms need to be designed to operate on aggregate counts
rather than on individual case events. Naturally, aggregation over zipcodes loses
some degree of precision since the zipcode centroids are reported as the locations of
the cases. Using the zipcode centroid coordinates can be problematic for irregularly
shaped zipcode regions. In addition, zipcodes are administrative regions without
any statistically meaningful boundaries. Thus, in order to be practical, surveillance

algorithms must be able to cope with these issues.



Chapter 3

Related Work

Outbreak detection systems operate by detecting anomalies in surveillance data. An
anomaly, which is also called an aberration in (Janes et al., 2000), is described as
a statistically significant change in the occurrence of health events when compared
with normal history. The process of detecting anomalies in health-care data can be
summarized in two steps. First of all, a baseline that captures the usual pattern
of a disease needs to be obtained. Secondly, using this baseline, a threshold must
be calculated such that the presence of an anomaly is detected once this threshold is
exceeded. In general, all outbreak detection algorithms follow this two-step procedure,

with variations in the first step accounting for the majority of their differences.

Diseases can be characterized by the three basic epidemiological parameters of
time, space, and person (Janes et al., 2000), where the “person” parameter cor-
responds to an individual’s demographic information. Historically, the majority of
outbreak detection algorithms have been developed to look for anomalies in time or
for anomalies in space. Recently, timeliness of detection has become a new public
health requirement due to emerging diseases and the threat of bioterrorist attacks
(Wagner et al., 2001b). One strategy for improving timeliness is to exploit the spa-
tial, temporal, and demographic aspects of health-care events (Wagner et al., 2001b).
With many new sources of health-care data becoming available, along with existing
data sources being augmented with such information, a variety of new surveillance
algorithms using this strategy have been designed. This section will consist of a re-
view of algorithms used in detection of anomalies over four categories: time, space,
space-time, and space-time-person. Space-person algorithms are not very common

in surveillance because most approaches simply stratify the data and use a purely



spatial technique on each strata to search for anomalies. Other reviews have been
written on surveillance algorithms (Farrington & Beale, 1998; Farrington & Andrews,
2004; Sonesson & Bock, 2003) that deal primarily with surveillance algorithms that
detect anomalies in time, with much smaller sections dealing with space and space-
time algorithms. The survey in this chapter, on the other hand, will have a much
wider scope. Furthermore, this chapter will include several recent algorithms that are
not included in the previously mentioned reviews. The focus of this survey will be
on the algorithms and their characteristics. The scope of this review will be limited
to existing algorithms used for the surveillance of diseases. We will mainly deal with
algorithms for prospective surveillance although a few methods which have been used

in retrospective analysis will also be discussed.

3.1 Time Surveillance

Algorithms detecting anomalies in time operate on aggregated data to find unusual
spikes in time. We have chosen to discuss specific characteristics of the algorithms
discussed in this section in order to highlight their differences. These characteristics

are summarized in Table 3.1 and are described in detail below.

1. Implementation Complexity
Implementation complexity describes how difficult a programmer’s job would
be to write the algorithm. Since numerous software packages are available that
make statistical functions readily available to programmers, this column will
describe the complexity of implementing the algorithm using available software
packages. The name of some available software packages providing the necessary

statistical functions for the particular detection algorithm is shown in brackets.

2. Computational Complexity
Computational complexity is a measure of how computationally intensive the
detection algorithm is. In general, the more computationally intense the al-
gorithm, the longer its running time will be. Rather than giving a precise
measurement, of complexity, we will describe this attribute using the values of
low, moderate or high. These values are intended to be relative to each other
so that even though an algorithm may be efficient, it will still get a rating of

high if it is much more complex than the simplest algorithm we review.



. Baseline Smoothing

Health-care data with few or no epidemics is needed to establish a baseline dis-
tribution. However, finding health-care data that contain no epidemic periods
is a difficult task. Some detection algorithms are able to handle the outliers
in the data due to epidemics by smoothing the baseline distribution in various
ways. Included in this category is the ability of the algorithm to handle negative
singularities, which are informally defined as values that are much lower than
neighboring values in the time series (Zhang et al., 2003). Negative singulari-
ties are common in health-care data due to public holidays and extreme weather

conditions.

. Cyclical components (Cyc)

A check mark in this column indicates that the algorithm can handle cyclical
fluctuations in the data such as those due to seasonality or day of week effects.
In general, cyclical components can be dealt with in two ways. Some methods
explicitly include the cyclical components in the model. Others techniques

simply restrict the baseline to include only data from a similar time period.

. Long Term Trends (LTT)

A signal containing a long term trend will gradually increase or decrease over an
extended period of time. Algorithms that do not account for long term trends
will have a large number of false alarms as the trend dominates data from the

start of the surveillance period.

. Recent Trends (RT)

If the data displays a recent upward or downward trend, should the next day
be expected to follow that increase or decrease? This column will have a check
mark if the algorithm accounts for such recent trends. It is somewhat unclear
whether accounting for recent trends benefits an algorithm since recent trends

can also easily mislead the forecasts of the algorithm.

. Parameter Tuning

This column describes the difficulty in tuning an algorithm to perform well on
data. For instance, an algorithm with many parameters whose values depend
on the data and require hand-tuning will be rated as High. On the other hand,
an algorithm with few parameters or one which autonomously assigns values to

these parameters will be considered to be Low.



8. Forecasting
Some algorithms are able to predict the expected value for the current day’s
signal while others simply return an alarm threshold for the current day. If
an algorithm does perform forecasting, then a check mark is entered into this

column.

9. Example Data
This category lists examples of the types of data that the algorithm has been
applied to.

3.1.1 Clustering Techniques

The algorithms in this section look for unusual clusters of health-care cases by moni-
toring the temporal distance between cases. These techniques include the Scan Statis-

tic, Tango’s Clustering Index and Chen’s time interval technique.

Scan Statistic

The scan statistic was originally developed by (Naus, 1965). It is most easily described
in the discrete form and we will use the notation of (Glaz & Balakrishnan, 1999).
Suppose we have a sequence of N integer valued random variables. By moving a
window of fixed size m along the sequence, where 2 < m < N — 1, we can count the
sum of the observations that fall in that window as Y; = ™! as shown in Figure
3.1. Let S,,, the discrete scan statistic, be the maximum sum found in the window

as shown in equation 3.1:

S = maiﬁlgtSN—mHY} (3-1)

We can then set up a likelihood ratio test to detect a local unusual cluster among
the N observations. Under the null hypothesis, the sequence of N random variables
are all drawn from the same distribution Fj. The alternative hypothesis we test for
states that the observations within the window have some other distribution F} while
the observations outside the window are still distributed as Fy. Using the S,, statistic,
we can decide whether or not to reject the null hypothesis.
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Algorithm Implementation | Computational| Baseline Cyc LTT RT Parameter | Forecasts| Example
Complexity Complexity Smooth- Tuning Data
ing

Scan Moderate Moderate None X X X Low X NNDSS records

Statistic

Tango’s Moderate Moderate None X X X Low X Trisomy data

Clustering

Index

Chen’s In- Low Low None X X X Low X Hodgkins  dis-

terval Sets ease data

Shewhart Low Low None X X X Low X NNDSS records

Chart

Historical Low Low Minimal X X X Low X NNDSS records

Limits

(Median)

CUSUM Low Low None X X X Low X Malformations,
influenza,
salmonella

EWMA Low Low None X X X Low X NNDSS records

Serfling Low (Any Stats Low None v Vi X Low Vv P&I deaths,

package) P&l1 I1CD-9
codes

ANOVA Low (Any Stats Low None i i Low ED data

Regression Package)

Log Linear Moderate (Any Moderate Yes X X High Lab reports

Regression Stats package)

GLMM Low (SAS) High None i i Low Ambulatory
care encounter
records

Compound Low (Minitab) Moderate Yes X X X Low X Salmonella and

Smoothing Shigella lab re-
ports

AR and Low Low None X X Low ED data

MA

ARIMA Low (Matlab) Moderate None Vv i Low P&I deaths,
Salmonella re-
ports, NEDSS
records, Pe-
diatric ED
records

Nobre Moderate (Mat- Moderate Minimal Vi v e High Vv NEDSS measles

et al. lab) reports

Change-

point

Detection

Baron High High Perhaps v X X Low X Influenza

Change- possible deaths

point through

Detection prior

MWAR High (Matlab) High Low i Moderate Grocery  sales
data

WAD Low (Matlab) Moderate High X Low ED data
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Figure 3.1: An illustration of the Scan Statistic

The key to the hypothesis test is determining P(S,, > k), where k is a constant
that controls the Type I error. The exact probability has been calculated for specific
distributions for a certain range of parameters. In the majority of cases, however,

accurate approximations have been developed (Glaz & Balakrishnan, 1999).

The scan statistic also has a continuous version where a point process is observed
along an interval (0, 7] and the scan statistic looks for the maximum number of events
that occur in a moving window (t,¢ + w) of fixed size w, where 0 < w < T'. Like the
discrete case, P(S, > k) is a necessary component of the hypothesis test and this

probability is usually computed using approximations (Glaz & Balakrishnan, 1999).

Tango’s Clustering Index

Tango (Tango, 1984) developed a clustering index as a test for temporal and cyclical
clustering. This clustering index is designed to be reliable when the total number of
counts is small. Suppose we have counts Vi, ... , N, over m consecutive equal length
time intervals. If we normalize the counts by N = X, N;, we can obtain a vector
r = (ry,...,rm) of relative frequencies. The clustering index C' is described as the

quadratic form:
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C=r'Ar (3.2)

In equation 3.2, the elements a;; of the A matrix have the property that a; =1
and a;; is a monotonically non-increasing function of the temporal distance between
the ith and jth interval eg. d;; = |i — j|. Tango uses the formula a;; = exp(—d;;).
The clustering index C takes the maximum value 1 whenever the vector r has a 1 in

one position and zeros everywhere else.

Under the null hypothesis, there is no clustering in time and (Tango, 1984) derives
the distribution of the clustering index under the null as:

Pr(C<c)= Z a’iP’r{in—H—Qi <(c—h)p~'} (3.3)

The formulae for o;, 3, and A will not be given here. The important point is that
although equation 3.3 requires an infinite sum, a finite number of terms is needed
for the sum to convergence up to an e. Of course, the more terms are needed, the

longer the calculation takes. The p-value of the clustering index can be obtained by
1—Pr(C <gc).

Tango’s clustering index was evaluated on trisomy data in (Tango, 1984), along
with a chi square test and a scan statistic. Whenever the clustering appears in the
middle of the sequence of counts, the clustering index is more powerful than the other
two techniques. The author explains that this is expected because the chi square test
does not take the temporal sequence into account while the scan statistic only looks
at the maximum clustering frequency and may ignore other indications of clustering.
However, when clustering happens toward one end of the sequence of events, the

clustering index may not be as powerful as the other algorithms.

Chen’s time interval technique

Chen’s algorithm detects increases in rates of chronic diseases by measuring the time
interval between two diagnoses. This algorithm is ideally suited for rarely occurring
diseases. In this algorithm’s framework, suppose the baseline disease rate is my and
the total population in region 7 is N;. Furthermore, assume that the number of new

13



diagnoses over some time unit in geographic region ¢ is Poisson distributed with mean
Aip = Nymy. If the random variable W is the time interval between diagnoses, then

W is exponentially distributed with mean A, .

The quantity we are interested in is the probability that an interval w is less
than W under baseline conditions and under epidemic conditions. Expressing W as
a multiple k£ of the expected interval F(w) = ﬁo, we get Pr(w < ﬁ) =1—exp(—k)
for the baseline disease rate. Now suppose an epidemic occurs in the region and the

baseline disease rate is scaled by v ie. m; = ymy. Under these conditions, Pr(w <

£y =1 - eap(~k)

For small scale surveillance, whenever a new case is diagnosed, the last n intervals
will be analyzed using this algorithm. The increase is considered significant if the last
n intervals in the sequence are all shorter than a threshold value, which is expressed
as kE(w). The values k, and n can be determined using formulas given the value of
~ and an estimate M of the number of cases over the entire surveillance period. The
authors note the similarity between this method and CUSUM, which will be described
in Section 3.1.2.

For large scale surveillance over f geographic regions, the authors recommend
1

not fixing k in advance. Instead, the formula k = —In(1 — Py(n})") is used where

!
n;

probability of the false alarm, which is determined in advance and usually set to 0.05.

is the observed number of cases in geographic region i and Py(n}) is the fixed

An overall alarm is raised when the number of regions with alarms being raised is
significant assuming a binomial distribution with parameters Py and f for the number

of geographic regions.

3.1.2 Statistical Quality Control

In statistical quality control, some statistic of a production process is monitored to
determine if the process is in control. Since quality control algorithms essentially
perform surveillance on a signal, many of these techniques have been transplanted to
the field of biosurveillance.
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Figure 3.2: An example of a Shewhart Control Chart on a set of observations drawn

from a normal distribution with mean 50 and standard deviation 10

Shewhart Control Charts

Shewhart control charts, which are also simply called control charts, are used to
monitor some quality characteristic of a production process. As described by (Banks,
1989), a control chart consists of a center line (CL) which is between an upper control
limit UCL) and a lower control limit (LCL). The quality characteristic is plotted on
the chart. If any points fall outside either the upper or the lower control limits, the
process is considered to be out of control. There are many variations on control charts
but they have the basic form below (Banks, 1989):

UCL = E(C) + ky/Var(C)
CL=E(C) (3.4)
LCL = E(C) — ky/Var(C)

In Equation 3.4, C is the quality characteristic, E(C) is the expected value of C
and Var(C) is the variance of C. The constant & is typically set to 3 in most control
charts. Whenever E(C) and Var(C) are not known, they need to be estimated from
the data. Figure 3.2 illustrates a control chart on a set of observations drawn from a
normal distribution with mean 50 and standard deviation 10. The control limits are
obtained by estimating the mean and standard deviation from the 100 observations.
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The upper and lower control limits are set at two standard deviations above and

below the mean respectively.

Historical Limits

The historical limits algorithm (Stroup et al., 1989), used for detecting anomalies
in notifiable diseases surveillance data, is similar to a control chart. This algorithm
operates on disease reports aggregated over a four week period called a “month”,
ending with the current week under investigation. In order to remove seasonal fluc-
tuations, a baseline distribution is formed from 15 months worth of data, obtained
by considering the current month and its two adjacents months in a five year window
of historical data. For example, if the current month is November of the year 2003,
then the baseline distribution is obtained by taking data from October, November
and December of the years 1998 to 2002 and data from October 2003. This algorithm
uses the ratio of the current month’s value divided by the mean of the 15 baseline
months. If this ratio falls outside the historical limits, then an anomaly is identified.
The historical limits are shown in Equations 3.5 and 3.6 as described in (Hutwagner
et al., 2003). In the equations below, p is the mean of the 15 baseline values, o, is

their standard deviation, and x( is the current month’s value.

14242 (3.5)
m m
T 1947 (3.6)
o o

The authors point out that using the mean makes this algorithm sensitive to
outliers in the baseline. They suggest a variation on the algorithm which uses the
median and is more robust to extreme values. However, by using the median, the
confidence intervals need to be obtained through bootstrapping. The 15 baseline
values are also too small a sample for the asymptotic bounds of the bootstrap to hold
and a larger data set needs to be used.
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CUSUM

Another technique used for biosurveillance that has its origin in statistical quality
control is the cumulative sum (CUSUM) method. CUSUM has been extensively
used in biosurveillance systems, including surveillance of malformations in children
(Weatherall & Haskey, 1976), influenza surveillance (Tillett & Spencer, 1982), detec-
tion of salmonella outbreaks (Hutwagner et al., 1997) and in the Early Aberration
Reporting System (Hutwagner et al., 2003). CUSUM was originally developed to
detect changes in the quality of the output of a continuous production process (Page,
1954). While a Shewhart control chart can be used for this purpose, they are intended
to detect a large shift from the mean. CUSUM control charts are more sensitive to
small shifts from the mean and are able to detect them more quickly than a Shewhart

control chart.

As its name suggests, CUSUM maintains a cumulative sum of deviations from a
reference value r, such as the mean. Suppose we have a time series where at time 7,
we have measurement X;. Furthermore, assume that X; has a normal distribution

with mean o and variance o?. The CUSUM calculation S; is as follows:

Sl = Xl—T
SQ = (XQ—T)+(X1—T)=(X2—T')+51

m

Sm = > (Xi=1)=(Xpm—7)+ S

=1

From the equation above, if the X, values are close to the mean, then the S,
values will be around 0. However, once a shift from the mean occurs, the S,, values
will either increase or decrease quickly. CUSUM charts used in biosurveillance are
usually only concerned with a positive shift from the mean. As a result, this procedure

is a one-sided test and we can rewrite S,, as:

S = max (0, (Xm —7) + Sm_1) (3.7)

In the equations above, we have used the mean as the reference value r. Typically
the reference value consists of the mean plus or minus a slack value or allowance,

which is called K. We can rewrite Equation 3.7 as:
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S = max(0, X, — (o + K) + Sp—1) (3.8)

In Equation 3.8, any values within K units of uy are effectively ignored. The
allowance K is usually set to be the midpoint between the in-control process mean i
and the out-of-control process mean u, expressed in terms of the standard deviation
o as shown in Equation 3.9. The value of K is chosen to reflect the magnitude of the
shift to be detected, defined as a multiple of o.

g 11— pho
K = —g=""—" )
50 5 (3.9)
where § = Ll ~ Hol
o

Alerts are raised whenever S, exceeds a threshold or decision interval, which is
called H in the literature. The value of H is determined from the value of K and
the Average Run Length (ARL) of the in-control process. The ARL is the average
number of timesteps ¢ before an alert is raised. Whenever the process is operating as
expected, the ARL should be large. However, when a shift in the mean occurs, the
ARL should be small in order to detect the shift as quickly as possible. The ARL can
be determined through a variety of approximating equations, which are summarized
in (Montgomery, 2001). In general, a reasonable value for H is 50 according to
(Montgomery, 2001).

EWMA

Another statistical quality control technique that is similar to CUSUM is the Expo-
nentially Weighted Moving Average (EWMA) algorithm (Roberts, 1959). EWMA is
better at detecting small shifts than a Shewhart control chart, with its performance
being similar to that of the CUSUM algorithm although it is easier to set up and
operate (Montgomery, 2001). Suppose we have a measurement X; at time 7. Then
the EWMA statistic Z; is:

Zi=AX;+ (1= \)Z;_1 where 0 < A < 1 (3.10)
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The starting value Z; is set to the desired process mean uy or to the average of
some initial data ie. Z; = X. If we unravel the recursion in 3.10 as shown in 3.11,
we can see that the EWMA algorithm weights all previous samples, with the weights

summing to one.

i—1
= A (1= ANX; i+ (1-))'Z

§=0

Assuming that the X;s are independent random variables with variance o2, the

variance of Z; can be computed as:

os =0 (%) [1—(1-X)% (3.11)

With this variance, we can establish control limits for an EWMA chart as shown

below.

UCL = ,U,o-f-LO'Zi
LCL = /,L()—LO'Zi

Choices of the L and A parameter can be made based on the desired ARL. (Lucas
& Saccucci, 1990) contains ARL tables for choices of L and A. In practice, values of
0.05 < A <0.25 and L = 3 work well. According to (Montgomery, 2001), EWMA
can be considered as a non-parametric monitoring procedure since it makes no as-
sumptions about the distribution that X; is drawn from. EWMA has been used for
surveillance on NNDSS data (Williamson & Hudson, 1999).

3.1.3 Regression

A natural approach to monitoring a time series would be to try to fit a model to the
series using regression and then forecasting the current day’s value. If the observed
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value is significantly different from the forecast, then an alert is raised. The regres-
sion models described below are typically additive linear models with extra terms to

account for trends in the data.

Serfling Method

60

Serf‘\ing Model‘

20

Counts of Cases with Respiratory Problems

10

0

| | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Week Index

Figure 3.3: A plot of y(t) = 30.66 + 0.083t + 1.50sin (211 ) + 6.90cos(211)

The Serfling Method (Serfling, 1963) was developed to determine the severity of
pneumonia and influenza (P&I) in a city by comparing current P&I mortality levels
against a baseline that captures both a secular trend and seasonal trends. The baseline

is modelled through the general formula below:

}A/:a—l—b*t%—Zci*cosG—i-Zdi*sinO (3.12)

The linear term in equation 3.12 accounts for the secular trend while the sine
and cosine terms reflect the seasonal fluctuations. # is a linear function of t, which
is the time period. The coefficients are obtained through regression on a training
data set. (Simonsen et al., 1997) include a quadratic term to account for deviations
from the linear trend. Figure 3.3 is an example of a model produced by the Serfling
method when applied to weekly counts of cases involving respiratory problems. (Tsui
et al., 2001). The equation for this model is y(¢) = 30.66 + 0.083¢ + 1.50sin(2I1) +
6.90cos(2I1%).
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An alert threshold is established at 1.64 standard deviations above the baseline.
The probability of exceeding this threshold at least once in a non-epidemic year is
0.75 under the model described by (Serfling, 1963). In order to avoid false positives
due to noise, an epidemic increase is only signalled if the threshold is exceeded for

two consecutive weeks or more.

The Serfling method can produce an inaccurate baseline if there are epidemic
periods in the training data. As a result, a variety of methods have been proposed
to deal with this problem. The original paper (Serfling, 1963) describes a technique
where using only parts of years with low seasonal P&I incidence, the secular trend
is determined and subsequently removed from the data. The seasonal trend is then
estimated from the modified data. Finally, the secular trend component that was
removed is added back in. In (Tsui et al., 2001), the authors smooth the baseline by
first fitting the regression model using the raw data. Then, the baseline is computed
along with a one-sided 95% confidence interval. Any outliers beyond this confidence
interval are removed. The coefficients of the regression model are then recalculated

based on the cleaned data set.

ANOVA Regression

When the data exhibits temporal trends, we can supplement linear regression with
some extra covariates to produce an algorithm that we will refer to as ANOVA re-
gression. For example, if the amount data varies depending on the day of week, the
covariates we would add to the regression would be six binary variables — isMonday,
isTuesday, isWednesday, isThursday, isFriday and isSaturday. Similarly, to account
for seasonal effects, we can add three binary covariates. If data that are near each
other in time tend to have similar measurement, which would indicate some sort of
recent trend, then we can add a covariate that measures the count from yesterday.
ANOVA regression is a fairly capable detector when applied to a univariate time series
with these trends, as was shown in the DARPA challenge (Buckeridge et al., 2004).
A similar approach was also taken by (Lazarus et al., 2002), except instead of using
linear regression, they used a Generalized Linear Mixed Model.
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Log Linear Regression

(Farrington et al., 1996) describe a log linear model used by the Communicable Dis-
ease Surveillance Center (CDSC) for monitoring weekly laboratory reports of counts
of organisms associated with infectious diseases in England and Wales. The model
assumes that the weekly organism count is distributed with mean p; and variance ¢u;,
where ¢ is a dispersion parameter. The mean p; incorporates a linear time trend, as

shown in Equation 3.13, where the ¢; term corresponds to the week index.

log p1; = o+ Bt; (3.13)

In order to account for seasonal fluctuations, the log linear model is only fit to
data that come from similar periods in time to ¢;. Two parameters are used to restrict
the historical data that is used. The b parameter indicates how many years in the
past are considered for the baseline while the w parameter specifies a window size
that determines which weeks in the baseline years are included.

The algorithm begins by estimating initial values for y; and ¢. Residuals are cal-
culated and the data points are reweighted so that those with high residuals are given
a lower weight. This step is necessary in order to alleviate the effects of outbreaks
in the baseline counts. Then, the model is refitted to obtain an estimate of ¢ on the
modified data. The threshold values are calculated using a % power transformation,
which is used to correct skewed distributions due to low counts while leaving distri-
butions with larger counts unaffected. Finally, the organisms are ranked in order of

exceedance score X:

Yo — Ho
X = - 3.14
U~ i (3.14)
In Equation 3.14, y, is the current weekly count, sy is the mean from the log
linear regression, and U is the upper threshold value. An exceedance score greater
than one raises an alarm that further investigation is needed. This model is fairly
complex and has a large number of parameters, some of which were not described in

this brief overview, that need to be tuned in order for this model to perform well.
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Generalized Linear Mixed Models

In their system for monitoring ambulatory-care encounter records, (Lazarus et al.,
2002) use a generalized linear mixed model to estimate the daily counts for each
census tract for each syndrome. Although this algorithm does perform space-time
surveillance, the algorithm is applied to each census tract independently. The census

tracts are only considered together when accounting for multiple hypothesis testing.

The GLMM form of logistic regression is given by logit(p;) = x4 + b;, where x;
are the covariates, 3 consists of the fixed effects, and b; is a random effect with mean
0 and variance of. The covariates account for day of week, month of year, holidays,
and a secular time trend. Under this model, E(y;|b;) = nyp;; where y; is the number
of ambulatory-care encounters for census tract ¢ on day ¢, n; is the total number of
people in census tract ¢ on day ¢, and p;; is the probability of an encounter with a
diagnosis in the syndrome monitored for that census tract and day. The distribution
of y;; is assumed to be a binomial with p = p;; and n = n;. In GLMMs, the response
variable is assumed to be the result of fixed and random effects. Typically, random

effects are used to model any extra variation not already accounted for in the model.

This algorithm first estimates the parameters of the model from historical data.
Then, the GLMM is applied to data from the current day in order to calculate p;;.
Once p;; has been determined, the binomial distribution of y;; can be used to calculate
the probability Pr(Y; > yi). This probability represents the probability of seeing
as extreme a number of counts on that day. In order to compensate for multiple
hypothesis testing, this probability is subsequently multiplied by the total number
of census tracts. Finally, the number of days between seeing counts as extreme is

reported by simply inverting the result.

