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Introduction

e Goal: accurate, objective and detailed measurement of physical
activity
e Why? Many health related reasons...
e Understand relationship between physical activity and health outcomes

e Detecting at risk populations
* Measure effectiveness of intervention strategies
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Introduction

e Accelerometers are a cheap, reliable and unobtrusive way to measure
physical activity

e Capture acceleration in different planes (typically triaxial)
* Typically attached at the wrist or hip

Actigraph’s GT3X+ accelerometer
* Dimensions: 4.6cm x 3.3cm x 1.9cm
e Weight:19 g
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Introduction

Lying Down / Sitting

* The challenge: interpreting this data
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Introduction

Segment and
classify free-
living data

Amplitude

LiME Data Sample

Followup paper (not this
talk)

This talk

Classify already
segmented data
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Related Work

1. Time series Classification (see Xing, Pei and Keogh 2010)

* Nearest neighbor approaches with different distances metrics eg. Euclidean
(Keogh and Kasetty 2003), Dynamic time warping (Wang et al. 2010)

e Supervised Learning eg. decision trees (Bonomi et al. 2009), neural networks
(Staudenmayer et al. 2009), support vector regression (Su et al. 2005),
ensembles (Ravi et al. 2005)

* Many different representations used eg. symbolic (Lin et al. 2003), shapelets
(Ye and Keogh 2009), etc.

2. Segmentation
e Hidden Markov Models (Lester et al. 2005, Pober et al. 2006)

e Conditional Random Fields (van Kasteren et al. 2008, Gu et al. 2009, Wu et al.

20009)
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Introduction

Things to note:

 Each window of data consists
of a single activity

* Repetitive pattern

e Discriminative features at
different scales

e Supervised learning approach
works very well on our data
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Methodology

Supervised Learning Approach

Cut time series into non-overlapping windows
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Methodology

Two issues when applying supervised learning to time series data

1. What features to use?
e Feature extraction ultimately needs to be efficient
e Bag-of-features + regularization works very well
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Features
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Methodology

Two issues when applying supervised learning to time series data
1. What features to use?

2. How big of a window?
e Too big: features too coarse, high latency of activity recognition
e Too small: features meaningless
* Need multi-scale approach
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Subwindow Ensemble Model

scale =1 sec, step = 1 sec scale =5 sec, step = 1 sec
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Experiments

* Datasets
 Human Activity Sensing Challenge (triaxial, 100 Hz, 7 subjects, 6 classes)
e OSU Hip (triaxial, 30Hz, 53 subjects, 7 classes)
e OSU Wrist (triaxial, 30 Hz, 18 subjects, 7 classes)

e Experimental Setup
 Split by subject into train/validate/test splits
e Averaged over 30 splits
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Experiments

Algorithms

1.
2.

1-NN (Euclidean distance, DTW)

(Single scale) Supervised Learning Algorithms (ANN, SVM) with 10
second windows

(Multi-scale) SWEM (SVM) with 10 ensemble members




Results

Algorithm HASC OSU Hip OSU Wrist
(Macro-F1) |(Macro-F1) |(Macro-F1)

SWEM (SVM) |0.820* 0.942* 0.896*

SVM (W=10) |0.794 0.937 0.886

ANN (W=10) |0.738 0.919 0.787

1NN (EUC) 0.648 0.572 0.456

1NN (DTW) 0.648 0.561 0.494




Results

We can also analyze the performance of each ensemble member

by itself:
Classification Accuracy of Each Physical Activity

Model MacroF] lying sitting | standing wa?king runn}ing baskeﬂiall dance
SWEM_SVM 0.9424 0.9806 | 0.9423 | 0.9678 0.9541 (0.9823 0.9419 0.8041
SWEM_SVMI 0.9090 0.9709 | 0.9294 | 0.9893 0.9488 0.9876 0.7398 0.6931
SWEM_SVM2 0.9339 0.9735 | 0.9271 0.9836 0.9543 (0.9844 0.8931 0.7648
SWEM_SVM3 0.9357 0.9719 | 0.9365 | 0.9727 0.9502 0.9870 0.9283 0.7756
SWEM_SVM4 0.9355 0.9800 | 0.9265 | 0.9709 0.9533 0.9810 0.9178 0.7861
SWEM_SVM5 0.9345 0.9780 | 0.9357 | 0.9564 0.9494 | 0.9811 0.9407 0.7931
SWEM_SVM6 0.9361 0.9787 | 0.9299 | 0.9609 0.9572 (0.9798 0.9306 0.7911
SWEM_SVM7 0.9373 0.9802 | 0.9353 | 0.9519 0.9565 (.9798 0.9378 0.8131
SWEM_SVMS8 0.9371 0.9819 | 0.9296 | 0.9608 0.9615 0.9776 0.9206 0.7991
SWEM_SVM9 0.9383 09817 | 0.9374 | 0.9572 0.9567 (0.9789 0.9359 0.8104
SWEM_SVM10 0.9369 0.9772 | 0.9318 | 0.9666 0.9599 0.9776 0.9161 0.7978
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Conclusion

e Subwindow Ensemble Model able to capture discriminative features
at different scales without committing to a single window size

e Qutperforms baseline algorithms
* High F1 indicates it is viable for deployment
e Future work: free-living data segmentation, online algorithms
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