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Abstract

Our goal is to automatically identify which species of
bird is present in an audio recording using supervised
learning. Devising effective algorithms for bird species
classification is a preliminary step toward extracting useful
ecological data from recordings collected in the field. We
propose a probabilistic model for audio features within a
short interval of time, then derive its Bayes risk-minimizing
classifier, and show that it is closely approximated by a
nearest-neighbor classifier using Kullback-Leibler diver-
gence to compare histograms of features. We note that fea-
ture histograms can be viewed as points on a statistical
manifold, and KL divergence approximates geodesic dis-
tances defined by the Fisher information metric on such
manifolds. Motivated by this fact, we propose the use
of another approximation to the Fisher information met-
ric, namely the Hellinger metric. The proposed classifiers
achieve over 90% accuracy on a data set containing six
species of bird, and outperform support vector machines.

1 Introduction

Our goal is to develop algorithms that can predict which
species of bird is present in an audio recording, by learn-
ing from a collection of labeled examples. Such algorithms
will serve as part of a system to automatically collect bird
species presence/absence data, which will provide valu-
able ecological information for species distribution model-
ing and conservation planning. Existing bird species distri-
bution data are collected by manual surveys, which are labor
intensive, and require observers trained in bird recognition
[2]. Automated bird population surveys could provide vast
amounts of useful data for species distribution modeling,
while requiring less effort and expense than human surveys.
Other applications of classifying bird sounds include reduc-
ing plane crashes caused by collisions with birds [5], and
audio classification in general.

Sounds that birds make have a grammatical structure;
two important levels of organization in this structure are
songs and syllables. Syllables are single distinct utterances
by a bird and serve as the basic building blocks of bird song
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Figure 1. The spectrogram for a one-second
portion of a recording of a Swainson’s
Thrush. Darker areas indicate higher energy
at the corresponding frequency.

[3]. A song consists of a series of syllables arranged in a
particular pattern. In this study, our goal is to classify bird
species from an interval of sound (containing one or more
syllables), which roughly corresponds to the song level of
organization.

Audio classification systems typically begin by extract-
ing acoustic features from audio signals. Such features of-
ten pertain to individual frames (i.e., very short segments
of signal). For example, one commonly used feature is the
spectrum of a signal frame, which describes the intensity of
(a short segment of) the signal as a function of frequency. To
apply many standard algorithms for classification, it is nec-
essary to represent a sound, which contains multiple frames,
using a fixed-length vector. To construct such a fixed-length
feature vector to describe a sound as a whole, a common
approach is to first identify interesting frames by segmenta-
tion, compute features for those frames, then take the aver-
age of the features over all frames [13, 23, 29]. For exam-
ple, in the context of bird species recognition, a recent work
by Fagerlund [13] (current state-of-the-art) averages frame-
level features and applies support vector machines (SVMs).

Rather than averaging frame-level features, we represent
their distributions using histograms (bag-of-codewords) de-
fined by a ‘codebook’ of clustered frame-level features.
Codebook based representations have been successfully ap-
plied in computer vision [7, 31, 19], and have also recently
achieved success in music genre classification [26].



Our main contribution in this paper is to establish a the-
oretical framework that connects nearest-neighbors classi-
fiers using histograms of features, Bayesian risk minimiza-
tion, and geodesics on statistical manifolds. In particular,

• We propose a probability model for audio, then fol-
low a Bayesian approach to derive the risk-minimizing
classifier for this model. The Bayes classifier is closely
approximated by a nearest-neighbor classifier using
Kullback-Leibler (KL) divergence to compare feature
histograms (Sec. 3);

• We explain that not only do Kullback-Leibler and
the related Hellinger distance follow from a Bayesian
probability model, but in the limit of a nearest-
neighbor classifier, they can be thought of as approxi-
mations to geodesics using the Fisher information met-
ric on statistical manifolds of histograms (Sec. 4);

• We experimentally compare the accuracy of nearest-
neighbors using L1, L2, KL and Hellinger distances,
and SVMs, with averages and histograms of frame-
level features, on a data set consisting of 413 thirty-
second intervals of sound from six species of bird.
Results indicate that classifiers using histograms of
frame-level features outperform those using averages,
and that with a manifold geodesic distance between
histograms, nearest neighbor can outperform SVM.
Several classifiers achieve over 90% accuracy (Sec. 5).

2 Background and Related Work

We review data representation for audio classification,
and related work on species identification from bird sounds.