3.1.4 Time Series Methods

In (Choi & Thacker, 1981), the authors describe several drawbacks to using the Ser-
fling regression model, which was the predominant technique for predicting expected
deaths due to pneumonia and influenza. Specifically, the regression model assumes
independence over the sequence of observations, thereby making it difficult to model
observations that are correlated to each other in time. This behavior makes the Ser-
fling method unable to account for trends that persist in the data for an extended

time period and to any recent trends that appear. The authors propose using a more
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accurate technique for forecasting pneumonia and influenza mortality based on time

series analysis.

In addition to (Choi & Thacker, 1981), many other papers have used time series
methods to detect anomalies in time in health-care data. The field of time series analy-
sis has been extensively researched (Box & Jenkins, 1976; Chatfield, 1989; Hamilton,
1994) over the years. Techniques have been developed to handle time series with
different characteristics, such as data with correlation between data points in time,
seasonality, cyclic components, and non-stationarity. These advantages have made
time series models naturally applicable to the task of biosurveillance. In this section,
we will only be providing a very brief description of the models that are commonly
used in biosurveillance. The descriptions of the models below have been summarized
from (Chatfield, 1989) and will use the same notation.

Let Z; be a sequence of random variables in which each Z has mean 0 and variance
0z. Furthermore, suppose the Z’s are uncorrelated across time ie. Cov(Zy, Z;1) =0

for £ # 0. The process Z; is called a white noise process.

A q¢th order moving average process, abbreviated as MA(q), is made up of a
weighted sum of Z terms. In Equation 3.15, X; is an MA(q) process and the 3’s are

constants corresponding to the weights.

Xe=06oZi+ 121+ ...+ ByZiyg (3.15)

An autoregressive process of order p, which is also called an AR(p) process, has

the following form:

Xt = OélXt_l + ...+ apXt_p (316)

The term autoregressive refers to the fact that X is formed by regressing on its

past values in time.

More processes can be represented if we allow a combination of MA and AR
processes. An ARMA (p,q) process mixes a pth order AR process with a gth order
MA process as shown in Equation 3.17:

Xt = alXt—l + ...+ a/pXt—p + Zt + /61Zt_1 + ...+ /Bth_q (317)

The AR, MA, and ARMA processes described so far model stationary time series.

If a time series is non-stationary in the mean, then differencing the time series can
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produce a stationary process. Define the differencing operator V¢ as

VI = Ty — 2

2
Ve = Vg — Vg = (33t+2 - $t+1) - (33t+1 - 33t) = Typo — 22441 + 1y

We can then fit an ARMA(p,q) model to the differenced series to produce an
autoregressive integrated moving average or ARIMA process. Let W, = VX,. Then
an ARIMA process of order (p,d,q) is defined in Equation 3.18, where the parameter
d is typically set to 1.

Wt = a1Wt_1 + ...+ O!th_p + Zt + ﬂth_l + ...+ ﬂth_q (318)

If the time series contains a seasonal component that repeats every s observations,
then a seasonal ARIMA or SARIMA model is appropriate. In addition to using
simple differencing as described above, SARIMA removes seasonal fluctuations by
performing seasonal differencing V. For example, the differenced time series W;

could be formed by:

W, = VVX,
= Vi Xi — Ve Xy
= (Xy— Xp12) — (Xeo1 — Xi13)

Due to the non-stationarity inherent in health-care data as well as the presence of
various temporal trends, SARIMA and ARIMA models are the main time-series meth-
ods used in biosurveillance (Choi & Thacker, 1981; Watier et al., 1991; Williamson &
Hudson, 1999; Reis & Mandl, 2003). The typical use of time-series methods involves
using the model to forecast the current day’s signal value and then raise an alert if

that value exceeds a threshold.

Alert thresholds for time series forecasts are typically calculated by assuming a
normal distribution for the forecast errors. With this assumption, we can establish a
confidence interval using a multiple of the standard deviation of the one step forecast
errors. Other thresholding methods use Statistical Quality Control (Williamson &
Hudson, 1999) methods such as Shewhart and exponentially weighted moving aver-
age control charts on forecast errors to establish alert thresholds. Typically, alarm
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thresholds are based only on the current day’s forecast error. In a novel approach,
(Reis et al., 2003) suggest using a weighted combination of the last week’s forecasts
errors to improve detection. The authors experiment with four different weighting
schemes, which they call detection filters: one that only considers the current day’s
error, one that weighs all days equally, one that assigns linearly increasing weight to
more recent days, and one that assigns twice as much weight to a particular day than
the day before. An alarm is triggered if the weighted sum of the last seven day’s fore-
casts error exceeds a threshold, which was determined retrospectively. The results
of these experiments indicate that different filters are more suitable for detecting

different sizes of disease outbreaks.

While time-series methods have many useful properties, there are several diffi-
culties in using them. First of all, time-series methods can sometimes miss a slow
spreading outbreak that results in a gradual increase in health-care cases. In this
case, a time-series model would end up incorporating the subtle increase into its fore-
cast and completely overlook the outbreak (Reis & Mandl, 2003). Secondly, since
these models depend on previous observations, a phase shift is introduced relative to
the original data and detection of an epidemic can be delayed (Zhang et al., 2003).
Thirdly, even though the parameters for a given time series model can be estimated
from data (Box & Jenkins, 1976), the user still needs to know which model to choose.
Model selection involves either a moderately expensive parameter search or input from
a human being. Even after a model is selected, the model is not adaptive and remains
accurate as long as future data fits the model well. Should new properties emerge in

the time series due to non-stationarity, then a new model needs to be selected.

Time series methods used for biosurveillance are also unable to handle epidemic
periods in the historical data used for model fitting. As a result, these epidemic
periods need to be smoothed through a preprocessing step. A common solution is to
learn a model on the non-epidemic parts of the data and replace the epidemic periods
with forecasted values from the learned model (Choi & Thacker, 1981; Watier et al.,
1991). A new model is then learned using the modified time series. (Reis & Mandl,
2003) smooth their data by using a trimmed mean seasonal model. Starting with
the original pediatric ED data, the authors subtract the overall daily mean, then the
mean for the current day of the week, and finally they remove the trimmed mean for
the current day of the year. The trimmed mean is obtained by removing the most
extreme values at the high and low end. The residuals are then fit with an ARIMA

model. Wavelets are another preprocessing technique which we will devote an entire
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section to in Section 3.1.7.

3.1.5 Compound Smoothing

(Stern & Lightfoot, 1999) developed an early warning system for outbreaks of Salmonella
and Shigella based on laboratory reports. Their detection system consists of two
phases. In the first phase, five years worth of data are used to produce a baseline
of expected counts for each serovar and for each geographic region using monthly
counts as a data point. The data points for each year are smoothed using a com-
pound smoothing technique called 4253H (Velleman & Hoaglin, 1981). This yields
five yearly baselines, which are then combined into a single baseline by replacing the
value for each month by the median of the five yearly values.

The 4253H algorithm is based on a series of smoothing operations that take the
current point under consideration along with its n — 1 closest neighbors and replaces
the n data points with the median of that set. The number of data points replaced
by their median is called the span of smoother. The 4253H algorithm successively
performs smoothing operations of spans 4, 2, 5 and 3, using the output of one as the
input to the next operation. Finally, the H step refers to the Hanning running average,
which weights the observation d(t) at time t as d(t) = 3d(t — 1) + 3d(¢) + 3d(t + 1).
Once the baseline values are smoothed, the residuals are obtained and they too are
smoothed by the same process. The smoothed residuals are subsequently added back
to the smoothed baseline. In the second phase of the algorithm, the warning threshold
is established as two standard deviations above the baseline. The standard deviation

is calculated from the differences between the raw data and the smoothed baseline.

3.1.6 Change point Detection

Detection of a maximum, minimum or inflection point in disease occur-

rence

(Nobre & Stroup, 1994) describe a time series changepoint as a maximum, minimum
or inflection point which corresponds to an increase, decrease or change in trend of
the occurrence of a disease. (Nobre & Stroup, 1994) detect changepoints by moni-
toring the numerical first derivative of the signal, which is equivalent to the forecast

error in their model. In this model, the signal is assumed to consist of a stochastic
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trend component plus noise. The stochastic trend is fit using a polynomial model
in which the coefficients are first fit using historical data and then updated using
exponential smoothing as new data points arrive. Exponential smoothing is equiva-
lent to EWMA, which was discussed in Section 3.1.2. The forecast error is used to
calculate a probability index function, which is used to indicate the probability that
the numerical derivative is significantly different than zero. Since epidemiologists are
typically interested when there is a significant increase in the acceleration of disease
cases, the probability index function sets an upper limit above which the numerical
derivative is known to be significantly larger than zero. This technique appears to
give a large number of false alarms, especially since it essentially just tracks extreme
increases in the rate of case occurrences. While some of these false alarms can be re-
duced through appropriate parameter settings, these parameters are data dependent

and require extensive tuning in order for the algorithm to perform optimally.

Detection of a change in distribution

Changepoint detection is more commonly associated with detecting when the distri-
bution of a sequence of random variables shifts to another distribution at some point
in time. For example, we could be interested in when the mean of a set of random
variables shifts from pg to p;. The CUSUM algorithm, which detects such a shift, is

an example of a changepoint detection algorithm.

In (Baron, 2002), the author presents the problem of early detection of influenza
epidemics as a Bayes sequential changepoint problem. The onset of an influenza
epidemic is typically signalled by rapidly increasing mortality rates beyond what is
expected. One of the interesting points about this algorithm is that since frequent
changes of temperature are known to increase the probability of influenza, the algo-
rithm can incorporate the standard deviation of average daily temperatures as a prior

for when the change point happens.

The model used by (Baron, 2002) is a linear expression shown in Equation 3.19,
where Y} is the proportion of deaths caused by influenza-like illnesses during a partic-
ular week £, m; is a general trend, s; is a seasonal component, and Z; is an error term.
Also defined is the variable X;, which is simply the differenced series Z; = Z;_;.
During non-epidemic periods, X; is assumed to be a Gaussian with mean 0 while
a pre-epidemic trend would cause X; to have a non-zero mean. The change point

parameter v indicates the time ¢ when the pre-epidemic trend begins.
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Y;; =m;+ St + Zt (319)

In order to solve the Bayes sequential changepoint problem, a risk function is
defined that penalizes false alarms and late detection of the changepoint. The Bayes
stopping rule finds the stopping time that minimizes the risk function. Determining
the Bayes stopping rule requires an iterative numeric algorithm to approximate the
payoff function, making the calculation computationally intense. This complexity
requires the prior distributions for the change point parameter and the loss function
to be simple. An alternative method is shown in (Baron, 2002) that is based on
asymptotically pointwise optimal (APQO) stopping rules (Bickel & Yahav, 1967; Bickel
& Yahav, 1968). The APO approach has a closed form expression that is more
computationally feasible and as a result, more complex priors can be incorporated
into the model. While this algorithm is computationally tractable, the computational
complexity is higher than the other biosurveillance algorithms presented so far. In
the APO algorithm, the posterior probability II; needs to be computed for each time
t. The formula for II; involves a large number of sums and products.

3.1.7 Wavelets

The Wavelet Transform is commonly used in the field of signal processing. A closely
related technique to the Wavelet Transform is the Fourier Transform, which can de-
termine the frequencies inherent a signal by decomposing the signal into sinusoidal
components. The Fourier Transform, however, is unable to return any temporal infor-
mation as to when the frequencies exist in the signal. On the other hand, the Wavelet
Transform preserves both the temporal and the frequency information of the signal
(Polikar, 2001). The key aspect of the Wavelet Transform is its ability to break a sig-
nal down into a series of resolutions, each of which corresponds to the contribution to
the signal of different frequencies. Each of these resolutions are statistically indepen-
dent and by adding them together, we can get back the original signal (Tsui, 1996).
The decomposition into different resolutions is achieved through a variety of methods,
the most common of which is the Discrete Wavelet Transform(DWT). At each resolu-
tion level, the coefficients for the DWT are obtained by fitting scaled and translated
versions of a special basis function called the mother wavelet (Polikar, 2001). The
DWT is an efficient algorithm, requiring linear time in the size of the signal when
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the samples are spread evenly throughout the signal. The topic of wavelets is rather
extensive and we have provided only a brief overview here. Interested readers should
refer to (Polikar, 2001) for an excellent overview while (Percival & Walden, 2000;

Ogden, 1997) provide a more in depth coverage of the material.

Wavelets are excellent for modelling time series with a variety of difficult issues
such as seasonality, long term trends and any recent upward or downward trends.
Most importantly, wavelets can handle non-stationary data in a more autonomous and
efficient fashion than an ARIMA model. A non-stationary time series is informally
defined as series where the mean and variance change over time (Chatfield, 1989).
When using an ARIMA model, non-stationary data requires knowning the degree of
differencing in addition to modifying the model every time the data no longer fits
it. By choosing the right resolutions in the decomposition, the Wavelet Transform
can be used to smooth the data and thereby avoid extreme outliers like negative
singularities, which are values that are significantly lower than its neighboring values
(Zhang et al., 2003). Negative singularities are common in health-care data, such as
low over-the-counter sales due to pharmacies closing on holidays or a low number of
visits to an ED due to severe weather conditions.

While the Wavelet Transform is an excellent tool for denoising data, it is essentially
a preprocessing step and it cannot be used for forecasting. As a result, an additional
prediction layer is needed. A common forecasting technique, called a multiresolution-
based predictor (Zhang et al., 2003), fits a predictor at each resolution of the Wavelet
Transform. Each predictor makes a one-step forecast independently of the other
resolutions. The forecast for the next day is the sum of the one-step forecasts at
all the resolutions. Prediction algorithms that can be used include neural networks
(Aussem & Murtagh, 1997), AR (Goldenberg et al., 2002; Goldenberg et al., 2003)
or any time series algorithm like ARIMA. However, since each resolution has a fairly
smooth and regular signal, the use of a simple forecasting algorithm like AR would
seem to suffice. We will refer to the multiresolution AR as the MWAR algorithm, as
named by (Zhang et al., 2003). In the final step, the MWAR forms a threshold by
assuming a normal distribution over the forecast error and thus an alert threshold is
established using the mean plus a multiple of the standard deviation. The top graph in
Figure 3.4 illustrates the different resolutions produced by the wavelet decomposition
of the original signal which is shown in the lower graph of the same figure. The star
at the end of each resolution is the predicted value after an AR model is fitted to

each resolution level. Another forecasting technique is the Wavelet-based Anomaly
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Detector (WAD) (Zhang et al., 2003), which uses only the lowest frequency resolution,
called the baseline, instead of all the levels. The WAD then subtracts the baseline
from the current day’s signal level to obtain the residual. The residuals are assumed
to follow a normal distribution, whose mean and standard deviation are obtained
from historical data. Once again, the mean plus a positive multiple of the standard

deviation is used for a threshold.
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Figure 3.4: The different resolution levels used by MWAR on cough decongestant
data with an artificially injected spike (Goldenberg, 2001)

From the results of (Zhang et al., 2003), the WAD algorithm has several features
that make it an attractive biosurveillance algorithm. First of all, the WAD is more
resistant to negative singularities than MWAR since negative singularities have little
effect on the long term trend. In MWAR, when a negative singularity is encountered,
the next day forecast by AR will be abnormally low due to the negative singularity.
This lowering of the prediction results in a false alarm since the actual signal value
is artificially higher than what is expected. In addition, WAD showed improved
timeliness over MWAR since it does not introduce a phase shift to the original signal.

Due to the nature of AR, it requires order p terms to determine the current day’s
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signal, thereby introducing a phase shift that can be as large as p days. WAD is also
much less computationally expensive than MWAR since only one wavelet transform
is required to obtain the baseline. MWAR, on the other hand, requires n + 1 wavelet
transforms where n is the maximum level of resolution and it requires fitting and
applying an AR model to each level. Finally, WAD needs very little parameter tuning

since it is a non-parametric model.

The WAD algorithm, however, does have two main limitations. If a long term
outbreak exceeds the baseline trend, then the fluctuations from the outbreak will be
removed along with the baseline. As a result, WAD will miss this outbreak. However,
as pointed out by the authors of (Zhang et al., 2003), most bio-terrorist attacks are
expected to be short and sudden. Secondly, removal of the long term trend may not

yield a normal distribution of the residual errors.

3.2 Space Surveillance

By its very definition, surveillance requires a time component. As a result, pure
spatial surveillance involves accumulating data over some time interval, removing the
time information, and then searching for areas of unusually high incidence of events.
These events can be represented either as case events, where the individual locations
are known, or as aggregated counts associated with a geographic region. Analysis of
such data is typically concerned with finding clusters of events. Figure 3.5 illustrates
a taxonomy of disease clustering techniques.

Disease clustering techniques can be divided into non-specific and specific tests
(Lawson, 2001). Non-specific tests, also known as tests of general clustering (Besag
& Newell, 1991), obtain some statistic of the overall clustering of a disease in a
geographic region. Hence, a general clustering test can inform a person that some
degree of clustering exists overall but the specific locations of the clusters are not
known. In contrast, specific tests identify the locations of the clusters that merit
investigation. Although general clustering tests can seem somewhat uninformative for
the purposes of surveillance, they are helpful for exploratory analysis. As a result, we
will briefly discuss some of these tests. Readers interested in a thorough treatment of
disease clustering should consult (Lawson, 2001; Wakefield et al., 2000; Diggle, 2000;
Lawson & Kulldorff, 1999; Tango, 1999).
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Figure 3.5: Taxonomy of spatial surveillance techniques

3.2.1 General Clustering Tests

Statistical methods in spatial epidemiology commonly model spatial phenomena as
the combination of first and second order effects (Bailey & Gatrell, 1995; Lawson,
2001). First order effects cause a trend in the spatial process ie. the mean of the
process changes over the entire geographic area. Second order effects are responsible
for local effects in which neighboring areas have similar values for the process. These
local effects are referred to as spatial autocorrelation or spatial dependence. General
clustering tests are typically concerned with measuring the amount of spatial auto-
correlation in the data, since a high degree of spatial autocorrelation would indicate
localized clustering. The majority of these test take the form shown in Equation 3.20
(Marshall, 1991), where z;; and y;; are some measure of similarity between points ¢

and j.

T=>" "z (3.20)
i

The most well-known tests of spatial autocorrelation for tract counts are Moran’s
I (Moran, 1950) and Geary’s C (Geary, 1954). Equation 3.21 shows the formula for
Moran’s I, where y; is the value in area ¢ and W is a matrix of spatial proximity.
Using similar notation, Equation 3.22 is the formula for Geary’s C. From these two
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equations, the two major differences are that the sample variance replaces the variance
in Geary’s C and Moran’s I uses the distance from the mean as the measure of
similarity rather than the actual distances between pairs of points. For complete
spatial randomness, the expected value of Moran’s I is n_—}l, which is approaches zero
for large n. Geary’s C is approximately 1 for random data. Table 3.2.1, taken from
(Lee & Wong, 2001), illustrates the correlation nature of spatial data when Moran’s

I and Geary’s C fall within a range of values.

,Zl, lwij(yi —9)(y; —9) >y — 9)?
T e 2 _ i=1
Moran’s I = 7SSy where s* = - (3.21)
i#]
; __lwz'j(yz' —y;)? > (yi— y)?
Geary's 0 = =os~g~ g Where of = = — (3.22)
i)

Spatial Patterns Geary’s C Moran’s 1
Clustered pattern 0<C<1 I>E(I)
Random pattern C~1 I~ E(I)
Dispersed pattern 1<C<2 I < E(I)

For case events, the most commonly used method for measuring spatial autocor-
relation is the K function (Ripley, 1976). One of the assumptions of the K function
is that the process is stationary and isotropic over a small enough scale. Stationarity
means that the process has a constant mean and variance. A stationary process is
isotropic if the covariance between two points depends solely on the distance and not
the direction in which it is separated (Bailey & Gatrell, 1995). Informally, the K
function is the expected number of events within distance h of an arbitrary event,
scaled by some factor. Equation 3.23 is the formula used for an estimate of the actual
K function. In this equation, R is the small scale area under consideration, n is the
number of events in R, and I (d;;) is an indicator function that is 1 if the distance be-
tween points 7 and 7 is less than or equal to A and 0 otherwise. The K function results

are compared to a baseline of a random spatial process, which yields K(h) = mh?.
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This comparison is achieved through a plot of the L function, given in Equation 3.24,
against h. High values in this plot signal the presence of clustering while low values

indicate spatial repulsion.

OEES S WACH (3.23)

i#]
L(h) = Kih) —h (3.24)

The literature for general clustering tests is enormous and we will simply mention
other methods. Other tests for general clustering of case events include (Cuzick &
Edwards, 1990), (Diggle & Chetwynd, 1991) and (Anderson & Titterington, 1997).
Algorithms for aggregated counts include (Whittemore et al., 1987), (Tango, 1995),
(Oden, 1995) and (Assuncao & Reis, 1999).

3.2.2 Specific tests

In contrast to general clustering tests, specific tests identify the locations of the clus-
ters that merit investigation. Following the taxonomy of (Lawson, 2001; Besag &
Newell, 1991), specific tests can be further subdivided into focused and non-focused
tests. Focused testing requires the locations of the clusters to be specified a pri-
ori. Hence, these tests are concerned with the degree of disease clustering around
a location that is typically a health hazard like a nuclear power plant. In prospec-
tive surveillance, the high incidence locations are not known in advance and focused
testing is not appropriate. We will concentrate instead on non-focused testing, which
does not require prespecified locations of interest and is a subclass of disease clustering

algorithms that is suitable for surveillance.

Scanning Window Algorithms

The Geographical Analysis Machine (GAM) (Openshaw et al., 1988) was one of the
earliest scanning window algorithms. In this approach, a series of overlapping circular

areas centered on a regular grid over the study area are used to find high incidence
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areas. For each circle, a Monte Carlo test is done to determine if the number of disease
cases in the circle is significant at the 0.002 level. If the circle passes the significance
test and the number of cases in the circle is greater than 2, then its circumference is
drawn on the map. When the procedure is completed, a map with disease clusters

should have numerous circles encompassing these clusters.

Apart from the massive computational costs of doing a Monte Carlo test for each
circle, this technique has been criticized for not controlling for multiple hypothesis
testing (Besag & Newell, 1991). An alternative to GAM, applied to counts associated
with a centroid of an administrative zone, was proposed in (Besag & Newell, 1991).
Given a zone Ay and its centroid, an ordering of the other administrative zones is
induced based on the distances of their centroids to the chosen centroid. The Besag
and Newell algorithm accumulates the counts of cases in these ordered zones, moving
outwards from Ay until the number of cases exceeds a threshold k. Let M be the
number of zones required to exceed the threshold. If M is small, then clustering
occurs around Agy. In fact, the significance of each “cluster” can be computed since
Pr(M < m) can be approximated using a Poisson distribution. The choice of £ is
arbitrary and the authors admit that this method is an ad hoc method but still useful
as an exploratory tool.

Besag and Newell’s technique examines the number of neighboring areas required
to accumulate £ number of cases. Another option would be to examine the number
of cases over a constant population by aggregating the neighboring areas until the
desired population R is reached. (Turnbull et al., 1990) propose such a procedure,
relying on a fraction of the total count of an area whenever adding the population
of that area exceeds R. Following the terminology of (Turnbull et al., 1990), we will
refer to the aggregated areas of constant population as a ball. The statistic of interest
is Mg, the maximum number of cases over all the balls. Under the null hypothesis
of randomness, we can compute a p-value for the area with Mg cases by using a
randomization test to form the null distribution of Mgz. One of the awkward points
with this method is determining what value of R to use. In (Turnbull et al., 1990),

the authors use 4 different R values to evaluate their results.

Cuzick and Edwards (Cuzick & Edwards, 1996) modified their £ nearest neighbor
test of general clustering (Cuzick & Edwards, 1990) to determine the locations of
potential clusters. Suppose a circular region is centered on each case and the radius

is fixed such that the expected number of cases, E;, within the region j is as close
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to k as possible. If Y; is the actual number of cases in this circle and n, is the total

number of cases, then the Uy statistic is defined as:

U= (Y; — Ej) (3.25)

Both the mean and variance under the null hypothesis can be calculated and the
significance of each circular region can be obtained.

Perhaps the most widely used algorithm for spatial biosurveillance is the Spatial
Scan Statistic (Kulldorff, 1997), which has been used in NYC DOH (Das et al., 2003)
and ESSENCE (Burkom, 2003). We have already discussed the one dimensional scan
statistic for detecting anomalies in time in Section 3.1.1. The spatial scan statistic is

simply the two dimensional analog.

The spatial scan statistic works on a geographic area A in which there is an
underlying population n and within this population there is a count ¢ of interest.
The distribution of the counts c¢ is assumed to follow either a Bernoulli model, where
each entity in the population takes one of two states, or a Poisson model where the
counts are produced by an inhomogeneous Poisson process. Whenever c is small in

relation to n, the two models are extremely similar to each other (Kulldorff, 1997).

A window of variable size and shape then passes through the geographic area A.
The crucial characteristic of this window is that the union of the areas covered by the
window is the entire area A. Existing spatial scan statistic applications use window
shapes of circles (Kulldorff, 1999b), ellipses (Kulldorff et al., 2003), and rectangles
(Neill & Moore, 2003). In order to set up the scan statistic, we need to define p as
the probability of being a “count” within the scanning window. Furthermore, let ¢
be the probability of being a “count” outside of the scanning window. Under the
null hypothesis, p = ¢ while the alternative hypothesis is p > ¢. The spatial scan
statistic then consists of the maximum likelihood ratio between Ly, the likelihood
of the counts in the scanning window area W, and Lg, the likelihood under the null
hypothesis. Equation 3.26 illustrates the spatial scan statistic in its general form,
using the term W for the zone covered by a scanning window and W for the entire
collection of zones. Specific versions of equation 3.26 for either the Bernoulli or the
Poisson model can be found in (Kulldorff, 1997).
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I (3.26)

Sy = mazwew

Since an analytical form for the distribution of the spatial scan statistic is not
available, a Monte Carlo simulation is needed to obtain the significance of the hy-
pothesis test. Typically 999 or 9999 replications of the data set are used for the
simulation. In terms of computational complexity, the bottleneck for the algorithm
is the Monte Carlo simulation.

