Physical Activity Recognition from Accelerometer Data Using a Multi-Scale Ensemble Method

Yonglei Zheng, Weng-Keen Wong, Xinze Guan (Oregon State University)

Stewart Trost (University of Queensland)

- Goal: accurate, objective and detailed measurement of physical activity
- Why? Many health related reasons...
 - Understand relationship between physical activity and health outcomes
 - Detecting at risk populations
 - Measure effectiveness of intervention strategies

- Accelerometers are a cheap, reliable and unobtrusive way to measure physical activity
- Capture acceleration in different planes (typically triaxial)
- Typically attached at the wrist or hip

Actigraph's GT3X+ accelerometer

• Dimensions: 4.6cm x 3.3cm x 1.9cm

• Weight: 19 g

• The challenge: interpreting this data

Segment and classify free-living data

Classify already segmented data

Related Work

- 1. Time series Classification (see Xing, Pei and Keogh 2010)
 - Nearest neighbor approaches with different distances metrics eg. Euclidean (Keogh and Kasetty 2003), Dynamic time warping (Wang et al. 2010)
 - Supervised Learning eg. decision trees (Bonomi et al. 2009), neural networks (Staudenmayer et al. 2009), support vector regression (Su et al. 2005), ensembles (Ravi et al. 2005)
 - Many different representations used eg. symbolic (Lin et al. 2003), shapelets (Ye and Keogh 2009), etc.
- 2. Segmentation
 - Hidden Markov Models (Lester et al. 2005, Pober et al. 2006)
 - Conditional Random Fields (van Kasteren et al. 2008, Gu et al. 2009, Wu et al. 2009)

Things to note:

- Each window of data consists of a single activity
- Repetitive pattern
- Discriminative features at different scales
- Supervised learning approach works very well on our data

Methodology

Supervised Learning Approach

Methodology

Two issues when applying supervised learning to time series data

- 1. What features to use?
 - Feature extraction ultimately needs to be efficient
 - Bag-of-features + regularization works very well

Features

Axis-1

- 1. Percentiles: 10th,25th,50th,75th,9 0th
- 2. Lag-oneautocorrelation
- 3. Sum
- 4. Mean
- Standard deviation
- Coefficients of variation
- 7. Peak-to-peak amplitude
- Interquartile range
- 9. Skewness
- 10. Kurtosis
- 11. Signal power
- 12. Log-energy
- 13. Peak intensity
- 14. Zero crossings

Axis-2

- 1. Percentiles: 10th,25th,50th,75th,9
- 2. Lag-oneautocorrelation
- 3. Sum
- 4. Mean
- Standard deviation
- Coefficients of variation
- 7. Peak-to-peak amplitude
- Interquartile range
- Skewness
- 10. Kurtosis
- 11. Signal power
- 12. Log-energy
- 13. Peak intensity
- 14. Zero crossings

Axis-3

- 1. Percentiles: 10th,25th,50th,75th,9
- 2. Lag-oneautocorrelation
- 3. Sum
- Mean
- Standard deviation
- Coefficients of variation
- 7. Peak-to-peak amplitude
- Interquartile range
- Skewness
- 10. Kurtosis
- 11. Signal power
- 12. Log-energy
- 13. Peak intensity
- 14. Zero crossings

Between two axes

- Correlation between axis-1 and axis2
- Correlation between axis-2 and axis3
- Correlation between axis-1 and axis3

Methodology

Two issues when applying supervised learning to time series data

- 1. What features to use?
- 2. How big of a window?
 - Too big: features too coarse, high latency of activity recognition
 - Too small: features meaningless
 - Need multi-scale approach

Subwindow Ensemble Model

Experiments

- Datasets
 - Human Activity Sensing Challenge (triaxial, 100 Hz, 7 subjects, 6 classes)
 - OSU Hip (triaxial, 30Hz, 53 subjects, 7 classes)
 - OSU Wrist (triaxial, 30 Hz, 18 subjects, 7 classes)
- Experimental Setup
 - Split by subject into train/validate/test splits
 - Averaged over 30 splits

Experiments

Algorithms

- 1. 1-NN (Euclidean distance, DTW)
- 2. (Single scale) Supervised Learning Algorithms (ANN, SVM) with 10 second windows
- 3. (Multi-scale) SWEM (SVM) with 10 ensemble members

Results

Algorithm	HASC (Macro-F1)	OSU Hip (Macro-F1)	OSU Wrist (Macro-F1)	
SWEM (SVM)	0.820*	0.942*	0.896*	
SVM (W=10)	0.794	0.937	0.886	
ANN (W=10)	0.738	0.919	0.787	
1NN (EUC)	0.648	0.572	0.456	
1NN (DTW)	0.648	0.561	0.494	

Results

We can also analyze the performance of each ensemble member by itself:

Model	MacroF1	Classification Accuracy of Each Physical Activity						
		lying	sitting	standing	walking	running	basketball	dance
SWEM_SVM	0.9424	0.9806	0.9423	0.9678	0.9541	0.9823	0.9419	0.8041
SWEM_SVM1	0.9090	0.9709	0.9294	0.9893	0.9488	0.9876	0.7398	0.6931
SWEM_SVM2	0.9339	0.9735	0.9271	0.9836	0.9543	0.9844	0.8931	0.7648
SWEM_SVM3	0.9357	0.9719	0.9365	0.9727	0.9502	0.9870	0.9283	0.7756
SWEM_SVM4	0.9355	0.9800	0.9265	0.9709	0.9533	0.9810	0.9178	0.7861
SWEM_SVM5	0.9345	0.9780	0.9357	0.9564	0.9494	0.9811	0.9407	0.7931
SWEM_SVM6	0.9361	0.9787	0.9299	0.9609	0.9572	0.9798	0.9306	0.7911
SWEM_SVM7	0.9373	0.9802	0.9353	0.9519	0.9565	0.9798	0.9378	0.8131
SWEM_SVM8	0.9371	0.9819	0.9296	0.9608	0.9615	0.9776	0.9206	0.7991
SWEM_SVM9	0.9383	0.9817	0.9374	0.9572	0.9567	0.9789	0.9359	0.8104
SWEM_SVM10	0.9369	0.9772	0.9318	0.9666	0.9599	0.9776	0.9161	0.7978

Conclusion

- Subwindow Ensemble Model able to capture discriminative features at different scales without committing to a single window size
- Outperforms baseline algorithms
- High F1 indicates it is viable for deployment
- Future work: free-living data segmentation, online algorithms

Acknowledgements

This work was supported in part by funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD R01 55400A)

Questions?

OSU Hip

HASC