2.1 Data Representation

Our goal is to classify a recording of bird sound as one
of several species. A critical initial step toward this goal
is to extract meaningful features to describe an interval of
sound. This section presents our approach to constructing
feature vectors to describe such intervals.

2.1.1 Basics: Signals and Spectrograms

Audio signals consists of a time-series of samples, which
we denote as s(t). It is often easier to recognize patterns
in an audio signal when samples are converted to a fre-
quency domain spectrogram using the Fast Fourier Trans-
form (FFT) [3], (see Fig. 1 for an example spectrogram).

To compute a spectrogram, samples in a sound are di-
vided into overlapping frames (Fig. 2), each of which con-
tains a fixed number of consecutive samples. The FFT is
applied to each frame to obtain the complex Fourier coeffi-
cients. The magnitudes of these coefficients are called the

s(1) s(2) s(129) s(256) s(384)... ... ... ...
Frame 1

Frame 2

Figure 2. An audio signal is made up of
samples, which are divided into overlapping
frames.

frame’s magnitude spectrum and represent the intensity of
the sound during that frame at different frequencies. A spec-
trogram is a plot of the spectrum for each frame in a signal.

2.1.2 Frame-Level Features

Many features for audio classification describe individual
frames of a signal. In this section, we describe three features
that we used in our experiments.

Spectrum Density. The magnitude spectrum of a frame
can be normalized to form a probability distribution. If the
magnitude spectrum is (|c1|, . . . , |cl|), where l is the num-
ber of elements in a spectrum, then the spectrum density is
f(i) = |ci|P

|ci| . We can directly use (f(1), f(2), . . . , f(l))
as the feature vector describing a frame.

Mean Frequency and Bandwidth. Consider the spectro-
gram shown in Fig. 1; each vertical slice represents the
spectrum of one frame of sound. Bird sounds are usually
concentrated at a few frequencies; we can see this phe-
nomenon as horizontal strips in the spectrogram. This sug-
gests that it is possible to condense the information con-
tained in the spectrum density into just two values: the
mean frequency and the bandwidth of the spectrum. The
mean frequency of a frame indicates the vertical position of
the strip, while bandwidth describes the width of the strip.
Specifically, the mean frequency is fc =

∫
xf(x)dx, and

bandwidth is BW =
√∫

(x− fc)2f(x)dx.

Mel-Frequency Cepstral Coefficients. Mel-frequency
cepstral coefficients [9] (MFCCs) are one of the most
widely used features for audio classification. The idea is
to first compute Mel-frequency coefficients (MFCs), which
are like the magnitude spectrum, but in units of mels rather
than Hz (mels correspond more closely with human percep-
tion of pitch [30]). MFCs are computed by applying a col-
lection of triangular filters to the magnitude spectrum; the
MFCs are the response of each filter. The filters are evenly
spaced in the mel scale. MFCCs are the result of applying
the discrete cosine transform (DCT) to the log of the MFCs.

2.1.3 Aggregating Frame-Level Features

An interval contains a large number of frames, which can be
aggregated to produce a single fixed-length feature vector.
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(a) Downy Woodpecker, Pecking
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(b) Downy Woodpecker, Song

Figure 3. 2D histograms of frame mean fre-
quency and bandwidth from two different in-
tervals of audio recordings of the Downy
Woodpecker.

A common approach that has been used in syllable clas-
sification is to average frame-level features [13, 23, 29].
However, by averaging, significant information about the
distribution of features is lost, which can be problematic
when the distribution of features in an interval is multi-
modal. For example, Fig. 3(b) shows the distribution of
the features (mean-frequency and bandwidth) of the frames
from a 30-second recording of a downy woodpecker (ap-
proximated by a 5000-bin histogram). In this case, the dis-
tribution is clearly multimodal and its mean will actually
be in an area of relatively low probability, making it a poor
representation for the overall distribution. We observed that
such multimodality is common for bird sound. This obser-
vation suggests that aggregation schemes that can capture
multimodality in feature distributions may be more success-
ful than averages (our experimental results support this idea;
Sec. 5.6). Inspired by the use of codebooks for image clas-
sification [7, 31, 19], and recent work in music genre classi-
fication [26], we consider aggregating frame-level features
by representing their distributions with histograms.