At first glance, the algorithm seems to be intractable since scanning windows of all
possible sizes, a potentially infinte number, need to be considered in order to compute
the maximum term in the likelihood ratio. However, as (Kulldorff, 1997) points out,
the computation time will be finite since the number of observed points is finite and
the likelihood always decreases as we increase the size of the scanning window for a
fixed count inside. As a result, the likelihood only needs to be recalculated whenever
a new point enters the scanning window as it increases its size. This fact allows many

different efficient algorithms to be created.

In (Kulldorff, 1999a), Algorithm 14.3.6 describes a version of the spatial scan
statistic that uses variable sized, circular windows with their centers at the grid points.
Suppose we have G grid points, R Monte Carlo replications, and M population points
eg. aggregated counts at the centroids of a census tract. Each grid point contains
a sorted list of the distances to each population point. For each grid point, create
a circle for each of the M population points encountered on the list and compute
the likelihood for each scanning circle. Once the maximum likelihood is obtained
over all the circles, repeat the previous step for the R Monte Carlo replications. The
overall complexity of Algorithm 14.3.6 is O(GMlogM) + O(RGM). This algorithm
has been implemented in the widely used in version 1.0 of the SaTScan software
package (Kulldorff et al., 1997) although version 3.1 is currently available (Kulldorff
& Information Management Systems Inc., 2003). (Neill & Moore, 2003) propose a
faster implementation of the Spatial Scan Statistic that does not calculate all possible

circles.

Smoothing techniques

Another class of space surveillance algorithms involves using smoothing techniques to
form a spatial surface where areas of high disease incidence can be identified. The sur-
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face created is usually the relative risk, which is defined as the ratio of observed counts
to expected counts in an area (Lawson, 2001). By incorporating expected counts into
relative risk, we can account for the underlying population at risk for the disease. The
risk surface is formed using a variety of smoothing techniques based on parametric
and non-parametric models. For surveillance, however, little is known beforehand
about what diseases we might encounter and a non-parametric approach might be
more appropriate since it makes fewer assumptions about the spatial distribution of
the data (Lawson, 2001).

We will discuss three different smoothing methods for creating the relative risk
surface — kernel density estimation, kernel binary regression, and Generalized Additive
Models (GAM). Before introducing these algorithms, we define the problem as was
given in (Kelsall & Diggle, 1998). The task of computing the risk surface can be
viewed as a ratio of bivariate densities, one for the observed distribution of cases and
one for the expected counts ie. the control data. Let the data consist of z1,... , 2,1,
which is a randomly sampled proportion ¢; of observed cases from a Poisson process
with intensity A (z). Similarly, let yi, ... , yn2 be a randomly sample proportion g, of
controls from a Poisson process with intensity Ay(z). The proportions ¢; and ¢, are
unknown. Conditioning on n; and ns, the data can be considered as random samples
from probability densities fi(z) and fo(x), which are proportional to A;(x) and Ay(x)
respectively. The log risk function is given as:

o(z) = log{ tgg } (3.27)

Instead of using the log risk function, the log density function, defined in Equation
3.28, is used to generate the relative risk surface. The log density function differs from

the log risk function by a constant.

r(z) = log{ 2 Eg } (3.28)

Using kernel density estimation, (Kelsall & Diggle, 1995; Bithell, 1990) obtain
estimates of the densities f;(z) and fa(z). At point z, the estimate f,(z) is computed
as:
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In Equation 3.29, a bivariate Gaussian density is typically used as the kernel
function K(). The bandwidth h is determined through a cross-validation procedure
described in (Kelsall & Diggle, 1995). Under the null hypothesis, r(z) = 0. The
significance of the results can be calculated by a randomization test which randomly
labels n; points as cases and ny points as controls.

An alternative approach is to use binary regression. Suppose binary labels y1,... ,y,
are assigned to the data points x,...,z, such that y; = 1 if z; is a case and y; =0
if x; is a control. Conditional on z;, y; are realizations of mutually independent
Bernoulli random variables Y; with:

(]1)\1(15)
PY,=1|X;=2) =p(x) = 3.30
( | ) =p(@) Q1M1 (7) + gaa(7) (3.30)
From Equation 3.30, we can obtain:
logit{p(z)} = p(z) + 2 (3.31)

p(z) differs from p(z) by a constant, just as in the case of kernel density estimation
where r(x) differs from p(x) by a constant, although they are not the same. When the
kernel regression estimator in Equation 3.32 is used to estimate p,(x), we find that
logit{pn(z)} = 7r(x) + c3 ie. the kernel regression approach and the kernel density
estimation method are equivalent up to an additive constant. The bandwidth for this
kernel regression method is found using a specialized weighted least squares cross-
validation procedure. Kelsall and Diggle prefer kernel regression over the density
estimation because the former leads to a better criterion for choosing the bandwidth
(Kelsall & Diggle, 1998). P-values can be computed through a Monte Carlo test that
generates replicated data similar in distribution to the original data and respecting
the null hypothesis. The test statistic used is §(z) in Equation 3.33.
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Kernel smoothing is also used by (Lawson & Williams, 1993). In their work, kernel
density estimation is first used to smooth the case-control background hazard B(X,)
Then, the excess intensity function :\(X,) is also smoothed using kernel regression as
shown in Equation 3.34 where s is the bandwidth as chosen by cross-validation.

(3.34)

AX) = iz:;ffl(X,-)K<Xi — X)

S

Another possible option for forming the relative risk surface is a generalized ad-
ditive model (GAM). GAMs are usually used whenever covariates, such as age and
gender, need to be included in the regression. This technique can be considered a
surveillance method for anomalies in the Space-Person dimension although it is used
in (Kelsall & Diggle, 1998) as a purely spatial technique for comparison against kernel
density estimation and kernel regression. Suppose we have covariates u and spatial
coordinates z. Furthermore, let the probability that the binary response variable Y
takes the value 1 be some function p(z,u). Equation 3.35 shows a GAM with a logit
link function:

logit{p(z,u)} = v'B + g(x) (3.35)

This equation seems like a regular regression expression except for the term g(z),
which is simply a smooth function of x. The algorithm for fitting a GAM uses an
iteratively weighted additive model procedure using kernel regression for the data
(ys, x5, u;) (Hastie & Tibshirani, 1990). Under the special case of no covariates ie.
logit{p(z)} = g(z), we can obtain a GAM estimate of p(z). As (Kelsall & Diggle,
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1998) point out, this estimate of p(z) has no direct algebraic relationship to the

corresponding kernel regression estimate.

Computing the p-value surface for a GAM relies on the §(z) statistic in Equation
3.33, except p(z) = g(z). However, generating the data through Monte Carlo simu-
lations is somewhat more complicated. In order for the generated data to respect the
null hypothesis and be of the same distribution as the original data, the probability
of an individual being a case must depend on all the covariates while being indepen-
dent of the spatial coordinates. Overall, GAM works well when covariates need to be
taken into account. However, it is a computationally intense procedure and simpler

methods could be used whenever covariates are not needed.

3.3 Space-Time Surveillance

With the need for timeliness of detection (Wagner et al., 2001b), several algorithms
have begun to exploit both the spatial and temporal characteristics of disease out-
breaks in order to decrease detection time. One obvious approach is to split the data
into subsets where each subset only contains data from one particular geographic unit.
Then, an algorithm that detects temporal anomalies, like those in Section 3.1, is run
on each subset of data. Together, this set of algorithms performs a crude spatial-
temporal monitoring tool. This approach, however ignores spatial information, such
as the proximity of the geographic units, which may improve the performance of the
detection algorithm. In addition, if the region of interest consists of many geographic
units, then the detection algorithm needs to be run many times, once for each geo-
graphic unit’s data. Overall, there are fewer algorithms for space-time surveillance as

compared to the previous two sections.

3.3.1 Clustering in Space-Time

General clustering techniques, which summarize the overall degree of clustering, also
exist for spatio-temporal data. Once again, the T statistic in Equation 3.20 is used
in almost all of these tests. The two most well-known tests for space-time interaction
between case events are the Knox test (Knox, 1964) and Mantel’s test (Mantel, 1967).
In the Knox test, the z;; values in the T statistic are the spatial adjacency, which

is set to 1 if the cases are less than a threshold spatial distance apart. Likewise,
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the y;; values in the T statistic are the temporal adjacency with their values being
1 if the cases are less than a threshold temporal distance apart and 0 otherwise. If
space-time interaction is present, the value of this test statistic will be large. The null
hypothesis under the Knox test is independence of space and time. Its distribution
can be approximated by randomizing the time locations of the data points, hence a
p-value can be calculated. Mantel’s test is almost identical to the Knox test except
the actual space and time distances are used instead of whether or not they exceed
the threshold value. Another test that has been developed is a general K function
for spatio-temporal data (Diggle et al., 1995). As was mentioned earlier, these tests
can measure the level of global clustering in the region but are unable to pinpoint the

disease cluster locations.

3.3.2 Koch and McKenna

(Koch & McKenna, 2001) consider each geographic region r as the center of a region-
cluster, where a region-cluster, for example, can be defined as the surrounding neigh-
bors of r. For a given time interval, the number of cases in each region is assumed to
be Poisson distributed with a mean that can be estimated from historical data. The
authors propose a hypothesis test where under the null hypothesis, at least one region
in a region cluster has a non-significant time cluster while in the alternative hypothe-
sis, each region in the region cluster has a significant time cluster. Let ® be the entire
set of regions and R(r) be the region cluster with region r as its center. Furthermore,
if y; » is the number of cases in region 7 at time 7, then a very conservative p-value of

the entire map is defined as:

Puval(®) = mz;I)n(TrIL%c%ag Pual(yir)) (3.36)

3.3.3 Spatial CUSUM

CUSUM algorithms have been extended to incorporate spatial information in order
to produce a space-time surveillance algorithm. In (Raubertas, 1989), the author
uses CUSUM to monitor anomalies over neighborhoods. A matrix S is defined where
sy = 1 if points ¢ and [ are within a cutoff distance and s; = 0 otherwise. Let xz;;

be the observed cases in a geographic unit ¢ at time period j. The observed count of
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cases in a neighborhood is defined in Equation 3.37:

x;j = Z STy (3.37)
=1

The neighborhood CUSUM statistic is then defined in Equation 3.38 with & being
the neighborhood reference value.

wi; = max(0,w; ; | + (z3; — k;)) (3.38)

The effectiveness of this approach lies in the definition of the neighborhoods. If
the majority of units in a neighborhood experience an anomaly, then the sensitivity
of the detector will increase. On the other hand, unusual behavior localized to one
geographic unit will likely be hidden when the data is accumulated for the entire
neighborhood. The choice of neighborhood size is difficult to know a priori. Another
problem with this approach is the difficulty in accounting for multiple hypothesis
testing, which can occur at two levels. For a given neighborhood size, each neighbor-
hood has a hypothesis test. Furthermore, each neighborhood can have an arbitrary
size. Raubertas proposes a solution for the former problem but not the latter. Mul-
tiple hypothesis testing for a fixed neighborhood size is addressed by controlling the
neighborhood baseline ARL called ARL;, which is the time till the first alarm for
the entire neighborhood. For small and large neighborhood sizes, approximations for
ARL{ can be made. However, a trial and error process through computer simulations

are necessary for intermediate neighborhood sizes.

Another spatial CUSUM algorithm is proposed in (Rogerson, 1997) where CUSUM
is used to monitor Tango’s clustering statistic (Tango, 1995), which is a generalization
of the clustering index discussed in Section 3.1.1 applied to spatial data. Recall that
a cluster in time was detected whenever Tango’s clustering index is large. Likewise,
a cluster in space is detected whenever Tango’s clustering statistic Cg is large. By
using CUSUM to monitor for a shift from the expected value of C';, changes in spatial

patterns over time can be noticed.

Let Cg,; be Tango’s clustering statistic based on the first 7 observations. CUSUM
is then applied to the statistic Z;, which is defined as:
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Ce,i— E|Cq,i|Cq,i-1]

0Cq,;:|Cq,i-1

Z; = (3.39)

This statistic does not have a normal distribution. However, by accumulating
n observed values of Z; together, we can form their mean Z(n), which is normally
distributed. The value of n needs to be small in order to improve timeliness of
detection yet large enough to result in a normal distribution for Z(n). In (Rogerson,
1997), n is set to 4. The reference value k is set to be a multiple of 020y which is
equal to ﬁ, and the corresponding value of h is obtained from a standard CUSUM

table.

Rogerson extends his approach in (Rogerson, 2001) by using a local Knox statistic
in place of Tango’s clustering statistic in 3.39. Define ng (i) to be the number of points
that are close to observation 7 in both time and space. Let the local Knox statistic
Ni(i) be equal to ng(i). The distribution of the local Knox statistic under the null
hypothesis of independence of time and space can be computed through a hyperge-
ometric distribution or a normal approximation. Using the normal approximation,
an adjusted z-score can be computed as shown in Equation 3.40, with E{Ng(4)} and
V{N(i)} being the mean and variance respectively of the local Knox statistic under

the normal approximation.

ng (i) — B{Ny (i)} — 0.5

V VN }

Once again, CUSUM is used to monitor the Z; statistic, where Z; is computed for

each new observation 2.

3.3.4 Space-Time Scan Statistic

The Space-Time Scan Statistic is an extension of the spatial scan statistic (Kulldorff,
1999b; Kulldorff, 2001). Instead of using a circular window over space, the scanning
window is now a cylinder, with its circular base for the spatial dimension and its height
over a time interval. Cylinders of varying heights and base radii are moved through
space and time to find potential disease clusters. This procedure is computationally

intensive and is intended for disease-specific surveillance (Kulldorff, 2001). Further-

45



more, the space-time scan statistic has low power against “stretched out” clusters but
it is successful at detecting fairly compact clusters (Kulldorff, 1999b).

3.4 Space-Time-Person Surveillance

The algorithms in the previous sections deal with finding anomalies in one, two or
three dimensions. Case event health-care data used for surveillance is currently avail-
able which has greater than 3 dimensions. While time will always be a single dimen-
sion, space information for cases includes home location, work location and hospital
location. Since cases involve people, additional information such as age, gender, race
and symptom information can also be included. This rich multivariate data can of
course be aggregated into groups of interest and a time, space, or space-time algorithm
could be run on each group. However, algorithms that consider such multivariate data

as a whole are very scarce.

To our knowledge, only three algorithms have taken this multivariate approach.
All of these algorithms ignore proximity information among spatial units by simply
treating each geographic region like a zipcode as a value for a categorical attribute.
The first such algorithm is WSARE, which is the focus of this thesis. WSARE takes
a baseline data set and a recent data set and determines which groups in the recent
data set are most anomalous when compared to those in the baseline. A somewhat
similar approach was taken by (Brossette et al., 1998) for hospital infection control and
public health surveillance. Like WSARE, they use association rules to characterize
and compare groups. However, (Brossette et al., 1998) lacks the additional steps
of a randomization test and FDR that are present in WSARE. In addition, unlike
WSARE 3.0, they do not account for expected temporal fluctuations such as seasonal
and day of week effects.

Cooper’s BCD algorithm (Buckeridge et al., 2004) is a changepoint detection algo-
rithm that takes a true multivariate approach to disease detection. BCD operates on
data consisting of a variable X to be monitored along with other variables W which
predict X. For instance, if we are monitoring ED chief complaint data, X could be a
binary attribute stating whether or not the case involved respiratory problems while
W could be variables such as age, gender, and home zip code. Like WSARE, BCD
takes recent data, which we will call D,, and compares it to data from a baseline
period, which we will refer to as D, for data from a “safe period”. The BCD algo-
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rithm first computes the LR statistic shown in Equation 3.41, where the hypothesis
Hyochange assumes that the data in D, and D, are distributed identically and the
hypothesis H pange assumes that a changepoint occurs ie. at some point in time, the

distribution of D, changed.

LR = P(Dr‘Hchange)
P(Dr‘HnoChange)

(3.41)

In order to calculate the probabilities in Equation 3.41, we need to first define time
points ty, for when we start collecting D,., and t,,, for the current time. Moreover,
define Hipange(t) as the hypothesis that from time ¢y to ¢ inclusive, the data is drawn
from the same distribution as D; while from time ¢ + 1 to t,,,, the data is possibly

drawn from a different distribution. From this definition, Hepange(tnow) = Hnochange-

BCD uses Bayesian networks to compute P(D,|H pange(r))- Let the Bayesian net-
work B = (6,S), where S is a directed acyclic graph and 6 is a set of parameters for
the Bayesian network. The Bayesian network structure is learned from data, using
some function s(D) which returns a structure S maximizing P(D|S) over the pre-
dictor variables W of X. We can now calculate the probability P(D,|Hhange(r)) as
shown in Equation 3.42, where the notation D,(¢;,t;) indicates a subset of the data
in D, from time ¢; to ¢;. The integral in this equation can be solved using a closed
form expression as shown in (Cooper & Herskovits, 1992). From Equation 3.42, we
can then compute P(D,|Hhange) @s shown in Equation 3.44, where n is the number

of changepoints from ty to ¢,,, 1 inclusive.

P(Dr|Hchtmge(t)) = P(Dr(tht)|s(D5)aD5)/P(Dr(ta tnow)|0) P(0]s(Dy(t, tnow)))dd

(3.42)
P(Dy|Hehange) = Y P(Dr|Hehange(t)) P(Hehange (1)) (3.43)
t=t0,tnow—1
1
where P(Hpange(t)) = - (3.44)

P-values for BCD are calculated by obtaining a set of LR statistics for some time
interval during the safe period. The value of the LR statistic for the current time is
then ranked against this set of LR statistics and the p-value is obtained accordingly.

47



3.5 Other Work Related to WSARE

On the surface, WSARE may seem like an anomaly detection algorithm such as those
in (Bishop, 1994; Hamerly & Elkan, 2001), yet its behavior is quite different as we
will discuss in Chapter 4. Instead, WSARE is similar in flavor to algorithms that
find differences between data sets. One of these algorithms develops a global measure
of the deviation between two data sets (Ganti et al., 1999). In another method,
(Chakrabarti et al., 1998) propose using a minimum description length approach to
monitor the degree of surprise of a temporal pattern in market basket data. The work
by (Dong & Li, 1999) finds emergent patterns, which is defined as an itemset in which

the ratio of support between the two data sets exceeds some threshold.

Out of all the techniques for finding data set differences, the most similar approach
to WSARE is taken in contrast set mining (Bay & Pazzani, 1999). Contrast set mining
involves finding association rules, called constrast sets, that are best at distinguishing
two or more groups. Unlike WSARE, contrast set mining searches over a larger
space of association rules because rules with m components are potentially allowed,
where m is the total number of attributes. However, in order to make the algorithm
tractable, constrast set mining relies heavily on a variety of pruning rules. One of these
pruning rules is to ignore association rules that yield counts that invalidate the use
of a Chi-Square test. WSARE, on the other hand, is able to handle such association
rules with Fisher’s exact test and in fact, some of these rules may be interesting
from a surveillance perspective. Another difference between WSARE and contrast
set mining is that in contrast set mining, multiple hypothesis testing problems are
controlled with a Bonferroni correction while in WSARE, a randomization test is

used. Finally, temporal trends are not taken into account in contrast set mining.
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Chapter 4

WSARE 2.0

4.1 Introduction

Multidimensional data with a temporal component is available from numerous disci-
plines such as medicine, engineering, and astrophysics. This data is commonly used
for monitoring purposes by a detection system. These systems inspect the data for
anomalies and raise an appropriate alert upon discovery of any deviations from the
norm. For example, in the case of an intrusion detection system, an anomaly would
indicate a possible breach of security (Lane & Brodley, 1999; Eskin, 2000; Maxion &
Tan, 2001).

We would like to tackle the problem of early disease outbreak detection in a sim-
ilar manner. In our situation, we have real-time access to a database of emergency
department (ED) cases from several hospitals in a city. Each record in this database
contains information about the individual who was admitted to the ED. This infor-
mation includes fields such as age, gender, symptoms exhibited, home location, work
location, and time admitted. (To maintain patient confidentiality, the regulations
described in Chapter 2 were followed ie. personal identifying information, such as
patient names, addresses, and identification numbers were not in the data set used in
this research.) Clearly, when a severe epidemic sweeps through a region, there will be
extreme perturbations in the number of ED visits. While these dramatic upswings
are easily noticed during the late stages of an epidemic, the challenge is to detect the
outbreak during its early stages and mitigate its effects. Furthermore, most existing

detection algorithms work solely with the number of ED visits over time while ignor-
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ing other information available in ED records. We would like to take advantage of all
available information, particularly the temporal, spatial, demographic, and syndromic

aspects of ED records (Wagner et al., 2001c) to improve the timeliness of detection.

Although we have posed our problem in an anomaly detection framework, the
majority of anomaly detection algorithms are inappropriate for this domain. In this
section, we will illustrate the shortcomings of traditional anomaly detection techniques

in our task of early epidemic detection.

A simplistic first approach would be to report an ED case as an anomaly if it has
a rare value for some attribute. As an example, we would signal an anomaly if we en-
countered a patient over a hundred years old. While this method detects the outliers
for a single attribute, it fails to identify anomalies that occur due to combinations
of features which by themselves might not be abnormal but together would certainly
be unusual. For instance, the first technique would not find anomalies in cases where
the patients were male and under the age of thirty but exhibited symptoms that were
associated with a disease that affects primarily female senior citizens. Fortunately,
there are plenty of anomaly detection algorithms that can identify outliers in multi-
dimensional feature space. Typically these detection algorithms build a probabilistic
model of the “normal” data using a variety of techniques such as neural nets (Bishop,

1994) or a mixture of naive Bayes submodels (Hamerly & Elkan, 2001)

However, even that kind of sophisticated outlier detection is insufficient for our
purposes. Outlier detection succeeds at finding data points that are rare based on
the underlying density, but these data points are treated in isolation from each other.
Early epidemic detection, on the other hand, hinges on identifying anomalous groups,
which we will refer to as anomalous patterns. Specifically, we want to know if the
recent proportion of a group with certain characteristics is anomalous based on what
the proportion is normally. Traditional outlier detection will likely return isolated

irregularities that are insignificant to the early detection system.

We might then argue that aggregate daily counts of a single attribute or com-
bination of attributes should be monitored in order to detect an anomalous group.
For instance, we could monitor the daily number of people appearing in the ED with
respiratory problems, thereby collapsing a multivariate data set into a univariate one.
A naive univariate detector such as a Shewhart control chart (Montgomery, 2001)
would determine the mean and variance of the monitored signal over a training set

which is assumed to capture the normal behavior of the system. Then, a threshold
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would be established based on these values. Whenever the daily count exceeds this
threshold, an alert is raised. This technique works well if the monitored features are
known. However, the spatial, temporal, demographic, and syndromic signatures of
diseases are simply too wide a space for us to know a priori what features to monitor.
We could well miss some combination of features that would indicate an outbreak of
a particular disease. Thus, we need a multivariate algorithm that is able to detect

anomalous patterns rather than pre-defined anomalies.

At this point, we would like to reiterate the fact that our task involves non-specific
disease detection. If we know a priori which diseases to monitor, we can improve the
timeliness of detection by monitoring specific features of the disease. For example,
if we were vigilant against an anthrax attack, we can concentrate our efforts on ED
cases involving respiratory problems. With non-specific disease detection, however,

we need to resort to monitoring health-care data for any irregular patterns.

Our approach to this problem uses a rule-based anomaly pattern detector. Each
anomalous pattern is summarized by a rule, which in our current implementation
consists of one or two components. Each component takes the form X; = V;j , Where
X, is the ith feature and Vij is the jth value of that feature. Multiple components
are joined together by a logical AND. For example, a two component rule would be
Gender = Male and Age_Decile = 4. One important benefit to a rule-based system

is that the rules are easily understood by a non-statistician.

Nevertheless, we need to be wary of the pitfalls of rule-based anomaly pattern
detection. Since we are finding anomalous patterns rather than isolated anomalies,
we will be performing multiple hypothesis tests. When multiple hypothesis tests are
performed, the probability of a false positive becomes inflated unless a correction is
made (Benjamini & Hochberg, 1995). In addition, as we add more components to
a rule, overfitting becomes a serious concern. A careful evaluation of significance is
clearly needed. Furthermore, temporal health-care data used for disease outbreak
detection are frequently subject to “seasonal” variations. As an example, the number
of influenza cases is expected to be higher during winter than summer. Additionally,
the number of ED visits vary between weekends and weekdays. The definition of what

is normal will change depending on these variations.
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4.2 Rule-based Anomaly Pattern Detection

The basic question asked by all detection systems is whether anything strange has
occurred in recent events. This question requires defining what it means to be recent
and what it means to be strange. Our algorithm considers all patient records falling
on the current day under evaluation to be recent events. Note that this definition of
recent is not restrictive — our approach is fully general and recent can be defined to
include all events within some other time period. In order to define an anomaly, we
need to establish the concept of something being normal. Our algorithm is intended
to be applied to a database of ED cases and we need to account for environmental
factors such as weekend versus weekday differences in the number of cases. Con-
sequently, baseline behavior is assumed to be captured by the events occurring on
the days that are exactly five, six, seven, and eight weeks prior to the day under
consideration. This range of days was chosen because WSARE 2.0 performed better
with this setting on our evaluation data than with a baseline of one, two, three, and
four weeks prior. We would like to emphasize that the definition of this baseline
period can be easily modified to another time period without major changes to our
algorithm. This baseline period must be chosen to be from a time period similar to
the current day. Often this is achieved by being close enough to the current day to
capture any seasonal or recent trends. On the other hand, the baseline period must
also be sufficiently distant from the current day. This distance is required in case
an outbreak happens on the current day but it remains undetected. If the baseline
period is too close to the current day, the baseline period will quickly incorporate the

outbreak cases as time progresses.