Low-Dimensional Feature Histograms. Given an inter-
val (i.e., a set of frames), each of which is described by a
d-dimensional feature vector, a natural way to represent the
interval is to use the probability distribution of features in
this interval. This distribution can be approximated by a
d-dimensional histogram, where dimension i is discretized
into ki bins, leading to a total of

∏d
i=1 ki bins. Note that

since the total number of bins grows exponentially with d,
this method can only be applied for small values of d. The
vector of frequencies for each histogram bin can be used as
a feature vector for classification.

Codebook Feature Histograms. The simple binning ap-
proach does not work for higher dimensional frame-level
features such as spectra or MFCCs — we would need an
infeasible number of bins to cover these high-dimensional
spaces. Instead, we take a ‘codebook’ approach [26] to con-
structing histograms for high-dimensional features, which
amounts to using non-uniform bins. A codebook is a collec-
tion of k codewords, each of which is a feature vector that
is considered as representative in the feature space. There
is one bin associated with each codeword. Given an inter-
val (i.e., a set of frames each described by a feature vector)
and a codebook, to compute a feature for the interval, assign
each frame to its closest codeword, then count the number
of frames assigned to each codeword. The vector of counts,
normalized by dividing by their sum, gives the final feature
vector, which is a histogram.

2.2 Related Work

Bird species can be classified using features extracted
from audio recordings. A common approach to bird species
classification is to identify distinct syllables, then construct
feature vectors for those syllables and apply a standard clas-
sifier such as nearest neighbor or support vector machines
to predict the species for each syllable [29, 13, 16, 12, 23,
22, 27]. Song-level species prediction has also been inves-
tigated using Hidden Markov Models [21, 29], Gaussian
Mixture Models [29], based on comparisons of syllable-pair
histograms [28], or nearest-neighbor classifiers using a fea-
ture constructed by aggregating syllable features [23].

To classify syllables or songs, most prior work relies on
segmentation of the input audio into syllables [29]. As such,
the classifier accuracy can be strongly dependent upon ac-
curate segmentation [12]. A standard approach to segmen-
tation is to compute the energy of each frame, then adap-
tively compute a threshold that separates syllables from
background noise [29, 13, 25, 25]. It is difficult to obtain
reliable segmentation using this method in recordings with
low signal-to-noise ratio. In this paper, we use a simple ap-
proach to detect a set of interesting frames within the signal
that correspond to bird sound, and do not require that they
precisely match syllable time-boundaries (Sec. 5).

Audio classification in general has been widely stud-
ied, with applications to human speech and music being
the most common. Our work is closely related to recent
work by Seyerlehner et al. [26] on music genre identifi-
cation. They follow a codebook approach to constructing
audio feature histograms (Sec. 2.1.3), and use a nearest-
neighbor classifier with L1 distance to classify these fea-
tures. However, it is not obvious why a nearest-neighbor
classifier is ideal for classifying histograms of features, or
which distance measures are the best for comparing his-
tograms. In this paper, we show that the Bayes optimal
classifier for a probability model for audio is closely related
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Figure 4. The plate diagram for the Interval-
IID model.

Table 1. Notations

Variable Description
m class label (bird species)
n number of interesting frames in an interval
θ frame feature histogram parametrization
xi ith test frame feature vector
xtik ith training frame feature vector

for the k training interval
X frame feature vector collection for an

interval X = [x1, . . . , xn]
Xt
k frame feature vector collection for the

kth training interval
ytk class label associated with the

kth training interval
K number of training intervals
Km number of training intervals from class m
P (m) class prior probability
p(θ|m) class-conditional histogram probability
px|θ(x|θ) interval-conditional frame-

feature probability
pX|θ(X|θ) interval-conditional features probability
pX|m(X|m) class-conditional features probability

to nearest-neighbor classifiers using histograms of features
with appropriate distance measures.

3 Probability Model for Sound

In the following section, we present a theoretical jus-
tification for the frame-level feature histogram represen-
tation through a probability model, namely the Interval-
IID model, and show that the corresponding Bayes risk-
minimizing classifier can be approximated by a nearest-
neighbor classifier with KL divergence.

3.1 The Interval-IID model

The Interval-IID model follows the graphical represen-
tation in Fig. 4. The model suggests that to generate an
interval, we first determine its class label m based on the
class prior p(m). Given m, we then generate an interval-
specific parameterization θ based on p(θ|m), which param-
eterizes the the frame feature distribution px|θ(x|θ) of that
interval. Given θ, we then generate n independent and iden-
tically distritbuted (i.i.d.) frame feature vectors xi based on

px|θ(x|θ) (thus the name Interval-IID, i.e., frames are i.i.d.
within an interval).