We will refer to the events that fit a certain rule for the current day as Ciecent.
Similarly, the number of cases matching the same rule from five to eight weeks ago
will be called Cygserine- As an example, suppose the current day is Tuesday, December
30, 2003. The baseline used for WSARE 2.0 will then be November 4, 11, 18, and
25 of 2003 as seen in Figure 4.1. These dates are all from Tuesdays in order to avoid

day of week variations.

WSARE 2.0 operates on discrete data sets with the aim of finding rules that
characterize significant patterns of anomalies. This algorithm is intended to be used
in combination with other detection algorithms, preferably those that are designed
to monitor specific diseases. WSARE’s role in this suite of detectors is to act as a

safety net, so that any irregular patterns in health-care data that are not found by
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Novenber 2003
Su M Tu W Th Fr Sa

2 3|/4|5 6 7 8
9 10 |11 12 13 14 15
16 17 |18 |19 20 21 22
23 24 |25 |26 27 28 29
30

Decenber 2003
Su M Tu W Th Fr Sa

1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 [30 |31

Figure 4.1: The baseline for WSARE 2.0 if the current day is December 30, 2003

the other detectors will trigger an alert with WSARE. An overview of the WSARE

algorithm will be given followed by a more detailed example.

4.2.1 Overview of WSARE

The best rule for a day is found by considering all possible one and two compo-
nent rules over events occurring on that day and returning the one with the best
“score”. For computational reasons, we limit the maximum number of components in
WSARE rules to be two. This restriction does not contradict the multivariate nature
of WSARE because WSARE still searches over all the attributes to find the combi-
nation that forms the best scoring rule. In contrast, a univariate detection algorithm
would need to know what combination of attributes to monitor beforehand. The score
of a rule is determined by comparing the events on the current day against events in
the past. Following the score calculation, the best rule for that day has its p-value
estimated by a randomization test. The p-value for a rule is the likelihood of finding
a rule with as good a score under the hypothesis that the case features and date are
independent. The randomization-based p-value takes into account the effect of the
multiple testing that went on during the rule search. If we were running the algorithm
on a day-by-day basis we would end at this step. However, if we were looking at a

history of days and we wanted to control for some level of false discoveries over this
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group of days, we would need the additional step of using the False Discovery Rate
(FDR) method (Benjamini & Hochberg, 1995) to determine which of the p-values are

significant. The days with significant p-values are returned as the anomalies.

4.2.2 One component rules

In order to illustrate this algorithm, suppose we have a large database of 1,000,000
ED records over a two-year span. This database contains roughly 1000 records a day.
Suppose we treat all records within the last 24 hours as “recent” events. In addition,
we can build a baseline data set out of all cases from exactly five, six, seven, and eight
weeks prior to the current day. This baseline data set was chosen to avoid variations
due to the day of the week, such as more people appearing at the ED on Mondays as
opposed to Saturdays, and also to be recent enough that any current trends could be
incorporated. We then combine the recent and baseline data to form a record subset
called DB;, which will have approximately 5000 records. The algorithm proceeds as
follows. For each day 7, retrieve the records belonging to DB;. We first consider all
possible one-component rules. For every possible feature-value combination, obtain
the counts Chrecent and Chgserine from the data set DB;. As an example, suppose the
feature under consideration is the Age_Decile for the ED case. There are 9 possible
Age_Decile values, ranging from 0 to 8. We start with the rule Age_Decile = 3 and
count the number of cases for the current day 7 that have Age _Decile = 3 and those
that have Age Decile # 3. The cases from five to eight weeks ago are subsequently
examined to obtain the counts for the cases matching the rule and those not matching
the rule. The four values form a two-by-two contingency table such as the one shown
in Table 4.1.

4.2.3 Scoring each one component rule

The next step is to evaluate the “score” of the rule using a hypothesis test in which
the null hypothesis is the independence of the row and column attributes of the two-
by-two contingency table. In effect, the hypothesis test measures how different the
distribution for Ciecent is compared to that of Chyyserine. This test will generate a p-
value that determines the significance of the anomalies found by the rule. We will
refer to this p-value as the score in order to differentiate this p-value from the p-value

that is obtained later on from the randomization test. We use the Chi Squared test
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for independence of variables whenever the counts in the contingency table do not
violate the validity of the Chi Squared test. However, since we are searching for
anomalies, the counts in the contingency table frequently involve small numbers. In
this case, we use Fisher’s exact test (Good, 2000) to find the score for each rule since
the Chi Squared test is an approximation to Fisher’s exact test when counts are large.
Running Fisher’s exact test on Table 4.1 yields a score of 0.00005058, which indicates
that the count Ciecent for cases matching the rule Age_Decile = 3 are significantly

different from the count Cygserine-

C’recent Cbaseline
Age_Decile =3 | 48 45

Age_Decile #3 | 86 220

Table 4.1: A Sample 2x2 Contingency Table

4.2.4 Two component rules

At this point, the best one component rule for a particular day has been found. We
will refer to the best one component rule for day ¢ as BR;. The algorithm then
attempts to find the best two component rule for the day by adding on one extra
component to BR} through a greedy search. This extra component is determined by
supplementing BR} with all possible feature-value pairs, except for the one already
present in BR}, and selecting the resulting two component rule with the best score.
Scoring is performed in the exact same manner as before, except the counts Ciecent
and Chygserine are calculated by counting the records that match the two component
rule. The best two-component rule for day 7 is subsequently found and we will refer
to it as BR?

BR?, however, may not be an improvement over BR}. We need to perform further
hypothesis tests to determine if the presence of either component has a significant
effect. This can be accomplished by determining the scores of having each component
through Fisher’s exact test. If we label BR?’s components as Cy and Cy, then the
two 2-by-2 contingency tables for the Fisher’s exact tests are shown in Table 4.2.

Once we have the scores for both tables, we need to determine if they are significant
or not. We use the standard « value of 0.05 and considered a score to be significant
if it is less than or equal to «. If the scores for the two tables are both significant,
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Records from Today matching Co and C Records from Other matching Cp and C;

Records from Today matching C1 and differing on Cyp | Records from Other matching C; and differing on Cp

Records from Today matching Co and Ci Records from Other matching Cp and C1

Records from Today matching Co and differing on C; | Records from Other matching Cp and differing on C;

Table 4.2: 2x2 Contingency Tables for a Two Component Rule

then the presence of both components has an effect. As a result, the best rule overall
for day i is BR?. On the other hand, if any one of the scores is not significant, then

the best rule overall for day ¢ is BR;.

4.2.5 N component rules

Let BRF™! be the best k — 1 component rule found for day 4. In the general case of
finding the best n component rule, the procedure is analogous to that of the previous
section. Given BR;“’I, we produce BRF by greedily adding on the best component,
which is found by evaluating all possible feature-value pairs as the next component,
excluding those already present in components of BRf_l. Starting with BR}, we

repeat this procedure until we reach BR}'.

In order to determine if the addition of a component is significant, we should in
theory test all possible combinations of the n components. For example, if we have a

3 component rule with components Cy, C;, and Cs, there are 6 2x2 tests we need to

n

2
perform as shown in Table 4.3. In general, we need 2 (%) such tests.
i=1

Clearly, having this many tests is computationally intense as n increases. As an
approximation, we resort to testing if adding the nth component is significant with
respect to the n — 1 other components. The two significance tests are as shown
in Table 4.4, where C), refers to the last component added and C),_; refers to the
conjunction of the previous n — 1 components. As before, if both of the Fisher’s exact
tests return a score less than a = 0.05, then we consider the addition of the rule
component significant. Due to this step, the probability of having a rule with many
components is low because for each component added, it needs to be significant at
the 95% level for both of the Fisher’s exact tests.
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Records from Today matching Co AND C; AND C»

Records from Other matching Co AND C; AND Cs

Records from Today matching Co and differing on C1
AND C»>

Records from Other matching Cy and differing on C1
AND C»>

Records from Today matching Co AND C1 AND C»

Records from Other matching Co AND C; AND Co

Records from Today matching C; AND C and differ-
ing on Cop

Records from Other matching C; AND C3 and differ-
ing on Cy

Records from Today matching Co AND C1 AND C»

Records from Other matching Co AND C; AND Cs»

Records from Today matching C1 and differing on Cjy
AND C»>

Records from Other matching C1 and differing on Cjy
AND C»>

Records from Today matching Co AND C1, AND C»

Records from Other matching Co AND C; AND Cs

Records from Today matching Co AND C> and differ-
ing on C1

Records from Other matching Co AND C3 and differ-
ing on C1

Records from Today matching Co AND C1 AND C»

Records from Other matching Co AND C; AND Cs

Records from Today matching Cy and differing on Cy
AND C;

Records from Other matching C3 and differing on Cjy
AND C;

Records from Today matching Co AND C1 AND C»

Records from Other matching Co AND C; AND Cs

Records from Today matching Co AND C and differ-
ing on Cb

Records from Other matching Co AND C; and differ-
ing on Cb

Table 4.3: 2x2 Contingency Tables for a Three Component Rule

4.2.6 Finding the p-value for a rule

The algorithm above for determining scores is extremely prone to overfitting. Even
if data were generated randomly, most single rules would have insignificant p-values
but the best rule would be significant if we had searched over 1000 possible rules.
In order to illustrate this point, suppose we follow the standard practice of rejecting
the null hypothesis when the p-value is < «, where a = 0.05. In the case of a single
hypothesis test, the probability of a false positive under the null hypothesis would
be «, which equals 0.05. On the other hand, if we perform 1000 hypothesis tests,
one for each possible rule under consideration, then the probability of a false positive
could be as bad as 1 — (1 — 0.05)1% =~ 1, which is much greater than 0.05 (Miller
et al., 2001). Thus, if our algorithm returns a significant p-value, we cannot accept
it at face value without adding an adjustment for the multiple hypothesis tests we
performed. This problem can be addressed using a Bonferroni correction (Bonferroni,

1936) but this approach would be unnecessarily conservative. Instead, we turn to a
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Records from Today matching C,,—1 and Cy, Records from Other matching C,,—1 and Cy,

Records from Today matching Cy,—1 and differing on | Records from Other matching C,,—1 and differing on
Cr Ch

Records from Today matching C,,—1 and Cj, Records from Other matching C,,—1 and C,

Records from Today matching C, and differing on | Records from Other matching C, and differing on
Cn—1 Cn—1

Table 4.4: 2x2 Contingency Tables for an N Component Rule

randomization test in which the date and each ED case features are assumed to be
independent. In this test, the case features in the data set DB; remain the same for
each record but the date field is shuffled between records from the current day and
records from five to eight weeks ago. The full method for the randomization test is
shown below.

Let UCP; = Uncompensated p-value ie. the score as defined above.

For j =1 to 1000
Let DB,gj ) = newly randomized data set
Let BRY = Best rule on DBY
Let U CPZ-(j ) = Uncompensated p-value of BRZQ ) on DB’

Let the compensated p-value of BR; be CPV; ie.

# of Randomized Tests in which UCPY > UCP,
# of Randomized Tests

CPV; =

It is clear from this procedure that CPV; is an estimate of the chance that we
would have seen an uncompensated p-value as good as UCP; if in fact there was no

relationship between date and case features.

4.2.7 Using FDR to determine which p-values are significant

This algorithm can be used on a day-to-day basis similar to an online algorithm or
it can operate over a history of several days to report all significantly anomalous
patterns. When using our algorithm on a day-to-day basis, the compensated p-value

C PV; obtained for the current day through the randomization tests can be interpreted
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at face value. However, when analyzing historical data, we need to compare the CPV
values for each day in the history. Comparison of multiple CPV values results in
a second overfitting opportunity analogous to that caused by performing multiple
hypothesis tests to determine the best rule for a particular day. As an illustration,
suppose we took 500 days of randomly generated data. Then, approximately 5 days
would have a CPV value less than 0.01 and these days would naively be interpreted
as being significant. Two approaches can be used to correct this problem. The
Bonferroni method (Bonferroni, 1936) aims to reduce the probability of making at
least one false positive to be no greater than «. However, this tight control over
the number of false positives causes many real discoveries to be missed. The other
alternative is Benjamini and Hochberg’s False Discovery Rate method, (Benjamini &
Hochberg, 1995), which we will refer to as BH-FDR. The BH-FDR method is more
desirable than the Bonferroni correction because it has a higher power and still has

reasonable control over the number of false positives.

BH-FDR first requires the selection of a desired false discovery rate appg, where
0 < appr < 1. The false discovery rate is defined as the number of times the null
hypothesis was falsely rejected divided by the total number of tests in which the null
hypothesis was rejected. The procedure then takes the list of original p-values from
the hypothesis tests and returns a list of p-values whose corresponding null hypotheses
should be rejected. We will call these p-values “significant”. The BH-FDR procedure

guarantees that the false discovery rate is less than or equal to appg.

The BH-FDR algorithm first sorts the observed p-values in increasing order, yield-

cmm

ing pr, < pr, < ... < pp,. Define the index #* to be i* = max {’1, 2P < g a}. The
null hypothesis for the tests corresponding to p-values p,,...,p,. are rejected. If
7* does not exist, then no null hypotheses are rejected. If the original p-values are
obtained from independent hypothesis tests, then c¢,, = 1. On the other hand, if
the tests are dependent, then ¢, = > ", %, resulting in a more conservative version
of BH-FDR under arbitrary dependence. We incorporate the FDR method into our
rule-learning algorithm by first providing an arpg value and then using FDR to find

the cutoff threshold for determining which p-values are significant.
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4.3 Computational Issues

The bottleneck in the entire WSARE procedure is clearly in the randomization test.
If implemented naively, it can be extremely computationally intense. In order to
speed up this portion of the algorithm, we implemented the following computational

tricks.

4.3.1 Racing

We invoke the old idea of “racing” (Maron & Moore, 1997) during the randomization
procedure. If BR; is highly significant, we run the full 1000 iterations but we stop
early if we can show with very high confidence that C'PV; is going to be greater
than 0.1. As an example, suppose we have gone through j iterations and let CPVij
be the value of CPV on the current iteration j (CPV{ is calculated as the number
of times so far that the best scoring rule on the randomized data set has a better
score than the best scoring rule over the original unrandomized data set). Using
a normality assumption on the distribution of C'PV, we can estimate the standard
deviation ocpy and form a 95% confidence interval on its final value. This is achieved
using the interval CPV;-j + 1‘96"%. If the lower half of this interval is greater than,
say 0.1, we are 95% sure that this score will be insignificant at the 0.1 level. On
a typical data set where an outbreak is unlikely, the majority of days will result in
insignificant p-values. As a result, we expect the racing optimization to allow us to

stop early on many days.

4.3.2 Early computation cutoff for p-value calculation

The only information that is actually required during each iteration of the random-
ization test is whether the score of the best rule found over the randomized data set is
higher than the original score. Computing the score using Fisher’s exact test requires
a summation over a range of parameter values for the hypergeometric distribution.
Since we do not need to know the exact score value, only whether or not it is higher
than the original score, we can cut the computation short once the summation exceeds

the original score.
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4.3.3 Differential Counting

Suppose that there are M attributes and all the attributes have an arity of K. In
addition, let there be Ny records for today and Npg records for the baseline period.
Note that Ny is usually 4 to 20 times smaller than Ng. Also, assume that there are @)
iterations of the randomization test. The complexity of the randomization test step
is O(QK M (Ny + Np)).

In order to explain the complexity, recall that at iteration j of the randomization
test, we need to search for the best scoring rule over the DBZ.(j). Searching for the
best rule requires scoring every possible rule, of which there are KM + KM since
we are building the rules using a greedy search and we allow each rule to have a
maximum of 2 components. Scoring a rule requires us to obtain the entries for the
two by two contingency table by counting over Ny + Npg records. Thus, each iteration
of the randomization test has a complexity of 2K M (N7 + Ng). With @ iterations,
the overall complexity, written in big O notation, is O(QK M (Nr + Ng)).

For the special case where the maximum number of components for a rule is two
and we are building the rules greedily, we can improve the speed of this algorithm
through a space-time tradeoff. Let Cr,, be a hash that stores for each possible
rule, the number of records that match that rule over the union of rows used for the
“recent” and “baseline” periods of the data set ie. DB;. We will use the notation
that Cryq (1) retrieves the count of the number of records matching a rule r on DB;.
Furthermore, let Crogay (7, 7) be the number of records matching rule 7 on the “today”
rows for randomization test iteration j and let Cpgseiine(r, 7) be the number of records
matching rule r on the “baseline” rows for randomization test iteration j. We can

use the subtraction CBaseline(T,j) = CTotal('r) — CToday(T,j) to obtain CBaseline (T’, _])

For the entire randomization test, Cr. needs to be built only once since the
counts it stores are unaffected by randomization. The cost of building Crye is
O(K?M?(Nr + Ng)). On each iteration of the randomization test and for each pos-
sible rule, we need to obtain Croday (7, j) and Cgasetine(T; 7). CBaseline(T; j) requires a
constant amount of work and we can ignore its cost. Obtaining Crogey (7, j) requires
a pass through N7 records. Over all rules, the cost per randomization test iteration
is 2K M Ny since rules have at most 2 components and they are constructed greedily.
With () randomization test iterations, we write the overall cost for the entire random-
ization test using big O notation as O(K2M?(Nr+Np))+O(QK M Nr). Theoretically,
this optimization allows us to perform the randomization test approximately 10 times
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faster, given fairly representative values of K = 2, M = 20, = 1000, Ny = 500,
and Ng = 10000.

4.4 Conclusion
The three main innovations of WSARE 2.0 are:

1. Turning the problem of “detect the emergence of new patterns in recent data”
into the question “is it possible to learn a propositional rule that can significantly
distinguish whether records are most likely to have come from the recent past

or more distant past?”

2. Incorporating several levels of significance tests into rule learning in order to

avoid several levels of overfitting caused by intensive multiple testing

3. Examining the interesting domain of early outbreak detection by means of ma-

chine learning tools
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Chapter 5

WSARE 3.0

5.1 Introduction

Early disease outbreak detection systems monitor a variety of surveillance data for
any irregularities due to the onset of an epidemic. The observed data are assumed to
be the sum of cases from background activity, which we will refer to as the baseline,
plus any cases from current outbreaks. Under this assumption, outbreak detection
algorithms operate by subtracting away the baseline from recent data and raising
an alarm if the deviations from the baseline are significant. The challenge facing all
such systems is to is to estimate the baseline distribution using data from historical
data. This distribution is usually obtained from a period of time in the past when no
epidemics are known to happen. However, determining this distribution is extremely
difficult due to the different trends present in surveillance data. Seasonal variations in
weather and temperature can dramatically alter the distribution of surveillance data.
For example, flu season typically occurs during mid-winter, resulting in an increase
in ED cases involving respiratory problems. Disease outbreak detectors intended to
detect epidemics such as SARS, West Nile Virus and anthrax are not interested in
detecting the onset of flu season and would be thrown off by it. Day of week variations
make up another periodic trend. Figure 5.1, which is taken from (Goldenberg et al.,
2002), clearly shows the periodic elements in cough syrup and liquid decongestant

sales.

Choosing the wrong baseline distribution can have dire consequences for an early

detection system. Consider once again a database of ED records. Suppose we are
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presently in the middle of flu season and our goal is to detect anthrax, not an in-
fluenza outbreak. Anthrax initially causes symptoms similar to those of influenza.
If we choose the baseline distribution to be outside of the current flu season, then
a comparison with recent data will trigger many false anthrax alerts due to the flu
cases. Conversely, suppose we are not in the middle of flu season and that we obtain
the baseline distribution from the previous year’s influenza outbreak. The system
would now consider high counts of flu-like symptoms to be normal. If an anthrax

attack occurs, it would be detected late, if at all.

2000

‘ Cough Syrub and Liquid Décongestant S‘ales

1500 B

1000 4

Sales

500 - B

0 Il Il Il Il Il Il
07/01/99 10/01/99 01/01/00 04/01/00 07/01/00 10/01/00 01/01/01 04/01/01
Dates

Figure 5.1: Cough syrup and liquid decongestant sales from (Goldenberg et al., 2003)

There are clearly tradeoffs when defining this baseline distribution. At one ex-
treme, we would like to capture any current trends in the data. One solution would be
to use only the most recent data, such as data from the previous day. This approach,
however, makes the algorithm susceptible to outliers that may only occur in a short
but recent time period. On the other hand, we would like the baseline to be accurate
and robust against outliers. We could use data from all previous years to establish
the baseline. This choice would smooth out trends in the data and likely raise alarms

for events that are due to periodic trends.

In the previous chapter, we made the baseline distribution to be data obtained
35, 42, 49 and 56 days prior to the current day under examination. These dates were

chosen to incorporate enough data so that seasonal trends could be captured and they
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were also chosen to avoid weekend versus weekday effects by making all comparisons
from the same day of week. We concede that this baseline was chosen manually in
order to tune the performance of WSARE 2.0 on the data set. Ideally, the detection

system should determine the baseline automatically.

In this chapter, we describe how we use a Bayesian network to represent the joint
probability distribution of the baseline. From this joint distribution, we represent the
baseline distributions from the conditional distributions formed by conditioning on
what we term environmental attributes. These features are precisely those attributes
that account for trends in the data, such as the season, the current flu level and the

day of week.

5.2 WSARE 3.0

Before proceeding with a description of WSARE 3.0, we will give a brief summary
of the previous chapter which described how WSARE 2.0 operates. The WSARE
algorithm, which stands for “What’s Strange About Recent Events”, operates on
discrete, multidimensional temporal data sets. This algorithm compares recent data
against a baseline distribution with the aim of finding rules that summarize significant
patterns of anomalies. Each rule takes the form X; = V;j , where X; is the ith feature
and V;-j is the jth value of that feature. Multiple components are joined together by
a logical AND. For example, a two component rule would be Gender = Male AND
Home Location = NW. Due to computational issues, the number of components for
each rule is two or less. It is helpful to think of the rules as SQL SELECT queries.
They characterize a subset of the data having records with attributes matching the
components of the rule.

At this point we will provide an overview of our extended WSARE algorithm,
which we will refer to as WSARE 3.0. We will refer to the WSARE algorithm in
Chapter 4 as version 2.0. As in the previous version, WSARE 3.0 operates on a daily
basis, in which for each day, the algorithm treats records from the past 24 hours
as recent events. Using historical data beyond the past 24 hours, WSARE 3.0 then
creates a baseline distribution which is assumed to capture the usual behavior of
the system being monitored under the environmental conditions of the current day.
Once the baseline distribution has been created, the algorithm considers all possible

one and two component rules over events occurring on the current day. The rules
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are scored with a scoring function that assigns high scores to rules corresponding to
subsets of data that have unusual proportions when compared against the baseline
distribution. The rule with the highest score for the day has its p-value calculated
using a randomization test. If this p-value is lower than a specified threshold, an alert

is raised.

The component that differentiates WSARE 3.0 from WSARE 2.0 is the step that
creates the baseline distribution. The previous version simply used data from 35, 42,
49 and 56 days prior to the current day. Version 3.0 builds a Bayesian network from
all data prior to the past 24 hours and then represents the baseline distribution as a
large data set sampled from the Bayesian network. We will describe this step in detail
below, while the other parts of the algorithm are identical to the steps in WSARE
2.0.

5.2.1 Creating the baseline distribution

Learning the baseline distribution involves taking all records prior to the past 24
hours and building a Bayesian network from this subset. During the structure learn-
ing, we differentiate between environmental attributes, which are features that cause
trends in the data, and response attributes, which are the remaining features. The
environmental attributes are specified by the user based on the user’s knowledge of
the problem domain. If there are any latent environmental attributes that are not
accounted for in this model, the detection algorithm may have some difficulties. How-
ever, as will be described later on in Chapter 6, WSARE 3.0 was able to overcome

some hidden environmental attributes in our simulator.

The network structure is learned from data using an efficient structure search al-
gorithm called Optimal Reinsertion (Moore & Wong, 2003) based on ADTrees (Moore
& Lee, 1998). An overview of Optimal Reinsertion will be discussed in section 5.2.2.
Environmental attributes in the structure are prevented from having parents because
we are not interested in predicting their distributions, but rather, we want to use
them to predict the distributions of the response attributes. The structure search
also exploits this constraint by avoiding search paths that assign parents to the envi-

ronmental attributes.

We have often referred to environmental attributes as attributes that cause pe-

riodic trends. Environmental attributes, however, can also include any source of
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information that accounts for recent changes in the data. Incorporating such knowl-
edge into the Bayesian network can aid in detecting anomalies other than the ones we
already know about. For example, suppose we detect that a botulism outbreak has
occurred and we would still like to be on alert for any anthrax releases. We can add
“Botulism Outbreak” as an environmental attribute to the network and supplement

the current data with information about the botulism outbreak.

Once the Bayesian network is learned, we have a joint probability distribution for
the data. We would like to produce a conditional probability distribution, which is
formed by conditioning on the values of the environmental attributes. Suppose that
today is February 21, 2003. If the environmental attributes were Season and Day of
Week, then we would set Season = Winter and Day of Week = Weekday. Let the
response attributes in this example be X, ..., X;,. We can then obtain the probability
distribution P(Xj,..., X, | Season = Winter, Day of Week = Weekday) from the
Bayesian network. For simplicity, we represent the conditional distribution as a data
set formed by sampling 10000 records from the Bayesian network conditioned on the
environmental attributes. The size of this sampled data set has to be large enough to
ensure that samples with rare combinations of attributes will be present, hence the
choice of 10000 records. Note that this sampling is easily done in an efficient manner
since environmental attributes have no parents. We will refer to this sampled data
set as D Bygserine- The data set corresponding to the records from the past 24 hours

of the current day will be named D B,ccent.