Given an observed interval represented by its collection
of frame features X = [x1, x2, . . . , xn], using Bayes rule,
we write its class-conditional probability as

pX|m(X|m) =
∫
pX|θ(X|θ)p(θ|m)dµ(θ), (1)

where θ is a parametrization determining the interval-
conditional feature distribution px|θ(x|θ) and m denotes
the class label. Here we marginalized over the interval-
conditional features probability model pX|θ(X|θ) accord-
ing to the class conditional histogram parametrization dis-
tribution p(θ|m). As the Interval-IID model name suggests,
conditioned on θ, the frame-level features are assumed i.i.d.,
and hence pX|θ(X|θ) can be written as a product of the
marginal distributions of each frame-level feature:

pX|θ(X|θ) =
n∏
i=1

px|θ(xi|θ), (2)

where xi denotes the feature vector of the ith frame. Sub-
stituting (2) into (1), the class conditional model for the
Interval-IID model is given by

pX|m(X|m) =
∫ n∏

i=1

px|θ(xi|θ)p(θ|m)dµ(θ). (3)

The integral w.r.t. θ here applies to the product of marginal
probabilities. By writing p as elog p and replacing the inte-
gral with the expectation notation, (3) becomes

pX|m(X|m) = Eθ
[
e

Pn
i=1 log px|θ(xi|θ)|m

]
. (4)

To express pX|m(X|m) in (4) in terms of the Kullback-
Leibler (KL) divergence, start by introducing the following
terms:

θ∗ = arg max
θ

1
n

n∑
i=1

log px|θ(xi|θ), (5)

H̃(θ∗) = − 1
n

n∑
i=1

log px|θ(xi|θ∗), (6)

D(θ∗, θ) =
1
n

n∑
i=1

log
px|θ(xi|θ∗)
px|θ(xi|θ)

(7)

Note that θ∗ is the maximum-likelihood estimator of θ. Us-
ing (5-7) and the observation that

∑n
i=1 log px|θ(xi|θ) =

−n(H̃(θ∗) +D(θ∗, θ)), we rewrite (4) as

pX|m(X|m) = e−nH̃(θ∗)Eθ|m
[
e−nD(θ∗,θ)

]
. (8)

By the definition of θ∗ in (5), we have that D(θ∗, θ) ≥ 0
for all θ and is zero for θ = θ∗. We proceed with



the specific case in which the features are discretized into
L non-intersecting bins defined by the sets Al. Hence,
we represent the class-conditional distribution of frame-
level features using histograms. Each frame-level feature
xi can fall into one of the histogram bins {A1, . . . , AL}
with probability {θ1, . . . , θL}, respectively. The vector
θ = [θ1, . . . , θL]T is a probability mass function (or a his-
togram), i.e.,

∑
θl = 1 and θl ≥ 0. The interval-conditional

probability model for a frame-level feature is given by

px|θ(x|θ) =
L∏
l=1

θ
I(x∈Al)
l , (9)

where I(·) is the indicator function which takes the value
one if its argument is true and zero otherwise. We would
like to point out that when px|θ(·|θ) is given by (9) and
p(θ|m) is the Dirichlet distribution, then (3) becomes the
Dirichlet-Multinomial model, which is also referred to as
Polya distribution [24] or the Dirichlet compound multino-
mial (DCM) model [11]. This model is often used as a topic
model in text document classification. One criticism con-
cerning the choice of Dirichlet prior is the limited capabil-
ity of representing multimodal priors [34]. Our experience
with bird sounds suggests that the probability model p(θ|m)
is indeed multimodal; as Fig. 3 shows, frame-level feature
histograms for the same species differ between intervals.

For px|θ(x|θ) given by (9), we have

θ∗l = p̂l, (10)
H̃(θ∗) = H(θ∗) (11)

D(θ∗, θ) = Dkl(θ∗‖θ), (12)

where p̂l = 1
n

∑n
i=1 I(xi ∈ Al) is the lth empiri-

cal histogram bin probability estimate based on the ob-
served feature collection X = [x1, x2, . . . , xn], H(p) =
−
∑L
l=1 pl log pl is the entropy associated with a multino-

mial parameterized by p (the vector of bin probabilities of a
histogram), and

Dkl(θ∗‖θ) =
L∑
l=1

θ∗l log
θ∗l
θl

is the Kullback-Leibler (KL) divergence between a multi-
nomial parameterized by θ∗ and another parameterized by
θ. Substituting (10)-(12) into (8), we have

pX|m(X|m) = e−nH(p̂)Eθ
[
e−nDkl(p̂‖θ)|m

]
. (13)

This form for pX|m(X|m) acts as the likelihood component
in the Bayes risk minimizing classifier in the following sec-
tion. Moreover, it highlights the role of the KL divergence
in optimal Bayesian classification for the problem at hand.

3.2 Bayes Risk Minimizing Classifier

We start with a brief review of the Bayes risk minimiza-
tion approach to classification [14]. The probability of error
for a given classification rule m̂(X) is

Pr(error) =
M∑
m=1

P (m̂(X) 6= m|m)P (m). (14)

The classification rule that minimizes the error in (14) is

m̂ = arg max
m

pm|X(m|X). (15)

This rule is also referred to as maximum a-posteriori
(MAP), as it assigns a decision based on the highest class
probability given the set of observations. Using Bayes rule
pm|X(m|X) = pX|m(X|m)P (m)/pX(X) and the fact
that pX(X) is constant w.r.t. to the class variable m, yields
an equivalent form to the MAP classifier:

m̂ = arg max
m

logP (m) + log pX|m(X|m). (16)

After replacing the likelihood PX|m(X|m) with (13),
the MAP classification rule (16) for the Interval-IID model
in (3) is

m̂ = arg max
m

logP (m)

+ logEθ
[
exp
(
−nDkl(p̂

∥∥θ))|m]. (17)

Note that since H(p̂) in (13) is independent of m, it is not
incorporated into (17). It is equivalent to replace the maxi-
mization with minimization and divide by n

m̂ = arg min
m
− 1
n

log
(
Eθ
[
e−nDkl(p̂‖θ)|m

]
P (m)

)
. (18)

With no exact knowledge about P (m) and the PDF p(θ|m)
used to compute the expectation Eθ[·|m], we propose esti-
mating these quantities from the training data.

3.3 Training

To describe the training process, we start by explain-
ing the format of the training data. Each interval k
in the training data contains n training features Xt

k =
[xt1k, x

t
2k, . . . , x

t
nk] and is associated with a class label ytk.

We assume that K training intervals are available, i.e.,
(Xt

1, y
t
1), (Xt

2, y
t
2), . . . , (Xt

K , y
t
K). We denote training vari-

ables using the superscript t notation.
To train the classification rule in (18), we replace P (m)

and E[·|m] through their sample estimates

m̂ = arg min
m

−1
n

log
( K∑
k=1

I(ytk = m)e−nDkl(p̂‖θ̂
(k))
)
, (19)



where k is the interval number, K is the total number of
training intervals, ytk is the class label for the kth training in-
terval, and θ̂(k) is a histogram estimated from the kth train-
ing interval given by

θ̂
(k)
l =

1
n

n∑
i=1

I(xtik ∈ Al), (20)

where xtik is the ith feature vector from the kth interval.
With a slight abuse of notations, we rewrite (19) as

m̂ = arg min
m
− 1
n

log
(Km∑
k=1

e−nDkl(p̂‖θ̂
(k,m))

)
, (21)

where the θ̂(k,m)’s are the sorted version of the θ̂(k)s from
class m such that Dkl(p̂‖θ̂(1,m)) ≤ Dkl(p̂‖θ̂(2,m)) ≤
. . . Dkl(p̂‖θ̂(Km,m)), and Km is the number of training in-
tervals for the mth class. Using the ordered training class
histograms, we reorganize (21) as

m̂ = arg min
m

Dkl(p̂‖θ̂(1,m)) (22)

− 1
n

log
(

1 +
nm∑
i=2

e−n(Dkl(p̂‖θ̂(i,m))−Dkl(p̂‖θ̂(1,m)))
)
.

We refer to (22) as the Interval-IID MAP classifier. While
equivalent to (21), (22) provides insight into the relation
between Bayes risk-minimization, nearest-neighbor classi-
fiers, and manifold geodesics. Identifying the training inter-
vals with their feature histograms, and the test interval with
its feature histogram, the first term on the RHS of (22) is
a KL divergence based nearest neighbor rule in histogram
space. Note that if the KL distance to points other than
the first nearest neighborDkl(p̂‖θ̂(i,m)) is sufficiently larger
than the distance to the first nearest neighborDkl(p̂‖θ̂(1,m))
then the second term on the RHS of (22) becomes negligi-
ble, and (22) is simply a nearest neighbor classifier using
KL divergence.