We chose to use a sampled data set instead of using inference mainly because
sampling requires D By,seine t0 be generated only once and then we can use it to obtain
the p-values for all the rules. While a sampled data set provides the simplest way of
obtaining the conditional distribution, we have not, however, completely ignored the
possibility of using inference to speed up this process. We would like to investigate

this direction further in our future work.

5.2.2 Optimal Reinsertion

The task of learning a Bayesian network structure from data has been well studied
over the years (Heckerman et al., 1995; Cooper & Herskovits, 1992). However, this
problem has been shown to be NP-Hard (Chickering et al., 2003; Chickering, 1996a),
and although a variety of clever algorithms have tackled some of the issues (Chicker-
ing, 1996b; Heckerman et al., 1995; Friedman & Goldszmidt, 1997; Xiang et al., 1997;
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Friedman et al., 1999; Elidan et al., 2002; Hulten & Domingos, 2002), the computa-
tional cost is still quite daunting. In general, most structure learning algorithms find
a directed acyclic graph (DAG) D that maximizes a scoring function which we will
call DagScore(D). One essential feature of DagScore(D) is that it can be decom-
posed into components, one for each node in the graph. In equation 5.1, Parents(i)
are the parents of node ¢ and NodeScore(Parents(i) — 1) is the score of the node i
given its parents. Most scoring functions like BIC (Schwartz, 1979), BD (Cooper &
Herskovits, 1992), BDE (Heckerman et al., 1995), and BDEU (Buntine, 1991) have

this decomposable characteristic.

DagScore(D) = ZNodeScore(Parents(i) — 1) (5.1)

=1

Hillclimbing is the simplest structure learning algorithm. Starting with some
initial DAG, a series of changes such as adding an arc, deleting an arc, or reversing
an arc are made. The best scoring structure is kept and the process repeats itself
until some stopping criterion. One of the problems involve with hillclimbing is getting
trapped in local optima. Solutions to this problem include TABU search, multiple

restart and simulated annealing.

Optimal Reinsertion is a larger scale search operator than the simple series of
modifications done by hillclimbing. Figure 5.2 illustrates the process of Optimal
Reinsertion. Starting with a DAG Dg,4, a target node T is chosen. All arcs pointing
towards or away from 7" are removed, isolating 7. The final step involves searching
for the best possible way to reinsert 7" into the DAG. Not all potential reinsertions
are possible since a number of constraints, such as acyclicity, must be satisfied.

D: Remove  Efficiently

?e'e‘gt arcsadjacent  find new
ag toT infout arcs

e

Figure 5.2: Optimal Reinsertion

Choose the

£

The outer loop for Optimal Reinsertion generates a random ordering of the nodes
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in the DAG. The Optimal Reinsertion operation is then called on each node in turn.
This process repeats until a complete pass through the random ordering results in no
change to the current DAG. However, at an even higher level above, the outer loop
is called a fixed number of times. Before each call, a randomly corrupted version of
the best DAG found so far is used as the initial structure. This step is used to jolt
the algorithm out of any local optima. The best DAG found so far is returned as the

result of the structure learning algorithm.

Of course, Optimal Reinsertion is an extremely expensive operator if implemented
naively. There are numerous computational tricks and clever data structures that are
used to make Optimal Reinsertion an efficient algorithm. First of all, we can speed
up the structure search by restricting the number of possible conditional probability
tables (CPTs) that we look at. With the maxParams parameter, any conditional
probability tables with more than mazParams non-zero entries are ignored. We
expect large CPTs to be infrequent since they would incur large penalties in the

scoring function. The value of mazxParams is typically set to be 100.

One crucial aspect of Optimal Reinsertion is the need for fast calculation of
NodeScore(Parents(i) — ). By creating a cache for all nodes i and for a large
number of possibilities for parents of ¢, we can access the NodeScore in time inde-
pendent of the number of records and the number of attributes. In addition, since cer-
tain parent combinations for a node 7 can create CPTs that violate the maxzParams
restriction, we can reduce the size of the cache by only storing parent and node com-
binations that respect the maxParams limit. Creating the cache, however, requires
computing all the entries once, which if done naively can be expensive. If there are
R records in the data set, m attributes, and mazParams = 2*, then searching over
all contingency tables of dimension k requires R(Z) operations. Our solution to this
problem is to use AD-search (Moore & Schneider, 2002) which is an extension of AD-

k
trees (Moore & Lee, 1998). With AD-search, the cost is R\ (T) Here, ) is a data
=0

set specific quantity that decreases as inter-dependence between attributes increases.

Empirically, ) is between 10~2 and 10~

The final but extremely important optimization deals with finding the optimal set
of parents and children for the isolated target node 7" during Optimal Reinsertion.
This step can be intractable due to the extensive number of combinations of parent
and children sets. However, we resort to two optimizations in order to make this step
feasible. First of all, given a parent set PS, we can cheaply find the optimal children
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set C'S to associate with PS. Secondly, a branch and bound procedure can be used
to prune the search for parent sets PS once we can prove that no further parent sets

down a search path can improve on the current best score.

We have given a brief overview of the Optimal Reinsertion algorithm in this sec-
tion. Interested readers are encouraged to refer to (Moore & Wong, 2003) for more
details. When compared to conventional hillclimbing, Optimal Reinsertion has been
demonstrated in (Moore & Wong, 2003) to be much faster and less local optima prone.
Optimal Reinsertion also finds superior Bayesian network structures in terms of the

scoring function and in terms of generalization to future data.

5.2.3 Dealing with new hospitals coming online

WSARE 3.0 assumes that the baseline distribution remains relatively stable, with
the environmental attributes accounting for the only sources of variation. However,
in a real life situation where data are pooled from various EDs around a city, new
hospitals frequently come online and become a new source of data to be monitored.
These new data sources cause a shift in the baseline distribution that is not accounted
for in WSARE 3.0. For example, suppose a children’s hospital begins sending data to
the surveillance system. In this case, WSARE 3.0 would initially detect an anomalous
pattern due to an increase in the number of cases involving children from the part
of the city where the children’s hospital is located. Over time, WSARE 3.0 would
eventually incorporate the newly added hospital’s data into its baseline.

Our solution to new data sources relies on the data containing an attribute such as
Hospital ID that can identify the hospital that the case originated from. HIPAA reg-
ulations can sometimes prevent ED data from containing such identifying attributes.
In this case, we recommend using WSARE 2.0 with a recent enough baseline period
in order to avoid instabilities due to new data sources. Whenever the data includes
a Hospital ID attribute, we first build a list of hospitals that provide data for the
current day. For each hospital in this list, we keep track of the first date a case came
from that particular hospital. If the current day is less than a year after the first case
date, we consider that hospital to have insufficient historical data for the baseline and
we ignore all records from that hospital. For each hospital with sufficient historical
records, we then build a Bayesian network using only historical data originating from
that particular hospital.
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In order to produce the baseline data set, we sample a total of 10000 records from
all the hospital Bayesian networks. Let Hospital A have n; records on the current day
and suppose there are H hospitals with sufficient historical data for the current date.
Then let N, = Zf?:o ny,. BEach hospital Bayesian network contributes 10000 x ]’:,—’;L
number of samples to the baseline data set. As an example, suppose we have 5
hospitals with 100 records each. Furthermore, assume that we can ignore the fourth
hospital’s records since its first case is less than a year prior to the current date. We are
then left with 4 hospitals with 100 records each. After we build the Bayesian network
for each hospital, we sample 2500 records from the Bayesian network belonging to
each of the four hospitals.
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Chapter 6

Evaluation

Validation of early outbreak detection algorithms is generally a difficult task due to
the type of data required. Health-care data during a known disease outbreak, either
natural or induced by a bioagent release, are extremely limited. Even if such data
were plentiful, evaluation of biosurveillance algorithms would require the outbreak
periods in the data to be clearly labelled. This task requires an expert to inspect the
data manually, making this process extremely slow. Consequently, such labelled data
would still be scarce and making statistically significant conclusions with the results
of detection algorithms would be difficult. Furthermore, even if a group of epidemi-
ologists were to be assembled to label the data, there would still be disagreements as

to when an outbreak begins and ends.

As a result of these limitations, we validated our algorithms mainly on simulated
data. Two simulators were implemented for the purpose of evaluating WSARE. The
first of these simulators was the gridworld simulator, which was a crude Simcity-like
world where diseases could be spread between individuals, through restaurants with
contaminated food, or through areas containing an aerosolized anthrax release. The
performance of WSARE 2.0 was evaluated on data from the gridworld simulator.
Since the gridworld simulator did not incorporate any deliberate temporal fluctua-
tions, we used data from a second simulator, which will be called the city Bayesian
network (CityBN) simulator, as a testbed for WSARE 3.0. The CityBN simulator
was based on two Bayesian networks that introduced temporal fluctuations based on

a variety of factors.

In addition to simulated data, we had two sources of real world data. The DARPA
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2003 challenge data set (Buckeridge et al., 2004) contained actual ED and pharmacy
sales data from five major cities. The outbreak periods were labelled by a team
of epidemiologists and a scoring mechanism for detection algorithms was developed.
We report the results of WSARE on this challenge data, even though the official
evaluation criteria for this data was inappropriate for WSARE, as will be discussed
later. We also ran WSARE on ED data from an actual city. Due to the fact that
epidemiologists had not analyzed this data set for known outbreaks, we are only able

to provide annotated results from the runs of WSARE.

The final section in this evaluation chapter contains timing results which illustrate
the benefits of the computational optimizations we implemented to speed up WSARE.
These optimizations include greedy rule search, differential counting, racing, and early

p-value calculation cutoff.

6.1 The Gridworld Simulator

6.1.1 Simulator Description

The gridworld simulator is intended to simulate (to a first approximation) the effects
of an epidemic on a population. The world in this simulator consists of a spatial grid
in which there are three types of objects — places, people, and diseases. These three
objects interact with each other in a daily routine for a fixed number of days. Each

of these objects will be described in detail below.

Places The three types of places in the simulator include homes, businesses, and
restaurants. Their roles are evident from what they represent in real life. People

reside in homes, work in businesses and eat in restaurants.

People Each person in the simulation has a specified gender and age. Genders for
the population are distributed uniformly between male and female while ages follow a
normal distribution with mean 40 and standard deviation of 15. People have a home
location, a work location, a list of restaurants that they eat at and a list of homes of
friends that they like to visit. The locations of work, restaurants, and friends’ homes
are chosen to be in close proximity to a person’s home. On each day, a schedule is

randomly generated for each person. In this schedule, people sleep at home until it
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is time to go to work. They go to work, stop for a lunch break at a restaurant, and
then return to work. After work, they spend some time at home before going to a
restaurant for dinner. Following dinner, they visit a random selection of friends at

their houses. Finally they return home to sleep.

Diseases Diseases are the most complex objects in the simulator as they are de-
signed to allow the creation of a large variety of disease models. People, places and
grid cells can all serve as infection agents since they can all carry a disease. With
infected places, we can create diseases that spread by a contaminated food supply
while with infected grid cells, we can model airborne infections. Associated with each
disease is a spontaneous generation probability which corresponds to how likely the
disease is to appear in the population at each timestep. Typically, this probability
is extremely small. Each disease also progresses through several stages at different
rates. At each stage, the infected person can exhibit a variety of symptoms. The
current simulation chooses randomly from a list of symptoms at each stage of the
disease. At the final stage, an infected agent can either recover or die. The deceased

are removed from the simulation.

The entire infection process revolves around the infection probability, which con-
trols how easily an infected person or place can transmit the disease to another person
on each timestep. A radius parameter determines how close a person needs to be to
catch the disease. The simulator only allows a person to have one disease at a time.
Should more than one disease infect a person, the priority of an epidemic arbitrates
which disease is assigned to the person. Diseases can be designed to spread from one
particular type of agent to another, for example place to person, person to person,
or grid cell to person. Additionally, each disease has a specific demographic group
that it infects. Whenever it has an opportunity to spread to a person outside of this
demographic group, the infection probability is reduced to a small percentage of its

original value.

We do not have hospitals in the simulation. Instead, when people exhibit a cer-
tain symptom, we create an ED case by adding an entry to a log file. This setup
assumes that everyone who develops this monitored symptom will go to an ED. The
log file entry contains information such as the person ID, the day, the time, the cur-
rent location of the person, the home location of the person, and any demographic
information about the individual. Most importantly, we add to each entry the actual

disease carried by that person, though this last piece of information is hidden from
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the detection algorithm.

6.1.2 Simulation Settings

Our results were obtained by running the simulator on a 50 by 50 grid world with
1000 people, 350 homes, 200 businesses, and 100 restaurants. The simulation ran
for 180 simulated days with the epidemic being introduced into the environment on
the 90th day. There were nine background diseases that spontaneously appeared
at random points in the simulation. At certain stages, these background diseases
caused infected people to display the monitored symptom. These background diseases
had low infection probabilities as they were intended to provide a baseline for the
number of ED cases. The epidemic, on the other hand, had a higher priority than
the background diseases and it had a relatively high infection probability, making it
spread easily through its target demographic group.

The epidemic that we added to the system will be referred to as Epidemic0. This
disease had a target demographic group of males in their 50s. Additionally, the
disease was permitted to contaminate places. EpidemicO had 4 stages with each stage
lasting for two days. The disease was contagious during all four stages. At the final
stage, we allowed the person to recover instead of dying in order to keep the total
number of people in the simulation constant. Epidemic0 also exhibited the monitored
symptom with probability 0.33 on the third stage, probability 1.0 on the final stage,
and probability 0 on all other stages.

6.1.3 Evaluation of performance

We evaluated WSARE 2.0 as if it ran once every day. Thus, for each day in the
simulated data, we ran WSARE 2.0. We compare the performance of WSARE 2.0
to that of a control chart detection algorithm that considered a day as anomalous
when the daily count of ED cases for the monitored symptom exceeded the upper
control limit (UCL). The control chart algorithm was chosen because it is a standard
detection algorithm used in many fields. The control chart was allowed to train on
the ED case data from day 30 to day 56 in the simulation to obtain the mean p and
variance o2. The UCL was calculated by Equation 6.1.3, in which ®~! is the inverse

to the cumulative distribution function of a standard normal.
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alarm threshold
_ 5 )

UCL=p+0ox®7'(1

In order to illustrate the control chart algorithm, suppose we train on the data
from day 30 to 89. The mean and variance of the daily counts of the monitored
symptom on this training set are determined to be 20 and 8 respectively. Given an
alarm threshold of 0.05, we calculate the UCL as 20 + 1.96 % v/8 = 25.54. After
training, the control chart algorithm is run over all the days of data from day 56 to
day 179. Any day in which the daily count of the particular symptom exceeds 25.54

is considered to contain anomalous events.

We also ran two other univariate detection algorithms for comparison purposes.
The first of these algorithms was a moving average algorithm that makes a forecast
based on the weighted average of the aggregate counts from the last seven days.
This moving average algorithm was selected because it is a common algorithm for
analyzing univariate time series data. The other algorithm was an ANOVA regression
which simply performed a linear regression on the aggregate daily counts and added
the count from yesterday as an additional covariate. We chose to use an ANOVA

regression because it is a simple way to account for recent trends in the data.

For WSARE 2.0, if the p-value for the best scoring rule on a particular day was
lower than the alarm threshold, then an alarm was raised. Due to the fact that
WSARE 2.0 relies on data from 5 to 8 weeks prior to the current day, it detected
outbreaks starting from day 56 until day 179. WSARE 2.0 estimated p-values through

400 iterations of the randomization test.

In order to evaluate the performance of the algorithms, we plot an Activity Mon-
itoring Operating Characteristic (AMOC) curve (Fawcett & Provost, 1999), which is
similar to an ROC curve. On an AMOC curves to follow, the x-axis indicates the
number of false positives per month while the y-axis measures the detection time
in days. For a given alarm threshold, we plot the performance of the algorithm at
a particular false positive level and detection time on the graph. As an example,
suppose we are dealing with an alarm threshold of 0.05. We then take all the alarms
generated by an algorithm, say WSARE 3.0, that have a p-value less than or equal to
0.05. Suppose there are two such alarms, with one alarm appearing 5 days before the
simulated anthrax release, which would be considered a false positive, and the other
appearing 3 days after the release, making the detection time 3 days. If we run the
detection algorithms for 1 month, then we would plot a point at (1, 3).
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We then vary the alarm threshold in the range of 0 to 0.2 and plot points at
each threshold value. For a very sensitive alarm threshold such as 0.2, we expect
a higher number of false positives but a lower detection time. Hence the points
corresponding to a sensitive threshold would be on the lower right hand side of the
graph. Conversely, an insensitive alarm threshold like 0.01 would result in a lower
number of false positives and a higher detection time. The corresponding points

would appear on the upper left corner of the graph.

In the gridworld simulation, a false positive was considered to be any alarm raised
before day 90. Detection time was considered to be the number of days after the
outbreak began ie. day 90, that the first alarm was raised. If no alarm was raised
after the start of the outbreak, we set the detection time to 14 days.

6.1.4 Results from Simulated Data

Outbreak Size over Time
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Number of EpidemicO Cases
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Figure 6.1: The number of Epidemic0 cases over time in the gridworld data

Figure 6.1 plots the number of cases of Epidemic0 per day after the disease is
added to the simulator for one of the 100 data sets generated by the simulator. This
plot is representative of the nature of the outbreak in the other data sets. As Figure
6.1 shows, the disease was a large scale epidemic which infected a large portion of the
population. The challenge with the simulated data was not to detect the epidemic,

which would be an easy task in most cases, but to detect the epidemic as early as
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possible.
Figures 6.2 and 6.3 plot the AMOC curves for all of the algorithms. In Figure 6.2,

the error bars for detection time and false positives are shown over a range of alarm
thresholds starting at 0 and ending at 0.2 with an increment of 0.025. Figure 6.3 plots
the AMOC curves for both algorithms over the same alarm threshold range but with
an increment of 0.001. This graph also fills in the lines to illustrate the asymptotic
behavior of the curves. The values obtained for both graphs were generated by taking
the average over 100 runs of the simulation. These results indicate that WSARE 2.0
significantly outperformed the other univariate algorithms over the alarm threshold
range. At a rate of two false positives a month, WSARE 2.0 possesses almost a full
two days advantage in detection time over the best competitor. With a sensitive
alarm threshold of 0.199, which would correspond to the lower right hand side of the
AMOC curve, WSARE 2.0 was able to detect all of the outbreaks. At the upper left
hand side of the AMOC curve, WSARE 2.0 missed 43 of the 100 outbreaks when a
highly sensitive alarm threshold of 0.001 is used.

Figure 6.4 is a plot of sensitivity versus (1 - specificity) for our results. Producing
an ROC curve requires an explanation of the criteria for true positives, false positives,
true negatives and false negatives. For each of the 100 data sets, we have the date
of the outbreak along with its duration, where the duration is defined as the number
of consecutive days after the outbreak in which at least one reported event is due to
anthrax. False positives are defined as any alerts raised before the outbreak date,
where an alert is a p-value that is less than or equal to the alarm threshold. True
negatives are the number of non-alerts before the outbreak date. Before considering
false negatives and true positives, we need to define the outbreak period. If the
outbreak begins on day ¢, then the end of the outbreak is on day i + duration. Let
the outbreak period be [i,i + duration). The number of true positives is 1 if an alert
is raised during the outbreak period and 0 if the outbreak is not detected. Finally,
we count false negatives as the number of days beginning with the outbreak date and
ending on the first alert during the outbreak period. If the outbreak is not detected,

the number of false negatives is set to be the outbreak duration.

The other algorithms performed slightly better than WSARE when (1-specificity)
was less than approximately 0.03. This behavior occurred because the threshold for
these algorithms was extremely conservative, resulting in few alarms being raised. On

the other hand, this conservative behavior produced longer detection times, as can
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Figure 6.2: AMOC curves with errorbars for gridworld data
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Figure 6.3: AMOC curves for gridworld data
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Figure 6.4: ROC curves for gridworld data

be seen in either the AMOC curve, or more false negatives, which resulted in a lower

sensitivity overall.

Figures 6.5 illustrate the effects of varying the maximum number of components
for a rule from 1 to 3. As the number of components in a rule increases, WSARE
2.0 can be more expressive in characterizing anomalous patterns. On the other hand,
WSARE 2.0 also guards against overfitting by requiring each component added to be
95% significant for the two hypothesis tests performed in Section 4.2.5. This criteria
makes the addition of components highly unlikely. We expected the performance of
WSARE 2.0 to peak around 2 or 3 rules. From Figure 6.5, there was no significant
difference between all three variations on data from the gridworld simulation. In fact,
the graph for the maximum number of rule components being 2 is not visible since the
graph for a maximum number of components equal to 3 is overlaid on top of it. We
also explored the difference between greedy rule search and an exhaustive rule search.
Figure 6.6 depicts no significant difference between the two types of rule search. We
naturally prefer greedy search because it is much faster than exhaustive search.

Another experiment involved increasing the number of iterations of the random-
ization test from 400 to 999. The results in Figure 6.7 indicate that this too had
little difference in the performance of the algorithm. We were also curious as to

the effects of changing the scoring function from Fisher’s exact test to Informa-

81



The Effect of Varying the Maximum Number of Components in a Rule
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Figure 6.5: The effect of varying the maximum number of components for a rule on
the AMOC curve for gridworld data
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Figure 6.6: AMOC curves for greedy versus exhaustive search on gridworld data
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Figure 6.7: The effect of varying the number of iterations in the randomization test

on an AMOC curve on gridworld data
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tion Gain. Information Gain is commonly associated with decision trees and is
defined as IG(Y|X) = H(Y) — H(Y|X), where H(Y) is the entropy of YV and
H(Y|X) is the entropy of Y given X. If we let ¥ = Recent or Baseline and X =
Rule Matches or Rule Doesn’t Match, we can use Information Gain to tell us how
knowing the rule can also help us predict whether the data comes from the recent
period or the baseline period. Figure 6.8 indicates that these two scoring functions
were nearly identical. We expected this to be the case since the most critical aspect
of a scoring function is that it can handle small counts in the cells of the 2-by-2

contingency table and both functions are able to do this.

We now show some of the rules learned by WSARE 2.0. The rules below were
obtained from one of the 100 runs of WSARE 2.0 on the simulated data.

##+# Rule 1: Sat Day97 (daynum 97, dayindex 97)

SCORE = -0.00000011 PVALUE = 0.00249875

33.33% ( 16/ 48) of today's cases have Age Decile = 5 and Gender = Male
3.85% ( 7/182) of other cases have Age Decile = 5 and Gender = Male

#7t# Rule 2: Tue Day100 (daynum 100, dayindex 100)

SCORE = -0.00001093 PVALUE = 0.02698651

30.19% ( 16/ 53) of today's cases have Age Decile = 5 and Col2 less than 25
6.19% (12/194) of other cases have Age Decile = 5 and Col2 less than 25

In rule 1, WSARE demonstrates that it was capable of finding the target demo-
graphic group that Epidemic0 infects. This rule proved to be significant above the
99% level. On the other hand, Rule 2 discovered something that was not deliberately
hardcoded into Epidemic0. Rule 2 states that on Day 100, there was an unusually
large number of cases involving people in their fifties that were all in the left half
of the grid. Since we designed the people in the simulation to interact with places
that were in close geographic proximity to their homes, we suspect that the locality
of interaction of infected individuals would form some spatial clusters of ED cases.
Upon further inspection of the log files, we discovered that 12 of the 16 cases from
the current day that satisfied this rule were in fact caused by Epidemic0. This ex-
ample illustrates the capability of WSARE to detect anomalous patterns that were

unexpected.
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6.2 The Bayesian Network Simulator

6.2.1 Simulator Description

We evaluated WSARE 3.0 using a simulator based on two Bayesian networks, which
we will refer to as the CityBN simulator. The city in this simulator consisted of nine
regions, each of which contained a different sized population, ranging from 100 people
in the smallest area to 600 people in the largest section, as shown in Table 6.1. We
ran the simulation for a two year period starting from January 1, 2002 to December
31, 2003. The environment of the city was not static, with weather, flu levels and
food conditions in the city changing from day to day. Flu levels were typically low
in the spring and summer but started to climb during the fall. We made flu season
strike in winter, resulting in the highest flu levels during the year. Weather, which
only took on the values of hot or cold, was as expected for the four seasons, with
the additional feature that it had a good chance of remaining the same as it was
yesterday. Each region had a food condition of good or bad. A bad food condition

facilitated the outbreak of food poisoning in the area.

NW (100) N (400) NE (500)
W (100) C (200) E (300)
SW (200) S (200) SE (600)

Table 6.1: The geographic regions in the CityBN simulator with their populations in

parentheses

Previous Previ i
Season evious Region

Weather - Food Condition

Day of /

Week

Region Food

Figure 6.9: City Status Bayesian Network

Region Anthray
Concentration

Previous Region
Anthrax Concentration,

We implemented this city simulation using a Bayesian network, as shown in Figure
6.9. We use the convention that any nodes shaded black in the Bayes network are set
by the system and do not have their values generated probabilistically. Due to space

limitations, instead of showing eighteen separate nodes for the current and previous
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food conditions of each region, we summarize them using the generic nodes Region
Food Condition and Previous Region Food Condition respectively. This same space
saving technique is used for the current and previous region anthrax concentrations.
Most of the nodes in this Bayesian network have an arity of two to three values. For
each day, after the black nodes had their values set, the values for the white nodes
were sampled from the Bayesian network. These records were stored in the City
Status (CS) data set. The simulated anthrax release was selected for a random date
during a specified time period. One of the nine regions was chosen randomly for the
location of the simulated release. On the date of the release, the Region Anthrax
Concentration node was set to have the value of High. The anthrax concentration

remained high for the affected region for a randomly chosen length of time.

Region
Anthrax
Concentration,

Region
Grassiness

Region
Food
Condition

Figure 6.10: Patient Status Bayesian Network

The second Bayesian network used in our simulation produced individual health
care cases. Figure 6.10 depicts the Patient Status (PS) network. On each day, for
each person in each region, we sampled the individual’s values from this network. The
black nodes first have their values assigned from the CS data set record for the current
day. The white nodes were then sampled from the PS network. Each individual’s
health profile for the day was thus generated. The disease node indicated the status
of each person in the simulation. A person was either healthy or they could have, in
increasing order of precedence, allergies, the cold, sunburn, the flu, food poisoning,

heart problems or anthrax. If an individual had more than one disease, the disease
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Table 6.2: Examples of two records in the PS data set

Location NwW N

Age Child Senior
Gender Female Male
Flu Level High None
Day of Week Weekday Weekday
‘Weather Cold Hot
Season Winter Summer
Action Absent ED visit
Reported Symptom | Nausea Rash
Drug None None
Date Jan-01-2002 | Jun-21-2002

node picked the disease with the highest precedence. A sick individual then exhibited
one of the following symptoms: none, respiratory problems, nausea, or a rash. The
actual symptom associated with a person may not necessarily be the same as the
symptom that was reported to health officials. Actions available to a sick person
included doing nothing, buying medication, going to the ED, or being absent from
work or school. As with the CS network, the arities for each node in the PS network
were small, ranging from two to four values. If the patient performed any action
other than doing nothing, the patient’s health-care case was added to the PS data
set. Only the attributes in figure 6.10 labelled with uppercase letters were recorded,
resulting in a great deal of information being hidden from the detection algorithm,
including some latent environmental attributes. The number of cases generated daily
by the PS network was typically in the range of 30 to 50 records. Table 6.2 contains

two examples of records in the PS data set.
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6.2.2 Algorithms
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Figure 6.11: Daily Counts of Health-Care Data
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Figure 6.12: Daily Counts of Health-Care Data Involving Respiratory Symptoms

We ran six detection algorithms on 100 different PS data sets. Each data set was

generated for a two year period, beginning on January 1, 2002 and ending December
31, 2003. The detection algorithms trained on data from the first year until the
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current day while the second year was used for evaluation. The anthrax release was
randomly chosen in the period between January 1, 2003 to December 31, 2003.

We tried to simulate anthrax attacks that were not trivially detectable. Figure
6.11 plots the total count of health-care cases on each day during the evaluation
period while Figure 6.12 plots the total count of health-care cases involving respiratory
symptoms for the same simulated data set. A naive detection algorithm would assume
that the highest peak in this graph would be the date of the anthrax release. However,
the anthrax release occurred on day index 74409, which is clearly not the highest peak
in both graphs. Occasionally the anthrax releases affected such a limited number of
people that it was virtually undetectable. Consequently, we only used data sets with

more than eight reported anthrax cases on any day during the attack period.

The following paragraphs will describe the six detection algorithms that we ran

on the data sets.

The Control Chart Algorithm The first algorithm used was the control chart
algorithm described in Section 6.1.3. We used a training period of January 1, 2002 to
December 31, 2002. Two different types of univariate data were used by this algorithm
— one data set was composed of total daily counts and the other on daily counts of

cases involving respiratory symptoms.

Moving Average Algorithm We also show the results of using a simple 7 day
window moving average algorithm. As with the control chart algorithm, we ran this
algorithm on total daily counts and also on daily counts of cases with respiratory

Symptoms.

ANOVA Regression ANOVA regression is a fairly powerful detector when tempo-
ral trends are present in the data, as was shown in the DARPA Challenge (Buckeridge
et al., 2004). We used 6 covariates for the days of the week, 3 for the seasons and one
for the daily aggregate count from the previous day. As before, this algorithm was

run on two versions of the data.

WSARE 2.0 WSARE 2.0 was also evaluated, using a baseline distribution of
records from 7, 14, 21 and 28 days before the current day. The attributes used
by WSARE 2.5 and 3.0 as environmental attributes were ignored by WSARE 2.0. If
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these attributes were not ignored, WSARE 2.0 would report many trivial anomalies.
For instance, suppose the environmental attribute Day of Week = Sunday for the
current day. If this attribute was not ignored, WSARE 2.0 would notice that 100%
of the records for the current day had Day of Week = Sunday while only 14.2% of
records in the baseline data set matched this rule.

WSARE 2.5 Instead of building a Bayesian network over the past data, WSARE
2.5 simply built a baseline from all records prior to the current period with their
environmental attributes equal to the current day’s. In our simulator, we used the
environmental attributes Flu Level, Season, Day of Week and Weather. To clarify
this algorithm, suppose for the current day we had the following values of these
environmental attributes: Flu Level = high, Season = winter, Day of Week = weekday
and Weather = cold. Then D Bpyserine Would contain only records before the current
period with environmental attributes having exactly these values. It was possible that
no such records existed in the past with exactly this combination of environmental
attributes. If there were fewer than five records in the past that match, WSARE 2.5
could not make an informed decision when comparing the current day to the baseline
and simply reported nothing for the current day.

WSARE 3.0 WSARE 3.0 used the same environmental attributes as WSARE 2.5
but built a Bayesian network for all data from January 1, 2002 to the beginning of the
current day. We hypothesize that WSARE 3.0 would detect the simulated anthrax
outbreak sooner than WSARE 2.5 because 3.0 can handle the cases where there are no
records corresponding to the current day’s combination of environmental attributes.
The Bayesian network is able to generalize from days that do not match today pre-
cisely, producing an estimate of the desired conditional distribution. For efficiency
reasons, we allowed WSARE 3.0 to learn a network structure from scratch once every
30 days. On intermediate days, WSARE 3.0 simply updated the parameters of the
previously learned network without altering its structure. An example of a Bayesian
network learned from the CityBN simulator data is shown in Appendix A along with
the contingency tables for each node.
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6.2.3 Results

Our evaluation criteria examines the algorithms’ performance in terms of detection
time versus false positives over alarm thresholds ranging from 0 to 0.2. The lower
alarm thresholds yield lower false positives and higher detection times while the con-
verse is true with higher thresholds. Figures 6.13 to 6.15 are plots of the AMOC
curves with error bars for the algorithms, using alarm threshold increments of 0.025.
In order to avoid too much clutter on each graph, we split the plots up into three
graphs. We also do not plot the Moving Average algorithm on Figure 6.13 to avoid
clutter and because it performs significantly worse than all the other algorithms.

In order to display the asymptotic behavior of the algorithms, Figures 6.16 to
6.18 plot the AMOC curve with alarm threshold increments of 0.001 and connects
the plot points. The optimal detection time was one day, as shown by the dotted
line at the bottom of the graph. We added a one day delay to all detection times
to simulate reality where current data is only available after a 24 hour delay. Any
alert occurring before the start of the simulated anthrax attack was treated as a false
positive. Detection time was calculated as the first alert raised after the release date.
If no alerts were raised after the release, the detection time was set to 14 days. We

also present a ROC curve for all the algorithms in Figures 6.19 to 6.21.
From Figures 6.13 through 6.21, WSARE 2.5 and WSARE 3.0 outperformed the

other algorithms in terms of the detection time and false positive tradeoff. For a false
positive rate of one per month, WSARE 2.5 and WSARE 3.0 were able to detect
the anthrax release within a period of one to two days. The Control Chart, moving
average, ANOVA regression and WSARE 2.0 algorithms were thrown off by the pe-
riodic trends present in the PS data. We had previously proposed that WSARE 3.0
would have a better detection time than WSARE 2.5 due to the Bayesian network’s
ability to produce a conditional distribution for a combination of environmental at-
tributes that may not exist in the past data. After checking the simulation results
for which WSARE 3.0 outperformed WSARE 2.5, we conclude that in some cases,
our proposition was true. In others, the p-values estimated by WSARE 2.5 were not
as low as those of version 3.0. The baseline distribution of WSARE 2.5 was likely
not as accurate as the baseline of WSARE 3.0 due to smoothing performed by the
Bayesian network. The false positives found by WSARE 2.5 and WSARE 3.0 were
likely due to other non-anthrax illnesses that were not accounted for in the Bayesian
network. Had we explicitly added a Region Food Condition environmental attribute
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Scatterplot of AMOC Curve with Errorbars for non-WSARE Algorithms Operating on Total Daily Counts

7 T T T T T T T
Control Chart +———
ANOVA Regression =--x--+
WSARE 3.0 :--%---
6 Optimal ------- 4

—t—
I —
R S—
e
e

Detection Time in Days

o
-
N
w
£y
o
o
~
©

False Positives per Month

Figure 6.13: AMOC curves with error bars comparing WSARE 3.0 to non-WSARE

algorithms operating on total daily counts of cases from the CityBN simulator

Scatterplot of AMOC Curve with Errorbars for non-WSARE Algorithms Operating on Counts of Respiratory Cases
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Figure 6.14: AMOC curves with error bars comparing WSARE 3.0 to non-WSARE

algorithms operating on counts of respiratory cases from the CityBN simulator
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Scatterplot of AMOC Curve with Errorbars for WSARE Variants
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Figure 6.15: AMOC curves with error bars for WSARE variants operating on CityBN
data
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Figure 6.16: AMOC curves comparing WSARE 3.0 to non-WSARE algorithms oper-
ating on total daily counts from the CityBN simulator
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AMOC Curve for non-WSARE Algorithms Operating on Counts of Respiratory Cases
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Figure 6.17: AMOC curves comparing WSARE 3.0 to non-WSARE algorithms oper-
ating on data with respiratory symptoms only from the CityBN simulator

AMOC Curve for WSARE Variants

8
‘ ‘ WSARE 2.0
WSARE 2.5 -------
WSARE 3.0 ——
7 Optimal ------- 1
6 - .
ES
85 i
£
£
FAar b
c
5
g
s 3ry e h
[a] ‘\\
2| ]
1 b e ]
0 1 1 1 1 1 1
0 1 2 3 4 5 6 7

False Positives per Month

Figure 6.18: AMOC curves for WSARE variants operating on CityBN data
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Plot of 1-Specificity versus Sensitivity for non-WSARE Algorithms Operating on Total Counts
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Figure 6.19: ROC curves comparing WSARE 3.0 to non-WSARE algorithms working
on total daily counts from the CityBN simulator

Plot of 1-Specificity versus Sensitivity for non-WSARE Algorithms Operating on Counts of Respiratory Cases
1

ANOVA Regression ---
WSARE 3.0

0.8

Sensitivity
o
o

I
IS

0.2 Hi

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

1.0 - Specificity

Figure 6.20: ROC curves comparing WSARE 3.0 to non-WSARE algorithms working

on counts of respiratory cases from the CityBN simulator
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Plot of 1-Specificity versus Sensitivity for WSARE Variants
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Figure 6.21: ROC curves for WSARE variants operating on CityBN data

to the Bayesian network, this additional information would likely have reduced the

false positive count.

Figures 6.24 to 6.27 illustrate the various outbreak sizes in the simulated data by
plotting the number of anthrax cases per day during the outbreak period. Since the
outbreak sizes and durations were randomly generated for each of the 100 data sets, we
do not have room to show plots for each data set. Instead, we include representative
plots of the outbreaks that appeared in our simulated data. Figure 6.24 represents a
large scale outbreak which was easily detected on the first day by most algorithms.
Large scale outbreaks were rare in our simulated data. Figure 6.25 is a representative
plot of a medium scale outbreak that was most common in the data. The particular
outbreak shown in Figure 6.25 was also detected by WSARE 3.0 on the first day for
an alarm threshold of 0.005. Small scale outbreaks, as shown in Figure 6.26, were
the most difficult to detect. WSARE 3.0 detected the outbreak in Figure 6.26 on the
third day with a very insentitive alarm threshold of 0.005. Figure 6.27 contains an
outbreak that WSARE 3.0 was unable to detect using a sensitive alarm threshold of
0.03.

We also conducted other experiments to determine the effect of varying certain
parameters of WSARE 3.0. One of the experiments involved changing the maximum

number of parents allowed per node in the Bayesian network. We tried a limit of 0,
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The Effect of Varying the Maximum Number of Parents Allowed per Bayesian Network Node
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Figure 6.22: The effect on the AMOC curve of varying the maximum number of
parents allowed for a Bayesian network node for CityBN data
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Figure 6.23: The effect of varying the maximum number of components for a rule on
the AMOC curve for CityBN data
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Figure 6.24: An example of a large scale out- Figure 6.25: An example of a medium scale
break in the CityBN data outbreak in the CityBN data
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Figure 6.26: An example of a small scale out- Figure 6.27: An example of an outbreak that
break in the CityBN data was not detected in the CityBN data by
WSARE 3.0 with an alarm threshold of 0.03
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resulting in a naive, disconnected Bayesian network and a limit of 1, corresponding
to a tree structure for the network. The AMOC curves in Figure 6.22 compared the
results of these experiments with the default limit of 4. The graph for a network with
no parents allowed per node was shifted to the right, indicating that for a given alarm
threshold, it produced about two more false positives per month. This behavior was
expected since a disconnected network has poor generalization capabilities due to its
large bias. The tree Bayesian network and the network with a limit of 4 parents per
node demonstrated similar results because the network structures learned from the
CityBN simulator data were generally simple, with one parent per node in almost all

the structures.

Another experiment involved varying the maximum components allowed per rule
from 1 to 3. The variations did not seem significantly different to the left of the
one false positive per month mark. However, after this point, a version of WSARE
with a 3 component limit outperformed the other two variations. As was mentioned
before, a 3 component rule is capable of being more expressive in its description of
anomalous patterns. Therefore, it should be more successful at finding these patterns
and improving the detection time. In addition to varying the number of components
per rule, we once again evaluated the performance of greedy versus exhaustive search.
As in the gridworld simulator, there seemed to be no significant difference between
the two as seen on the AMOC curve in Figure 6.28.

6.3 DARPA Challenge

The challenge data from DARPA included three data sets from five major cities in the
US. These three data sets consisted of actual civilian and military ED data as well as
pharmacies sales data, with patient confidentiality preserved. These data sets were
all taken from the same time period. Of course, since this was real world data, there
were outbreaks present although we restricted our attention to outbreaks related to
respiratory and gastrointestinal syndromes. The outbreak periods in the data were
determined by a team of three epidemiologists, who manually examined plots of the
daily number of counts from all three data sources to form their conclusions, without
any further attempts to determine the ground truth. Detection algorithms were run
on the data starting from September 1, 2002 until May 31, 2003. All three sources of
data were allowed to be used in order to improve the performance of the algorithms.
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The Effect of Greedy Versus Exhaustive Rule Search
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Figure 6.28: AMOC curves for greedy versus exhaustive search for CityBN data

Each algorithm was then scored according to its sensitivity, specificity, and timeliness

on the detection of the respiratory and gastrointestinal outbreaks in the data.

Before proceeding, we would like to point out that WSARE is inappropriate for
this type of evaluation. The outbreak periods were identified from peaks in a univari-
ate time series plot based on aggregate daily counts. WSARE identifies outbreaks
from a totally different perspective. Instead of looking for an absolute change in the
total number of cases, WSARE relies on relative changes in ratios of subgroups of
the data. For example, WSARE can detect that the fraction of male senior citizens
appearing in the ED today is double what it normally is during a baseline period.
WSARE cannot detect an absolute change such as the daily total of ED cases reach-
ing a pre-specified threshold. Naturally, we expected WSARE to perform extremely
poorly on this data when the scoring criterion was applied since it could monitor the
same signal used by the epidemiologists to determine outbreak periods. Furthermore,
WSARE may be unfairly penalized for raising too many false positives because the
alarms it raised may in fact be public health concerns but they were not validated
by the epidemiologists. Nevertheless, we include our results in order to show when
WSARE should not be used and also to illustrate some of the problems with WSARE.

WSARE 3.0 was run on only the ED data using the attributes of age, gender,

season and day of week. The pharmacy data was not used because we felt that it raised
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too many alerts. We used season and day of week as environmental attributes. The
results are summarized in Tables 6.3 and 6.4 using the scoring techniques provided by
the DARPA project. For comparison purposes, we include the results of an ANOVA
regression algorithm that performed well on the challenge.

False Alarm | Regression | Regression | WSARE WSARE GI
Rate RESP GI RESP

1 per 2 weeks | 4.125 2.8 N/A 17.0

1 per 4 weeks | 6.625 19.67 N/A N/A

1 per 6 weeks | 7.714 19.67 N/A N/A

Table 6.3: Timeliness in Days as a Function of Specificity

False Alarm | Regression | Regression | WSARE WSARE GI
Rate RESP GI RESP

1 per 2 weeks | 8/8 5/7 1/8 4/7

1 per 4 weeks | 8/8 4/7 1/8 2/7

1 per 6 weeks | 7/8 4/7 0/8 0/7

Table 6.4: Sensitivity (number of outbreaks detected / total number of outbreaks) as
a function of Specificity

From the results, WSARE raised too many alarms in order for it to detect the
outbreaks with a low false positive rate. WSARE highlighted significant upswings in
the ratios of cases involving certain age groups or genders. As was previously stated,
some of these were penalized as false positives but they may in fact be important to
public health practioners except we have no way of knowing since the epidemiologists
that scored the data only looked at aggregate daily counts.

The high false positive count was also be due to characteristics of the data that
illustrate some of the problems with WSARE. One of the assumptions with WSARE
3.0 is that given the environmental attributes, the ratios over the baseline period
should be reasonably stable since environmental attributes account for most of the
variation in the data. There were times, however, when latent factors were responsible
for non-stationarity in the data. The challenge data was extremely non-stationary,
even when environmental attributes such as the season and day of week were taken
into account. Figure 6.29 contains a plot over fall Thursdays of the ratio of the number
of patients over the age of 71 to the total daily number of patients. The big gaps in
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the plot are due to the fact that we are only plotting the ratios for fall Thursdays
and we obviously have no such data for winter, spring and summer. Even with day of
week and seasonal effects accounted for, the signal still had large fluctuations. Figure
6.30 illustrates the total number of cases from this group. Due to the large sample
sizes involved, these fluctuations were not due to chance. The DARPA challenge data
has been analyzed and the source of non-stationarity was due to new sources such
as doctors, clinics and hospitals being added over time and also because of existing

sources not routinely reporting their data during the surveillance period.

When faced with this degree of non-stationarity, a different baseline approach
from that of WSARE 3.0 should be taken. Instead of building the baseline from a
Bayesian network learned from all historical data, a baseline computed from more
recent data should be used. Of course, using more recent data results limits the
amount of data available for the baseline and when data becomes scarce, an accurate
Bayesian network can be almost impossible to learn from this limited data. One
possible way to alleviate some of the non-stationarity using the WSARE framework
is to add an extra environmental variable that summarizes the count from the previous

day, thereby allowing WSARE to account for some recent information.

Determining the time intervals for cyclical environmental attributes is also another
difficulty with WSARE 3.0. In the challenge data, there were strong day of week
trends which we were able to account for accurately with an environmental attribute.
The seasonal trends, however, were much more difficult since they did not line up with
either monthly time intervals or seasonal time intervals. Moreover, the seasonal trend
boundaries moved around from year to year. Our best approximation to these trend
time intervals was to use the seasons. In general, WSARE 3.0 is unable to determine
autonomously the best set of boundaries for these time environmental attributes and

a substantial degree of tuning by the user is needed.

One final problem is the lack of baseline smoothing in WSARE. In the challenge
data, some data sets had multiple outbreaks contained in them. Furthermore, the
training data contained outbreaks that were not identified. WSARE 3.0 incorporated
these outbreaks into the baseline without smoothing out the outliers, resulting in an
inaccurate baseline. When running WSARE 3.0 on a daily basis, we assume that
when an outbreak occurs, we would be notified at some point during its duration. By
being aware of the outbreak, we can then add an extra environmental variable that

would allow us to account for this outbreak while still performing further surveillance.
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Non-stationarity of DARPA Challenge Data

0.25
‘ ‘ Thursday F‘aII Fraction (E‘xcluding Holid'lays) +
&
~ 0.2 B
3 + ’
=} + +
- + A ++ *
5 " + + *
.f‘__{ +T+ 4
8 015 - % * L AP
' et - -
£ + Fet +
= ¥ N
5 +H
£
8 01f i
a +
]
k]
=
8
8 o005} E
w
0 L L L L L L
72800 73000 73200 73400 73600 73800 74000 74200
Day Index

Figure 6.29: The fraction of cases on Thursdays in the fall (excluding holidays) in-
volving patients aged 71 and up in the Seattle ED data
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Figure 6.30: The total number of cases on Thursdays in the fall (excluding holidays)
involving patients aged 71 and up in the Seattle ED data
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6.4 Annotated Output of WSARE 3.0 on Actual
ED Data for 2001

We also tested the performance of WSARE 3.0 on real ED data from a major US city.
The database used contained almost seven years worth of data, with personal identi-
fying information excluded in order to protect patient confidentiality. The features in
this database included date of admission, coded hospital ID, age decile, gender, syn-
drome information and both home location and work location on a latitude-longitude
grid. This data had a similar phenomenon as the DARPA data in the previous sec-
tion: new hospitals came online and began submitting data during the time period
that the data was collected. We used the solution described in section 5.2.3 to address
this problem. WSARE operated data from the year 2001 and was allowed to use over
five full years worth of training data from the start of 1996 to the current day. The
environmental attributes used were month, day of week and the number of cases from
the previous day with respiratory problems. The last environmental attribute was
intended to be an approximation to the flu levels in the city. We used a one-sided
Fisher’s exact test to score the rules such that only rules corresponding to an upswing
in recent data are considered. In addition, we applied the Benjamini-Hochberg FDR

procedure with agppr = 0.1.

The following list contains the significant anomalous patterns found in the real
ED data for the year 2001.
1. Sat 2001-02-13: SCORE = -0.00000004 PVALUE = 0.00000000
14.80% ( 74/500) of today’s cases have Viral Prodrome = True and Encephalitic Prodome = False
7.42% (742/10000) of baseline have Viral Prodrome = True and Encephalitic Prodrome = False
2. Sat 2001-03-13: SCORE = -0.00000464 PVALUE = 0.00000000
12.42% ( 58/467) of today’s cases have Respiratory Prodrome = True
6.53% (653/10000) of baseline have Respiratory Prodrome = True
3. Wed 2001-06-30: SCORE = -0.00000013 PVALUE = 0.00000000
1.44% ( 9/625) of today’s cases have 100 <= Age < 110
0.08% ( 8/10000) of baseline have 100 <= Age < 110
4. Sun 2001-08-08: SCORE = -0.00000007 PVALUE = 0.00000000
83.80% (481/574) of today’s cases have Unknown Prodrome = False
74.29% (7430/10001) of baseline have Unknown Prodrome = False
5. Thu 2001-12-02: SCORE = -0.00000087 PVALUE = 0.00000000

14.71% ( 70/476) of today’s cases have Viral Prodrome = True and Encephalitic Prodrome = False

104



7.89% (789/9999) of baseline have Viral Prodrome = True and Encephalitic Prodrome = False
6. Thu 2001-12-09: SCORE = -0.00000000 PVALUE = 0.00000000
8.58% ( 38/443) of today’'s cases have Hospital ID = 1 and Viral Prodrome = True

2.40% (240/10000) of baseline have Hospital ID = 1 and Viral Prodrome = True

Rule 3 was likely due to clerical errors in the data since the rule found an increase
in the number of people between the ages of 100 and 110. For Rules 1, 2, 5 and
6, we went back to the original ED data to inspect the text descriptions of the
chief complaints for the cases related to these three rules. Rule 2 cases contained a
large number of complaints of shortness of breath, possibly due to an illness causing
respiratory problems. The symptoms related to Rules 1, 5 and 6 involve dizziness,
fever and sore throat. Given that Rules 1, 5 and 6 had dates in winter, along with the
symptoms mentioned, we speculate that this anomalous pattern was likely caused by

an influenza strain.