4 Nearest Neighbors on Statistical Manifolds

The connection between optimal Bayes classification
and the histogram KL nearest neighbor rule leads us to ex-
tend the approach to nearest neighbor classification on his-
tograms. Note that a collection of probability models (i.e,
histograms) can be regarded as a manifold. Denote a model
by p(X|θ) or in short by p(·|θ). The collection of models
given by

M =
{
p(·|θ) | θ ∈ Θ ∈ Rd

}
, (23)

is a d-dimensional statistical manifold if there exist a one-
to-one smooth mapping between θ to p(·|θ). In the geo-
metric approach to statistical models [20], one can measure

the geodesic distance between two histograms by using the
Fisher information metric (FIM) as the Riemannian metric

DF (p(·|θ), p(·|θ′)) = min
θ(·),

θ(0)=θ,

θ(l)=θ′

∫ l

0

√
θ̇(t)TI(θ(t))θ̇(t)dt, (24)

where I(θ) is the Fisher information matrix given by

Iij(θ) = E
[d log p(x|θ)

dθi

d log p(x|θ)
dθj

]
. (25)

The FIM is considered a natural metric for statistical man-
ifolds as it reflect the capability to discriminate between
probability models from their samples.

To generalize the nearest neighbor approach discussed
in the previous section in the context of statistical mani-
folds, we consider a geodesic nearest neighbor rule using
DF (p(·|θ), p(·|θ′)) defined in (24). As the precise form
of the manifold is unavailable, an exact computation of
the geodesic distance DF (p, p′) is impossible. Since the
nearest neighbor approach prompts us to calculate short
geodesic distances, local approximations of DF (p, p′) can
be used instead. For two close probability models p→ p′ it
is known [20] that

√
2Dkl(p‖p′)→ DF (p, p′). The KL di-

vergence provides a computable approximation to the FIM
manifold geodesic distance.

Note that other approximations for the FIM are avail-
able (e.g., certain Ali-Silvey divergences, and specifically,
Hellinger divergence). In this paper, we use the Hellinger
divergence given by

DH(p, q)2 =
∑

(
√
pi −

√
qi)2, (26)

which is a metric as opposed to the KL divergence. The
approximation of the FIM using Hellinger distance for close
models is 2DH(p, p′)→ DF (p, p′) [20].

For the purpose of comparison, we experimentally eval-
uate nearest neighbor classifiers using L1 and L2 distances
as well as KL and Hellinger. L2 is the standard Eu-
clidean distance, which is widely used, but not theoreti-
cally justified for the comparison of probability distribu-
tions. L1 is fairly common for comparing probability dis-
tributions. It is a member of the Ali-Silvey family, but
due to non-differentiability, it is not an approximation to
the FIM. However, it is related to Hellinger by the inequal-
ity, 1

2DH(p, q)2 ≤ DL1(p, q) ≤ DH(p, q) [8]. This rela-
tion between L1 and Hellinger hints at why classifiers using
these distances achieve similar results (Sec. 5.6).

5 Experiments

In this section, we describe the experimental setup used
to measure the accuracy of the proposed methods for bird



species classification, and to compare with SVMs [13]. We
consider various frame-level features (mean frequency and
bandwidth, MFCCs, and spectral density), interval-level
features (averages vs. histograms), and metrics for nearest-
neighbor classification (L1, L2, KL, and Hellinger). We
also empirically verify that a nearest-neighbor classifier us-
ing Kullback-Leibler closely approximates the Interval-IID
MAP classifier (22) as suggested in Sec. 3.

5.1 Data

We have 1.13 GB of recordings from the Cornell
Macaulay library, of 6 species: Black Throated Blue War-
bler, Hermit Warbler, Downy Woodpecker, Swainson’s
Thrush, Western Tanager, and Winter Wren. All of these
recordings are at least 30 seconds long, and most are less
than 10 minutes. We divide each recording into intervals of
30 seconds, resulting in 413 intervals. Our goal is to classify
these intervals according to species.