6.5 Annotated Output of WSARE 3.0 on Actual
ED Data July 18, 2002 - July 18, 2003

We also evaluated WSARE 3.0 over more recent ED data from July 18, 2002 to July
18, 2003. Unlike the data used in Section 6.4, the majority of cases from July 18,
2002 to July 18, 2003 were missing information about home and work locations. As
a result, WSARE could use the spatial attributes for these cases. Only the attributes
of date of admission, coded hospital ID, age decile, gender and syndrome information
were used, all of which respect patient confidentiality as described in Chapter 2. This
data also had new hospitals appearing throughout the surveillance time period. Once
again, we used the approach in Section 5.2.3 to deal with this problem. WSARE op-
erated on this data using day of week and month as environmental attributes. Below,
we report the significant rules as found by FDR with agppr = 0.1.
1. 2002-07-18: SCORE = -3.71674¢-07 PVALUE = 0.00249377

3.52941% (18/510) of today’s cases have Age Decile = 4 and Viral Prodrome = True

1.14% (114/10000) of baseline cases have Age Decile = 4 and Viral Prodrome = True
2. 2002-08-21: SCORE = -3.01133e-06 PVALUE = 0.00249377

3.10345% (18/580) of today’s cases have Age Decile = 8 and Viral Prodrome = True

1.09% (109/10000) of baseline cases have Age Decile = 8 and Viral Prodrome = True
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3. 2002-08-22: SCORE = -4.15098e-07 PVALUE =0
13.9535% (78/559) of today’s cases have Viral Prodrome = True and Rash Prodrome = False
8.10919% (811/10001) of baseline cases have Viral Prodrome = True and Rash Prodrome = False
4. 2002-08-24: SCORE = -8.81048e-06 PVALUE = 0.00997506
15.4255% (87/564) of today’s cases have Viral Prodrome = True
9.84902% (985/10001) of baseline cases have Viral Prodrome = True
5. 2002-08-30: SCORE = -3.41648e-05 PVALUE = 0.0074813
12.7886% (72/563) of today’s cases have Viral Prodrome = True and Encephalitic Prodrome = False
8.04% (804/10000) of baseline cases have Viral Prodrome = True and Encephalitic Prodrome = False
6. 2002-08-31: SCORE = -3.70298e-06 PVALUE =0
14.7541% (90/610) of today’s cases have Viral Prodrome = True
9.31% (931/10000) of baseline cases have Viral Prodrome = True
7. 2002-09-15: SCORE = -1.33673e-06 PVALUE =0
14.711% (84/571) of today’s cases have Age Decile = 1
8.93911% (894/10001) of baseline cases have Age Decile = 1
8. 2002-10-29: SCORE = -2.02341e-106 PVALUE = 0
14.4128% (81/562) of today’s cases have Hospital ID = 1 and Unknown Prodrome = True

0% (0/10000) of baseline cases have Hospital ID = 1 and Unknown Prodrome = True

Rules 8-269 from 2002-10-30 to 2003-07-17 all have Hospital ID = 1 and Unknown Prodrome = True except for Rules

71, 123 and 233 shown below

71. 2002-12-31: SCORE = -6.14186e-15 PVALUE = 0
22.0207% (170/772) of today’s cases have Hospital ID = 1 and Unmapped Prodrome = False
12.6787% (1268/10001) of baseline cases have Hospital ID = 1 and Unmapped Prodrome = False
123. 2003-02-22: SCORE = -1.8728e-19 PVALUE =0
18.7721% (159/847) of today’s cases have Hospital ID = 1 and Unmapped Prodrome = False
9.62904% (963/10001) of baseline cases have Hospital ID = 1 and Unmapped Prodrome = False
233. 2003-06-12: SCORE = -2.3117e-30 PVALUE =0
17.8707% (141/789) of today’s cases have Hospital ID = 1 and Unmapped Prodrome = False

7.27927% (728/10001) of baseline cases have Hospital ID = 1 and Unmapped Prodrome = False

The first six rules indicated an increase in patients with viral symptoms. Although
rule 1 seems like an isolated anomalous pattern, rules 2-6 seem to indicate a possible

viral outbreak, especially given their temporal proximity. We would like to point out
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that public health officials may find the age decile groupings, such as those in rules 1
and 2, to be too narrow. A broader categorization such as adult versus child might
be more informative. This limitation can be easily removed by simply discretizing

the data in a different way.

Rule 7 detected an anomalous upswing in the number of patients between the age
of 10 to 19 appearing in the ED. After reviewing the free text chief complaint fields
corresponding to these cases, we noticed that the majority of the cases involved head
injuries and superficial injuries to shoulders, elbows, wrists, and knees. We would
suggest that this increase in cases involving teenage children was due to an incident

at a school or perhaps a motor vehicle accident involving a school bus.

Rules 8-269 except for rules 71, 123 and 233 indicated that records from hospital
ID 1 had a large upswing in an unknown prodrome. Each case in the ED data set
could have fallen into multiple prodrome categories, where a prodrome is a broad
grouping for the symptoms exhibited by the patient. These prodrome categories
are: diarrhea, viral, respiratory, rash, hemorrhagic, botulinic, encephalitic, other,
unmapped, and unknown. The other prodrome was a special category for cases that
did not fall into the first seven prodromes while the unmapped prodrome was for
symptoms that did not match any of the first eight. The unknown prodrome was for
cases without any information about the chief complaint. Prodrome information was
represented as 10 binary attributes in the ED data set, where a true value indicates
that the case exhibited the symptoms corresponding to that prodrome. After checking
the cases corresponding to rules 71, 123 and 233, we noticed that 65-70% of the
time, whenever the unmapped prodrome attribute had a value of false, the unknown
prodrome attribute for that case also had a value of true. This occurrence was high
enough for us to suspect that rules 71, 123 and 233 were identical to rules 8-269. The
increase in unknown prodromes at hospital ID 1 was likely due to a change in the

categorization of ICD9 codes to prodromes by the RODS system.

6.6 Timing

We also ran tests to measure the speedup gained from greedy rule search, racing,
differential counting, and early p-value calculation cutoff. Table 6.5 summarizes the
results, sorted in decreasing order of benefit from the optimizations. The row for
WSARE 3.0 represents the WSARE algorithm with all of the computational tricks
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Algorithm Mean duration | 95% Confidence | Slowdown from
for each day in | Interval original
seconds

WSARE 3.0 14.96 (13.64, 16.29) N/A

Exhaustive Rule Search 456.14 (408.39,503.90) 30.49

No Racing 71.9 (70.95, 72.77) 4.81

No Differential Counting 23.11 (20.95, 25.27) 1.54

No Early P-value Calculation Cutoff 15.02 (13.69, 16.35) 1.00

Table 6.5: A summary of timing results

in place. For each row in the table above, we removed the stated optimization and
measured the time taken to compute the p-value for the best scoring rule on each day.
These timing statistics were taken over 365 days on data from the CityBN simulator
using WSARE 3.0 in which the Bayesian network structure was learned from scratch
every 30 days. A 1.0 Ghz Pentium 4 workstation was used to obtain these results.

The greatest time savings were gained using greedy search instead of exhaustive
search. If we have M attributes all with arity K, then there are O(K M) rules to
search over using greedy search. Exhaustive search for two component rules is clearly
more expensive at a cost of O(K2M?) rules to search over. We have shown in sections
6.1.4 and 6.2.3 that the AMOC curves for exhaustive search were almost identical to

those of greedy search. Thus, we feel justified in using this approximation.

By avoiding the full set of randomization test iterations, racing sped up WSARE
by a factor of nearly 5 times. As was mentioned previously, the racing optimization
was frequently used since typical days did not contain outbreaks and had an insignif-
icant p-value. Differential counting improved the speed by a factor of 1.5. This was
not as substantial a gain as we would have hoped, likely because of the time involved
in setting up the data structures for this optimization. Finally, the speedup from an

early cutoff during the p-value calculation was almost negligible.
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Chapter 7

Improvements to the

Randomization Test

Hypothesis testing is a standard procedure in statistics in which we need to choose
between a null hypothesis Hy and an alternative hypothesis H;. This decision is based
on a test statistic, which is a value calculated from the data that has two distinct
probability distributions under the two competing hypotheses. If the test statistic is in
the rejection region, we reject the null hypothesis in favor of the alternative hypothesis.
Equivalently, we can reject the null hypothesis if the p-value of the test statistic is less
than a predetermined significance level o, which is typically set at o = 0.05. The p-
value is defined as the probability of seeing a value at least as extreme as the observed
test statistic under the distribution of the null hypothesis. The significance level «
controls the probability of a type I error, which occurs whenever the null hypothesis
is rejected even though it is in fact true. Since rejection of the null hypothesis in
favor of the alternative is usually considered to be making a discovery, type I errors

are called false discoveries or false positives.

For a single hypothesis test, the o value does indeed guarantee that the probability
of a type I error is less than or equal to a. However, when m hypothesis tests are
performed, we no longer have the same guarantee on the probability of a type I
error. For instance, suppose we perform 10000 hypothesis tests with o = 0.05. The
probability of a false discovery is will be 1 — (1 — 0.05)'%% ~ 1 >> « (Miller et al.,
2001). Another way of describing this problem is as follows: even if we perform 10000
hypothesis tests with o = 0.05 on randomly generated data, we would still expect to

have 500 “discoveries”.
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# not rejected | # rejected total
# true null hypotheses U V my
# non-true null hypotheses | T S my
total W R m

Table 7.1: A summary table for the multiple hypothesis testing problem as given in
(Ge et al., 2003)

Table 7.1 (Ge et al., 2003) summarizes the multiple hypothesis testing problem.
There are several variations on the type I error rate when applied to the multiple
hypothesis testing. We will only discuss three of these error rates. The Family-
wise error rate (FWER) is defined as the probability of at least one type I Error
ie. Pr(V > 0) and is used by the Bonferroni correction (Bonferroni, 1936). The
Benjamini and Hochberg FDR procedure (Benjamini & Hochberg, 1995) controls the
false discovery rate (FDR), which is the expected ratio of the number of type I errors
over the number of times we reject the null hypothesis. FDR is defined as 0 whenever
there are no rejections. The formula for FDR is shown in Equation 7.1. Finally, the
positive false discovery rate (pFDR) (Storey, 2003) is the FDR, given that at least one
hypothesis is rejected as shown in Equation 7.2. Readers interested in the difference
between 7.1 and 7.2 are referred to (Storey, 2003; Benjamini & Hochberg, 1995).

FDR=E [%\R > 0] Pr(R > 0) (7.1)

FDR=E [%R > 0} (7.2)

In order to compensate for multiple hypothesis tests that are performed while
searching for the best rules, WSARE requires a randomization test. This randomiza-
tion test builds a histogram of the null hypothesis distribution of the test statistic.
Under the null hypothesis, the date and the other case features are assumed to be
independent. The test statistic we calculate is the best scoring rule found in each
of the randomized data sets. The compensated p-value returned is the probability
of having a best score as extreme as the score found on the original “recent” and
“baseline” data sets. The randomization test controls the FWER since the p-value
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is an estimate of the probability of seeing at least one type I error under the null

hypothesis of independence of date and case features for the test statistic.

There are two main concerns with the randomization test portion of the algorithm.
First of all, as was mentioned in Section 4.3, the randomization test is the bottleneck
in the WSARE procedure. If there can be a faster method to account for the mul-
tiple hypothesis testing problem, then WSARE will run much faster. Secondly, the
randomization test only reports the p-value of the best scoring rule found on a partic-
ular day. Although the best scoring rule may be the strangest event from WSARE’s
perspective, it may not be interesting to a public health official. Thus, by reporting
only the p-value of the best scoring rule on a particular day, WSARE may hide some

other anomalous patterns that are more interesting to public health practioners.

7.1 Faster methods to account for multiple hy-

pothesis testing

Perhaps the best known technique to account for multiple hypothesis testing is the
Bonferroni method. Suppose we have performed m tests and we would like to control
the probability of a type I error, ie. rejecting the null hypothesis when it is true, at
some level a. The Bonferroni method requires us to reject the null hypothesis for all
hypothesis tests where the p-value is less than = (Bonferroni, 1936). In other words,

any tests satisfying this condition would yield significant results.

The Bonferroni correction is a very conservative way to control the FWER. The
Bonferroni correction takes into account neither the p-values of the individual tests
nor the ranks of the test statistics. Let us define the adjusted p-value for hypothesis
H; as in (Ge et al., 2003):

pi =inf{a: H;is rejected at FWER = o} (7.3)

The Bonferroni correction then creates a conservative lower bound for the adjusted
p-value of each test. While the Bonferroni correction does guarantee the FWER to
be less than «, it loses power as the number of tests increases ie. the probability of
maintaining the null hypothesis when it should in fact be rejected will approach one

as m increases (Miller et al., 2001).

Implementing the Bonferroni correction is straightforward. It requires a constant
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time multiplication to all the p-values as opposed to the lengthier process of a ran-
domization test. We replaced the Bonferroni correction for the randomization test
and tested this variation on the Bayesian network simulator. The AMOC curve for
the results, as shown in Figure 7.1 indicate that the Bonferroni correction results are
almost identical to those of the randomization test. This similarity was expected be-
cause on each day, there are approximately only 50 hypothesis tests being performed
to find the best scoring rule. We expect that as the number of hypothesis tests in-
creases, due to the number of attributes in the data increasing or by increasing the
arity of each attribute, the power of the Bonferroni correction will decrease, resulting
in poorer performance on an AMOC curve. In general, even though the Bonferroni
correction is extremely fast, we would prefer a more powerful method to adjust for

multiple hypothesis testing.

Bonferroni Correction Versus Randomization Test for Greedy Rule Search with the Number of Rule Ct as2
7

T
Bonferroni --------
Randomization Test
Optimal ------
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False Positives per Month

Figure 7.1: Asymptotic behavior of the Bonferoni correction versus the randomization test version

Another alternative is the Benjamini and Hochberg False Discovery Rate (BH-
FDR) procedure (Benjamini & Hochberg, 1995), which was used in section 4.2.7 to
account, for multiple hypothesis testing due to comparison of p-values over multiple
days when analyzing historical output from WSARE. Similarly, we can use BH-FDR
to handle the multiple hypothesis testing problem due to comparison of rule scores
which are produced by many hypothesis tests on a particular day. Unlike the ran-
domization test which only returns the best scoring rule and its adjusted p-value,
BH-FDR will produces a sorted list of the most significant rules for a particular day
along with a guarantee of an expected false discovery rate of arppgr. In addition,

BH-FDR is a much faster procedure than the randomization test.
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7.2 Reporting more than the best scoring rule for
the day

As was previously mentioned, reporting only the best scoring rule for the current
day can mask other potentially interesting anomalous patterns on that day. Consider
the following scenario where the best scoring rule for today reveals an upswing in ED
cases involving patients with ages between 80 and 90 from a sparse populated zipcode.
While this rule is significant from WSARE’s standpoint, suppose that after public
health officials look at it, they determine that it is truly a statistical anomaly and not
a public health threat. Since it is the best scoring rule, the next four best scoring rules
individually have a lower score and are not reported by WSARE. However, suppose
that the next four best rules do pick up on a food-borne outbreak and indicate that
there is an unusually high proportion of ED cases from 4 neighboring zipcodes. Public
health officials would be interested in this spatial cluster but they are not alerted to

its presence.

The obvious solution would be to report the top n rules for a particular day.
Nevertheless, we still need to associate a p-value for each of these rules. An extremely
expensive solution would be to run a separate randomization test for each of the n
rules. Let p; be defined as the compensated p-value result from the randomization
test in which the test statistic is the number of times the ith best rule found in the
randomized data sets has a better score than the ith best rule for the original data
set. Thus, in our computationally intensive solution, we could calculate py, po, . .. , Pp.
A more feasible solution would be to associate some p-value with the entire set of n
rules. This can be somewhat accomplished if WSARE reports the top n rules and
then perform a randomization test in which the p-value estimate is p,. This p-value
estimates the probability of seeing a set of n rules in which the nth best rule has a
score as good as the score of the nth best rule on the original data set under the null
hypothesis. Besides the difficulty in interpreting this p-value description, a major
drawback to this approach is the fact that n needs to be known. We typically do not
know a priori how many significantly anomalous rules there will be on a particular
day. Suppose that in reality, there are 4 significantly anomalous events but since we
set n to be 5, we “accidentally” include an insignificant fifth event which ends up

making the p-value of the set insignificant as well.

Our solution to reporting multiple rules on a particular day is to use the BH-FDR
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procedure developed by Benjamini and Hochberg (Benjamini & Hochberg, 1995),
which was described in detail in Section 4.2.7. Let an adjusted p-value for BH-FDR
be defined as in Equation 7.3:

pi = inf {a: H; is rejected at FDR = «} (7.4)

For each null hypothesis test that is rejected by FDR, the adjusted p-value for that
test can be calculated as in Equation 7.5, where p,, < p,, < ... < p,, are the observed
p-values sorted in increasing order and ¢, is a value based on the dependence of the
hypothesis tests.

mcy,

bro =, min {min( p prk,l)} (7.5)

Note that this adjusted p-value is not a traditional p-value in the sense that it
measures the probability of a type I error under the null hypothesis. Instead, it is
the minimum FDR at which a p-value can be considered significant. This value is
similar to g-values which are described in the next section. Public health officials that
are accustomed to seeing traditional p-values may be unfamiliar with these adjusted
p-values and may misinterpret them. As a result, when the significant rules for a day
are reported using this BH-FDR modification, WSARE simply lists the rules without

their p-values but in order of decreasing significance.

On a day with a disease outbreak, BH-FDR should in theory return a relatively
large list of significant p-values along with their corresponding rules. Public health
officials can use this list with some certainty knowing that the expected proportion of
false discoveries in this list is . Figure 7.2 illustrates the results of using this BH-FDR
procedure on one of the data files from the CityBN simulation with appr = 0.01.
On day 74420, the anthrax release occurred in this simulation, resulting in a large

number of significant p-values being reported by WSARE after that day.

Another possibility that we explored was the use of g-values (Storey, 2003). Q-
values can be considered as the pFDR parallel to a p-value. Following the notation of
(Ge et al., 2003), let us define the rejection region I, for significance level a. We can
consider p-value(t) to be the minimum Type I error probability « over all rejection
regions I, containing the observed test statistic value t. Likewise, q-value(t) is defined
as the minimum pFDR that can occur over all rejection regions I', containing ¢.
Informally, g-value(t) is the pFDR when we make ¢ significant. Q-values can be
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Figure 7.2: Number of significant p-values per day for CityBN data

estimated using either a fast cubic spline interpolation algorithm (Storey & Tibshirani,
2003) or a slower but more robust bootstrap algorithm (Storey et al., 2002).

The most attractive feature of the g-value procedure is that it can be shown to
be a more powerful test than BH-FDR (Storey, 2002). If we define my = ™2, where
my is the number of true null hypotheses and m is the total number of hypothesis
test, as defined in 7.1, then BH-FDR controls for FDR at level ‘”:r% while the g-value
procedure controls it at a. Since myp < 1.0 and o < ‘”;r%, the g-value procedure is
more powerful than BH-FDR because it rejects the same number of null hypotheses
as BH-FDR but at a lower significance level.

We were unable to use the g-value procedure because WSARE violates the assump-
tions of either independence among the null hypothesis p-values or weak dependence
as defined in (Storey et al., 2002). Under the null hypothesis, the p-values and hence
rules of WSARE are strongly dependent. For example, the p-value from a rule such
as “Gender = Male AND Age = Senior” will be correlated with the rules such as
“Gender = Male” and “Age = Senior”. Furthermore, the benefit of using the g-value
procedure over BH-FDR is relative to my. In a situation where my = 1, there is no
benefit over the BH-FDR procedure. For scenarios like DNA microarray analysis, we

expect a large proportion of null hypotheses to be rejected and hence 7y should be
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relatively low. On the other hand, for WSARE, there is little benefit since we expect

7o to be relatively high most of the time.
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Chapter 8

An Efficient Algorithm for
Clustering with Clutter

The most common kinds of clustering algorithms tend to fall into two categories
— mixture models and graph theoretic approaches such as hierarchical single linkage
clustering. The best choice is task and data dependent. However, cases do exist where
both of these styles perform poorly, such as in Figure 8.2, which has too much noise
for the clustering algorithms to find the appropriate clusters. When single linkage
clustering was asked to find five clusters in the example data set, it joined together
nearly all the points, as shown in Figure 8.3. A mixture of Gaussians, optimized
by EM, was also unsuccessful, as the results in Figure 8.4 indicate. Even though
we permitted a uniform background component and started the iteration with hand
picked Gaussians, EM was unable to correctly model the shape of the overdense area.
Furthermore, seven Gaussians were required by EM, which is more than the three
clusters that make up the region of overdensity. On the other hand, the Cuevas-
Febrero-Fraiman algorithm, to be described shortly, successfully finds the correct

number of clusters as shown in Figure 8.5.

Situations with a combination of noisy backgrounds and clusters that can not be
modeled by parametric forms such as Gaussians are common enough in the physical
sciences, such as astrophysics (Reichart et al., 1999), that a new approach is needed.
As an example, consider the data set shown in Figure 8.6. This data set is a two
dimensional projection taken from the Early Data Release of the Sloan Digital Sky
Survey (The Sloan Digital Sky Survey, 2000). Each point is a galaxy containing many

billions of stars. Astrophysicists are interested in clustering galaxies, but a noisy

117
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background of field galaxies interferes with traditional clustering techniques. Figure
8.7 demonstrates the clusters found by using the Cuevas-Febrero-Fraiman algorithm.
Other examples include detection of minefields (Dasgupta & Raftery, 1998), detection
of seismic faults (Dasgupta & Raftery, 1998), robust estimation of covariance (Byers
& Raftery, 1998), and identification of foci of activation in the brain (Pereira et al.,
2001).

This type of clustering can also be extended to perform spatial surveillance of dis-
ease outbreaks. Suppose we are provided with the spatial locations of cases belonging
to the disease of interest. We naturally expect some isolated cases over a geographic
area, which we can consider as a noise. The cases that are of greater interest to
epidemiologists are those that are within close proximity to each other. If we plot
the case locations on a map, we can use density estimation to find the high density
areas which would correspond to the areas with disease clusters. For chronic diseases,
the low amount of noise on the map would not be a problem for a standard density
estimation technique. In the case of syndromic surveillance data however, there is
a potential for more noise in the spatial distribution since the data is non-specific.
Moreover, we might consider more attributes than just the locations of cases. The
addition of temporal, demographic, and symptom-related attributes would increase
the dimensionality of the data. The Cuevas-Febrero-Fraiman algorithm, along with
the optimizations described in this chapter, is ideal for finding clusters against a noisy

background in two or more dimensions.

Simply using the Cuevas-Febrero-Fraiman algorithm on the locations of disease
cases does not take into account the underlying at-risk population. As was mentioned
in Section 3.2.2, the relative risk surface is a more accurate representation of the
disease incidence in an area. In (Kelsall & Diggle, 1995; Bithell, 1990), the relative
risk surface was formed by two kernel density estimates — one to model the expected
distribution of cases and the other for the observed distribution. The areas of high
risk can be found by finding the areas with high values of the ratio of the observed
distribution to the expected distribution. Locating these high risk areas is similar
to the process of finding areas of high density. Although we do not describe an
efficient algorithm for finding the relative risk surface in this chapter, we present the
optimizations to the Cuevas-Febrero-Fraiman algorithm as a first step and possible

extensions are left for future work.

The algorithm proposed by Cuevas, Febrero and Fraiman (Cuevas et al., 2000),
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Figure 8.6: A data set of galaxies from Figure 8.7: The seven clusters found by
the Sloan Digital Sky Survey CFF and manually circled

while originally developed to estimate the number of clusters, can also be applied
to the problem of finding clusters against a noisy background as we will show. We
will hereafter abbreviate the Cuevas, Febrero and Fraiman algorithm to be the CFF

algorithm.

8.1 The CFF Algorithm

One common definition, originated by Hartigan (Hartigan, 1975), of the number of
clusters in a data set is the number of connected components of the level set {f > ¢},
where f is a density function on R? and c is a positive constant. In (Cuevas et al.,
2000), CFF describes a two step algorithm that takes three parameters, a bandwidth
h, a density threshold ¢, and a link-length e:

e Step One: Find the set of high density datapoints {X; e Data set | f,(X;) > ¢},
where fh is a kernel density estimator of f with bandwidth A.

e Step Two: Construct the graph in which the vertices are the high density
datapoints and in which the nodes X; and X are linked together if and only if
| X; — X;| <, where | X; — Xj| is the Euclidean distance. Find the connected
components of this graph.

The second step forms a set of spanning trees with the X;s in which the edges
are of length € or less. In fact, the algorithm proposed by CFF forms a Minimum
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Spanning Tree since in that algorithm the next point to be considered is the closest

point to the members of the current connected component.

While the algorithm is conceptually simple, it suffers from computational issues,
especially when there are many datapoints and more than one dimension. Nonpara-
metric density estimation is expensive. Euclidean Minimum Spanning Trees (EMSTs)
can be determined in O(nlogn) time in two dimensions using Delauney triangulations
(Preparata & Shamos, 1985), where n is the number of datapoints. However, this
technique does not scale well as the dimensionality increases. We propose a fast ver-
sion of the CFF algorithm by addressing the computational issues in both of these
steps.

8.1.1 Scaling Step One: Nonparametric Density Estimation

This paper will pay relatively little attention to Step One for two reasons. First,
although it is critical to the scalability of the method, it can be addressed using
technology to be reported in a separate paper (Gray & Moore, 2002). That paper
describes how two ideas can allow near linear time detection of high density points.
The first idea uses a dual tree algorithm similar to that described in (Gray & Moore,
2001) while the second idea cuts off the search early without computing exact densities

in a manner similar to the single ball-tree approach of (Moore, 2000)

The second reason we will pay no more attention to Step One is that frequently
the CFF algorithm is executed with a sequence of hundreds of different values of c
and € but with the same bandwidth A and thus the same density estimate f . For this
scenario the speed of Step One is much less critical than Step Two, since provided
we can obtain numerical density estimates for all datapoints (again, using a new
all-kernel algorithm to be described in (Gray & Moore, 2002)), we must run Step 2
hundreds of times for each execution of Step One.

8.1.2 Scaling Step Two: Connected Components

The CFF algorithm for finding connected components does not address the issue of
obtaining the distances between points when forming the Minimum Spanning Tree.
The initial improvement over the CFF method is straightforward. We simply ex-
ploit recent results in computational geometry for efficient EMSTs. This is based
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on the GeoMST2 algorithm described in (Narasimhan et al., 2000). One of the key
concepts behind GeoMST?2 is the use of Well-Separated Pair Decompositions, which
were developed by Callahan (Callahan, 1995), (Callahan & Kosaraju, 1995). We will
now outline the GeoMST2 algorithm, after which we will introduce two additional
speedups that are specific to the CFF algorithm and gain at least one extra order of

magnitude speed, especially in higher dimensions.

8.2 Well-Separated Pair Decomposition

Figure 8.14 illustrates a Well-Separated Pair. Let A and B be point sets in ¢
with bounding hyper-rectangles R4 and Rp respectively. The notation Diam(R,4)
indicates the diameter of the hyper-rectangle R4. MargDistance(A,B) is defined
to be the minimum distance between the hyper-rectangles R4 and Rg. The point
sets A and B are considered to be well-separated (Callahan & Kosaraju, 1995) if
MargDistance(A,B) > max{Diam(R,4), Diam(Rpg)} (Narasimhan et al., 2000). The

interaction product between two point sets A and B is defined as:
A@B={{p,p'}peAp eB, andp# p'}

A set of pairs (A1, By),- .., (Ag, Bx) is said to be a well-separated realization of
A ® B if the following properties (Callahan, 1995) hold:

1. AiCAand B,C Bforalli=1,... k.

2. AinB;,=0foralli=1,...,k.

3. (4 ® B;)) N (4;® B;) =0 for all 4, j such that i # j
4. A B=J",A;® B

5. A; and B; are well-separated for all i =1,... , k.

Notice that A; ® By, ..., Ar ® By is a partitioning of the large set consisting of
all pairs of points (a € A,b € B). Every pair of points exists in exactly one (A;, B;).
And in addition, every (A;, B;) has the property of being well-separated.

If P is a point set in |? then a Well-Separated Pair Decomposition, hereafter
abbreviated to WSPD, of P is a set of pairs (A4;, B;), ... , (Ag, Bx) which is a well-
separated realization of P ® P. Somewhat astonishingly, a WSPD of a point set P
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of size n can be constructed with only O(n) elements and in only O(nlogn) time
(Callahan & Kosaraju, 1995). This decomposition is performed using a fair split tree
(Callahan & Kosaraju, 1995), which is essentially a k-d tree.

Figures 8.9 to 8.12 illustrate a WSPD of the data set with five datapoints shown
in Figure 8.8. This decomposition was formed using a fair split tree. The WSPD
contains four pairs. The members in each pair of the WSPD are drawn using a large
black circle and a light gray circle. The bounding hyper-rectangles of the pairs in the
WSPD are also shown.

8.3 GeoMST2

The GeoMST?2 algorithm (Narasimhan et al., 2000) is an improvement on the Ge-
oMST algorithm (Callahan & Kosaraju, 1993) and (Eppstein, 1999). Both algorithms
use WSPDs in order to address the issue of forming EMSTs in higher dimensions.
GeoMST?2 differs from its predecessor by reducing the number of Bichromatic Closest
Pair (BCP) distance calculations. The BCP distance of two point sets A; and B; is
defined to be the shortest distance between a and b where a € A; and b € B;. GeoMST?2

has an expected running time of O(nlogn).

The algorithm is best explained by looking at the pseudocode in Figure 8.13. Line
1 forms the WSPD of a point set S. The edges of the final EMST are selected from
among the pairs of the WSPD. In lines 3-5, GeoMST2 inserts each pair of the WSPD
into a priority queue, using the MargDistance as the priority. In order to form a
EMST correctly, lines 6-14 must remove the pairs of the priority queue in the order
of ascending BCP distance. However, in line 4, the priority used for the queue is
the MargDistance, which is a lower bound for the BCP distance and it is also much
cheaper to compute. We will shortly explain how GeoMST2 does indeed produce a
EMST.

Let the element currently removed be the pair (A;, B;). Line 8 determines if A;
and B; are already connected. If they are connected, then the pair is ignored and we
have possibly saved ourselves a BCP calculation. Otherwise, line 9 determines if the
BCP distance has been calculated. In the case that the BCP distance has not been
computed, Lines 12-14 calculate the BCP pair and distance. The Well-Separated Pair
is reinserted into the priority queue with the actual BCP distance as the priority. Line
14 flips the Computed BCP flag to be true for that pair. If the BCP distance has been
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Figure 8.8: The original data set

Figure 8.9: WSPD Pair 1

Figure 8.11: WSPD Pair 3
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Figure 8.10: WSPD Pair 2

Figure 8.12: WSPD Pair 4



Line #
0......GeoMST2(S)

1. ~(A1,B1),...,(Am,Bm)” = WSPD(S)
2. E=0,PQ=0

3. fori=1tomdo

4. PQ.Insert(i,MargDistance(Ai,Bi))
5...... ComputedBCP[i] = FALSE

6...... while(not PQ.Empty()) do

7. i = PQ.ExtractMin()

8. if( Ai and Bi are not connected )
9. if( ComputedBCP[i] )

10..... E = E Union —(ai,bi)”

11..... else

12 —ai,bi,D” = BCP(Ai,Bi,Infinity)
13..... PQ.Insert(i,D)

14..... ComputedBCP[i] = true
15..... T = (S,E)

16..... return T

Figure 8.13: The GeoMST2 algorithm

computed, as shown in line 10, an edge is formed between the element a ¢ A; and the
element b € B; that yields the BCP distance.

There are two crucial points for the correctness of GeoMST2. First of all, Line 13
reinserts a pair into the priority queue when the BCP distance has been calculated;
this BCP distance will be at least as large as the MargDistance. Secondly, an edge
is only added to the MST if the actual BCP distance has been computed. These two
points guarantee that an edge is added to the EMST only when all shorter edges have
already been handled.

8.3.1 CFF-specific optimizations

A naive implementation would use GeoMST2 to calculate the minimum spanning
tree until the distance obtained from the priority queue was greater than e. This is
wasteful for us because all we need are e-clusters, i.e. clusters formed by joining all
points that are within e distance or less from each other. A point may be joined to
a cluster through any link of length less than e—mnot necessarily the link that would
appear in the EMST. This observation can be exploited by modifying the step that
finds the WSPD while leaving the rest of the GeoMST2 algorithm intact. If we can
reduce the number of pairs that are in the WSPD, then GeoMST2 will be much faster

due to less elements in the priority queue, as will be shown in Figures 8.18 and 8.19.
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Optimization 1: Ignoring links that are > ¢

The main purpose of the WSPD is to reduce the number of edges under consideration
when forming the MST. Every pair (4;, B;) in the set of pairs of the WSPD becomes
an edge in the EMST unless it joins two already connected components. If the
minimum distance separating the bounding hyper-rectangles of the sets A; and B; is
greater than e, as illustrated in Figure 8.15, then an edge of length € or less cannot
possibly exist between a point in A; to a point in B;. While forming the WSPD, we

need not include any (A;, B;) IPs with separation distance greater than e.

Optimization 2: Joining all elements that are within ¢ distance of each
other

If the maximum distance separating the bounding hyper-rectangles of A; and B; is
less than ¢, then the points in A; and B; must belong to the same e-cluster. We can
simply join all the points in A; and B; if they are not already connected. Since we
need not form a EMST, we can connect the points in any order. Furthermore, we
need not add such pairs that have this property to the WSPD.

Summary

These two optimizations speed up two crucial areas of the GeoMST algorithm. First
of all, they reduce the amount of time required to produce the WSPD. Secondly, the
number of well-separated pairs is reduced, thereby speeding up the later half of the
GeoMST2 algorithm by reducing the size of the priority queue.
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8.4 Results

Experiments were conducted on a subset of data taken from the Sloan Digital Sky
Survey (The Sloan Digital Sky Survey, 2000), which is a digital map of the sky. The
data set used had 7 columns, consisting of four colors, two sky coordinates, and a

redshift value. We performed most of our experiments on the four color values.

Figure 8.17 compares the time taken to perform the clustering step of the CFF
algorithm by using Kruskal’s MST algorithm, GeoMST2, and our new implementa-
tion called e-clustering. Modifications were made to both Kruskal’s algorithm and
GeoMST?2 to terminate the algorithm the moment an edge that was greater than e
was encountered. The experiments were run on 4 dimensional data sets with 200
to 1000 records, in increments of 200. Since Kruskal’s algorithm is non-competitive
as the number of datapoints are above 10000, we compare the speeds of GeoMST?2
and e-clustering on data sets of size 20000 to 100000, in increments of 20000 records.
These experiments were run on 3 and 4 dimensional data. Figures 8.18 and 8.19 show

the results. e-clustering outperforms GeoMST2 in all the cases.

Figure 8.20 shows the effects of increasing the number of datapoints on the time
taken by e-clustering. We ran experiments on data sets of size 200000 to 1000000, in
increments of 200000. The experiments were performed on data in 2 to 5 dimensions.
For certain settings of the parameters, the time increases linearly, while for others,

time appears to increase on the order of O(nlogn).

These experiments indicate that the bandwidth h, threshold ¢, and ¢ have an
impact on the running time. A and ¢ affect the number of high density datapoints.
The e parameter affects the time spent in the WSPD step. If € is very large, the
WSPD step ends early as all the points in the fair split tree node can be connected.
Similarly, a small value of € results in more pairs that are separated by a distance
greater than e. Figures 8.21 and 8.22 illustrate the effect of varying € on time on
a 3-dimensional and a 4-dimensional data set with 100000 records each. The time

seems to peak at about a value of 0.5 for € for both plots.

8.5 Related Work

Banfield and Raftery (Banfield & Raftery, 1993) use a mixture-model approach to

perform clustering on d-dimensional data with clutter. The data is assumed to be
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generated from a mixture of Gaussians together with a homogeneous spatial Poisson
process which produces the clutter. The clusters are assumed to be highly linear
or piecewise linear, where linear means that they are concentrated along their first
principal component. Clustering is performed by maximizing the parameters and the
partitioning of the data over the classification likelihood. Their approach, however,
requires the user to provide information about the shape of the clusters and the
algorithm’s approximation of the number of clusters in the data performs poorly
when the clutter makes up a majority of the data. Dasgupta and Raftery (Dasgupta
& Raftery, 1998) extend on the work by Banfield and Raftery. The technique proposed
by (Dasgupta & Raftery, 1998) iterates over a range of possible number of clusters
for the data. In each iteration, an initial clustering is performed using the method
proposed by Banfield and Raftery. Then, an EM step follows in which the maximized
mixture likelihood is obtained upon convergence and this value is used to compute
the Bayesian Information Criterion score for the model. The EM step is also modified
to estimate the shape of the clusters from the data. The best model, along with its

clustering, is selected.

Byers and Raftery (Byers & Raftery, 1998) propose a further algorithm that is
not restricted by the shape or the number of the clusters. Once again, the clutter
is assumed to be a homogeneous Poisson point process, but the features are also
considered as a Poisson process on top of the clutter. This approach computes, for
every data point, the kth nearest neighbor distance, where k is a parameter supplied
by the user. This distance is modeled as a mixture of two gamma distributions, one
for the clutter and the other for the features. The next step of the algorithm applies
EM to estimate the parameters of the mixture. From the results of EM, a data point
can be classified as clutter if its probability of belonging to the clutter component is

higher than that of belonging to the feature component and vice versa.

8.6 Conclusion

e-clustering is a computationally efficient algorithm for determining the connected
components in Step 2 of the CFF algorithm. Our results show that it outperforms
GeoMST2, one of the fastest EMST algorithms, by nearly an order of magnitude in
higher dimensions. Combining e-clustering with the nonparametric density estimation
algorithms in (Gray & Moore, 2002) will yield an effective algorithm for identifying
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clusters against a noisy background with massive amounts of data.
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Chapter 9

Future Work and Conclusions

9.1 Future Work

9.1.1 Accounting for Uncertainty in the Bayesian network

When a Bayesian network structure is learned from data, there may be a small number
of events for a particular parent and node value combination that results in a large
variance for the estimate of the corresponding parameter. The Optimal Reinsertion
algorithm currently fills the conditional probability table in each node with just the
mean of the posterior distribution for that parameter while ignoring its variance.
WSARE 3.0 then uses the network and its parameters to produce a p-value for each
rule. One of the main concerns of WSARE 3.0 is that the variances of the network
parameters are not taken into consideration when calculating the p-value. We are less
confident about a p-value obtained from infrequent counts than for one calculated

from a large sample, yet the current algorithm treats all p-values identically.

In general, Bayesian network structure learning algorithms following the frame-
work of (Heckerman et al., 1995) implicitly store counts from which the parameter
variance can be calculated but this information is typically ignored. We can exploit
this dormant information to determine the posterior distribution of a query response,
which we will define as the probability of a rule given the value of its environmental at-
tributes eg. Pr(Xo, ..., X,|Season = Winter, Day of Week = Friday). One proposed
solution requires determining how sensitive the query response is to the Bayesian net-
work parameters. A quantitative measure can be obtained by calculating the partial
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derivatives of the query response with respect to the Bayesian network parameters
(van Allen, 2000). The parameter variances can then be propagated through the
system of partial derivatives to obtain an approximation of the query response vari-
ance. At this point, the mean and the variance of the query response are known and
the posterior distribution of the query response can be modelled as a normal (van
Allen et al., 2001; van Allen, 2000) or as a Beta distribution (Singh, 2004). Finally,
a p-value that incorporates the variances of the parameters can be obtained from a

possibly modified version of this posterior distribution.

9.1.2 Incorporating the Spatial Scan Statistic

The Spatial Scan Statistic (Kulldorff, 1997) can be considered as the spatial analog
to WSARE. Both algorithms can be summarized in two steps. The first step requires
searching and scoring of anomalous events. After the most unusual event is found, the
second step involves a Monte Carlo simulation to associate a p-value with the most
unusual event. For the search phase, WSARE searches over one and two component
rules while the Spatial Scan Statistic searches over scanning windows, which are
typically circles. In order to score its regions, the Spatial Scan Statistic assumes a
background Poisson or Bernoulli process. With this assumption, a likelihood ratio can
be used as a scoring function. WSARE, on the other hand, makes no assumptions
on the distribution of the null hypothesis. Instead, it uses Fisher’s Exact test on
a two-by-two contingency table. These two scoring functions are making different
comparisons. The Spatial Scan Statistic compares events from different geographic
regions while WSARE compares events from a recent time period against a baseline
time period. In the second step, both algorithms rely on Monte Carlo simulations
to handle the multiple hypothesis testing problem in the first step. However, the
algorithms differ in the specifics of the simulation, with the randomization test for
WSARE being somewhat slower since the distribution of the null hypothesis is done
through randomization while the Spatial Scan Statistic simply generates cases from

a known model.

With these similarities, a hybrid algorithm between the two approaches seems like
an obvious next step. As a simple first step, WSARE can be extended to consider
the spatial components of the data somewhat differently from the other attributes.
During the rule search, WSARE can consider rules such as “Gender = Male” AND
“All cases within a radius r of point (z;,v;)”. A more advanced modification of
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WSARE would allow it to handle any number of real valued attributes, perhaps by
incorporating an approach similar to applying a one dimensional scan statistic for
each real valued attribute. Clearly, computational issues are at the forefront for these
extensions. Other concerns involve designing a scoring function and a Monte Carlo
simulation that can be compatible for both algorithms.

9.1.3 Multiple time windows

WSARE compares events from the past 24 hours to events from a baseline period. A
scenario that WSARE might not detect is when events in the past 24 hours do not
seem unusual but events in the most recent 4 hours contain striking irregularities.
By looking at data from the past 24 hours, WSARE smooths out the anomalous
patterns that it might have noticed if it only considered data from the past 4 hours.
As a result, one extension we would like to add is to allow WSARE to search for
anomalous events over multiple time windows eg. events from the past 4 hours, 6
hours, 12 hours, etc. Naturally, many counting statistics can be reused in order to

alleviate the computational burden of this modification.

9.1.4 WSARE in higher dimensions

WSARE presently operates on low dimensional, categorical and dense data. On
the other end of the spectrum is high dimensional and sparse data such as text
mining data and drug design data. We would like to extend WSARE so that it is
able to find anomalous patterns in high dimensional data. A frequently suggested
approach for high dimensional data is to find a lower dimensional subspace of the
problem through Principal Component Analysis and then search for low probability
data points according to some model (Shyu et al., 2003). However, as was mentioned
previously, this anomaly detection method finds isolated outliers and is inappropriate

for detecting shifts in the proportions of groups between one time period and another.

9.1.5 Non-biosurveillance data

Since WSARE makes few assumptions about the data, it is an extremely general
algorithm that can be applied to data other than biosurveillance streams. Examples
of potential applications for WSARE include fraud detection (Fawcett & Provost,
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1997), monitoring maintenance of trains and airplanes, topic detection, monitoring
of robot logs, and supernova detection. We would certainly like to evaluate the

performance of WSARE on such tasks in the near future.

9.2 Conclusions

WSARE approaches the problem of early outbreak detection on multivariate surveil-
lance data using two key components. The first component is association rule search,
which is used to find anomalous patterns between a recent data set and a baseline
data set. The contribution of this rule search is best seen by considering the alter-
nate approach of monitoring a univariate signal. If an attribute or combination of
attributes is known to be an effective signal for the presence of a certain disease, then
a univariate detector or a suite of univariate detectors that monitors this signal will
be an effective early warning detector for that specific disease. However, if such a
signal is not known a priori, then the association rule search will determine which
attributes are of interest. We intend WSARE to be a general purpose safety net to
be used in combination with a suite of specific disease detectors. Thus, the key to
this safety net is to perform non-specific disease detection and notice any unexpected

patterns.

With this perspective in mind, the fundamental assumption to our association
rule approach is that an outbreak in its early stages will manifest itself in categorical
surveillance data as a cluster in attribute space. For instance, a localized gastroin-
testinal outbreak originating at a popular restaurant in zipcode X would likely cause
an upswing in diarrhea cases involving people with home zipcode X. These cases
would appear as a cluster in the categorical attributes of “Home Zipcode = X” and
“Symptom = Diarrhea”. The rule search allows us to find the combination of at-
tributes that characterize the set of cases from recent data that are most anomalous
when compared to the baseline data. In addition, we assume that by monitoring rules
with a given limit on the number of components, which is typically two for WSARE
2.0, we are able to characterize this cluster in attribute space. The nature of the rule
search, however, introduces the problem of multiple hypothesis testing to the algo-
rithm. Even with purely random data, the best scoring rule may seem like a truly
significant anomalous pattern. We are careful to evaluate the statistical significance
of the best scoring rule using a randomization test in which the null hypothesis is the
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independence of date and case features.

We evaluated the effectiveness of the rule search in the gridworld simulator, where
a disease with a target demographic group of males in their 50s was released into the
simulator. With this target group and the locality of interaction in the simulator,
we were able to produce data that was ideal for detection by WSARE 2.0. As a
result, when compared against three univariate algorithms that relied on aggregate
daily counts, WSARE 2.0 outperformed them in terms of sensitivity, specificity, and

timeliness.

The second major component of WSARE is the use of a Bayesian network to
model a baseline that changes due to temporal fluctuations such as seasonal trends
and weekend versus weekday effects. In WSARE 3.0, attributes are divided into
environmental and response attributes. Environmental attributes, such as season
and day of week, are features which are responsible for the temporal trends while
response attributes are the non-environmental attributes. When the Bayesian network
structure is learned, the environmental attributes are not permitted to have parents
because we are not interested in predicting their distributions. Instead, we want to
determine how the environmental attributes affect the distributions of the response
attributes. WSARE 3.0 operates on an assumption that the environmental attributes
account, for the majority of the variation in the data. Under this assumption, the
ratios compared in the rule search should remain reasonably stable over historical
time periods with similar environmental attribute values. As an example, if the
current day is a winter Friday and we use season and day of week as environmental
attributes, then the fraction of male senior citizens, for instance, showing up at an ED
to the total number of patients should remain roughly stable over all winter Fridays
in the historical period over which the Bayesian network was learned. Once the
Bayesian network structure is learned, it represents the joint probability distribution
of the baseline. We can then condition on the environmental attributes to produce

the baseline given the environment for the current day.

The CityBN simulator was built in order to generate surveillance data which
contain temporal fluctuations due to day of week effects and seasonal variations of
background illnesses such as flu, food poisoning and hayfever. In addition, many of the
attributes from the two Bayesian networks used to generate data for the simulator
were not explicitly included as attributes in the surveillance data. Some of these

hidden variables were responsible for temporal fluctuations in the surveillance data.
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WSARE 3.0 used the environmental attributes of season, day of week, flu level and
weather in order to detect the anthrax release in the simulated data. Despite the
fact that these environmental attributes did not account for all of the variation in the
data, WSARE 3.0 detected the anthrax outbreaks with nearly the optimal detection
time and a very low false positive rate. We compared WSARE 3.0 against three
univariate algorithms — a control chart, a moving average algorithm, and an ANOVA
regression algorithm. The ANOVA regression is an effective detector in the face of
temporal fluctuations, as was shown in the DARPA Challenge (Buckeridge et al.,
2004). These three algorithms operated on two univariate versions of the data —
one version consisted of total daily counts while the other was the daily counts of
cases involving respiratory problems. In both cases, WSARE 3.0 outperformed all
the univariate algorithms in terms of sensitivity, specificity and timeliness. WSARE
3.0 also produced a better AMOC curve than WSARE 2.0 because WSARE 2.0 was
thrown off by the temporal trends in the data. Finally, the Bayesian network provided
some smoothing to the baseline distribution which enhanced WSARE 3.0’s detection
capability as compared to that of WSARE 2.5.

Although WSARE performed well on our simulated data, when it was applied
to the DARPA challenge data, its limitations could be seen. First of all, WSARE
cannot detect a spike in total daily counts because it relies on changes in ratios
as the signal of an outbreak. Secondly, the DARPA challenge data was extremely
nonstationary. The environmental attributes of season and day of week could not
account for the variation due to new sources of data contributing data and previously
existing sources not consistently reporting data. Another problem for WSARE was
the fact that the “seasonal” trends in the DARPA challenge did not follow seasonal or
monthly time boundaries and we approximated it using seasons. In general, knowing
the exact behavior of temporal trends is difficult and sometimes these trends are not
even consistent from year to year. Finally, in data sets with more than one outbreak,
WSARE incorporated data during epidemic periods into its baseline since it had no

knowledge that an outbreak had occurred.

Multivariate surveillance data with known outbreak periods is extremely difficult
to obtain. As a result, we resorted to evaluating WSARE on simulated data. We
concede that although the simulated data sets posed challenging problems to detection
algorithms, the simulators do not reflect real life. Furthermore, the simulators that
were built generated data which satisfied many of the assumptions inherent to the

rule search and the Bayesian network modelling approaches of the algorithm. We
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suggest two further evaluation techniques to obtain a better understanding of the
effectiveness of WSARE. First of all, a very common simulation strategy is to use
existing multivariate surveillance data as a background and inject outbreaks into this
data. Since actual data is used, the generated data sets will contain real temporal
trends in the background. However, the process of adding outbreaks must be carefully
done so that the outbreaks cannot be easily detected using an obvious univariate
signal. In general, creating a challenging multivariate detection problem is extremely
difficult and subject to many iterations of fine tuning. Our second suggestion is to run
WSARE on actual surveillance data, such as the ED data used in Sections 6.4 and
6.5 and then validate the results with public health officials. Of course, this process

is time consuming but some ground truth can be established.

In short, WSARE has been demonstrated to outperform traditional univariate
methods over simulated data in terms of timeliness, sensitivity and specificity. Its
performance over real world data requires further evaluation. Furthermore, although
WSARE is a powerful detection algorithm, a naive implementation of it results in a
computationally expensive algorithm. We have included a variety of optimizations
which substantially speed up the algorithm, including techniques such as greedy rule
search, racing, Optimal Reinsertion, and differential counting. Currently, WSARE is
part of the collection of biosurveillance algorithms in the RODS system (Real-time
Outbreak Detection System, 2004). WSARE 2.0 was deployed to monitor ED cases
in western Pennsylvania and Utah. It was also used during the 2002 Salt Lake City
winter Olympics. Recently, WSARE 3.0 has been deployed to monitor ED cases in

Pennsylvania and other states.
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Appendix A

A sample Bayesian network

learned from simulator data

Figure A.1 illustrates an example Bayesian network learned from the CityBN simula-
tor data. The contingency tables for each node have also been shown in this section.
Each row in the contingency table corresponds to a combination of parent values and
each entry in the row corresponds to the probability of taking on that node value

given the parent values.

Day of Week

Figure A.1: A learned Bayesian network from the CityBN data
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Region

Season | C E N NE NW S SE SW W
fall 0.075 0.116 0.157 | 0.200 0.034 0.074 0.234 0.065 0.043
spring | 0.103 0.068 0.098 0.281 0.024 0.119 0.131 0.117 | 0.059
summer| 0.084 0.076 0.099 0.204 0.023 0.086 0.274 0.113 0.041
winter | 0.069 0.105 0.158 0.202 0.040 0.076 0.233 0.077 | 0.040
Age
child senior | working
0.212 0.326 0.462
Gender
female | male
0.500 0.500
Flu
decline | high low none
0.302 0.130 0.057 | 0.511
Day of Week
sat sun weekday
0.146 0.149 0.704
Action
Reported | absent evisit purchase
Symptom
nausea 0.559 0.441 0.001
none 0.215 0.035 0.750
rash 0.324 0.674 0.001
respiratory| 0.300 0.703 0.000
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Reported Symptom

Weather | Season | nausea | none rash respiratory
Value

cold fall 0.150 0.539 0.017 0.294

cold spring 0.126 0.530 0.082 0.262

cold winter 0.159 0.537 0.011 0.293

hot fall 0.139 0.454 0.125 0.282

hot spring 0.141 0.481 0.127 0.251

hot summer | 0.145 0.504 0.137 0.214

Drug

Reported | Action aspirin | none nyquil vomit-b-gone
Symptom
absent nausea 0.142 0.580 0.172 0.106
absent none 0.150 0.585 0.154 0.111
absent rash 0.004 0.989 0.004 0.004
absent respiratory| 0.165 0.598 0.138 0.099
evisit nausea 0.001 0.996 0.001 0.001
evisit none 0.004 0.987 0.004 0.004
evisit rash 0.002 0.995 0.002 0.002
evisit respiratory| 0.000 0.999 0.000 0.000
purchase none 0.321 0.000 0.412 0.267
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