The recordings were collected over several decades,
mainly in the western United States. Most are made using
a directional microphone in the field. The amount of noise
in the recordings varies widely. In addition to static and
wind, some recordings contain cars sounds, human speech,
and other non-bird sounds. We manually removed most por-
tions of sound with human voices. Although each recording
is labeled with just one species, some recordings contain
multiple birds, sometimes of different species; usually the
loudest bird present corresponds to the label for the record-
ing. The sampling frequency for all recordings is 44.1 kHz.
The audio data is stored as mono-channel WAV files.

5.2 Preprocessing

Section 2.1 covers the process of converting a sequence
of samples from an audio interval into interval-level fea-
tures. We proceed by further elaborating on the specific
details of our experimental setup.

When dividing a signal into frames, we use 256 samples
per frame, and successive frames overlap by 50%. To re-
duce noise and decrease processing time in later stages, we
discard the lowest 8 and highest 64 elements of each frame’s
spectrum, leaving 56 elements from the original 128 (equiv-
alent to removing all sound below 1.378 kHz and above
10.852 kHz).

Instead of syllables, we detect a subset of interesting
frames (which are more likely to contain bird sound) in an
interval. To find these interesting frames, we compute the
total magnitude of each frame,

∑
|ci|, and retain only the

10% of frames with highest total magnitude in all subse-
quent calculations. Note that the total magnitude is similar
to, but not the same as the energy of a frame.1

1Parseval’s theorem states that the energy of a frame can be computed

Our implementation of MFCCs (Sec. 2.1.2), is based
on the description provided by Ganchev et al. [15] of the
MFCCs computed in the Cambridge Hidden Markov Mod-
els Toolkit (for MATLAB), known as HTK [33]. We use 24
filters,2 resulting in 24 MFCs, then take only the first 12 el-
ements of the output of the DCT as the frame-level feature.

For constructing 2D histograms, we divide the range of
values for mean frequency and bandwidth into square bins
100 Hz wide, with 100 bins on the mean frequency axis, and
50 bins for the bandwidth axis (for a total of 50 × 100 =
5000 bins, covering a range of 0 Hz to 10,000 Hz for fc
and 0 Hz to 5000 Hz for BW ). There is one element in the
feature vector for each histogram bin, so this representation
results in a 5000-dimensional feature vector.3

5.3 Clustering for Codebooks

For constructing codebooks, we apply the k-means++
clustering algorithm [1] to the frame-level features from
a training data set. Note that there are several hundred-
thousand frames to cluster in our data set. To speed-up
codebook construction, we follow a two-staged clustering
proceedure suggested by Seyerlehner et al. [26]. In particu-
lar, we first cluster features within each 30-second interval,
then cluster the resulting cluster centers to obtain the final
codewords. In the first stage of clustering, the feature vec-
tors are either the spectrum density, or MFCCs for the in-
teresting frames. In the second stage, the examples are the
cluster centers from the first stage. We use k = 10 clusters
for the first stage and k = 100 for the second. Thus, the fi-
nal interval-level features constructed using this method are
100-dimensional. In our preliminary experiments, this ap-
proach to clustering yielded an order-of-magnitude speedup
over clustering all frame-level features at once, because the
first stage of clustering does not need to be repeated in each
fold of cross-validation.

5.4 Classifiers

There are many combinations of frame-level features and
methods of aggregating them. The combinations we con-
sider in this study are: averages of fc and BW , spectrum

from its spectrum via the formula E =
X

|ci|2, were ci is the ith FFT
coefficient.

2In our implementation, the filters span a range of frequencies from
flow = 1000Hz to fhigh = 22050Hz. Following an exact imple-
mentation of the filters described by Ganchev et al. [15], we got aliased
triangle filters because some were narrower than a single spectrum bin,
which caused artifacts in the MFCs. To fix this problem, we numerically
integrate the triangle filter function over the range of each bin. Many other
implementations of MFCCs work with lower sampling frequencies [15],
so we suspect this problem is related to working with sound sampled at
44.1 kHz, as well as our choice of values for flow and fhigh.

3We apply Laplace smoothing to the histogram estimation by starting
with a count of 1 for each bin.



Frame Feature Representation Classifier % correct
fc, BW Average NN-L1 42.85
fc, BW Average NN-L2 42.85
MFCCs Average NN-L1 81.11
MFCCs Average NN-L2 81.11
MFCCs Average SVM 84.50
Spectrum Density Average NN-L1 79.42
Spectrum Density Average NN-L2 81.35
Spectrum Density Average SVM 84.75
fc, BW 2D Histogram Interval-IID MAP 87.40
fc, BW 2D Histogram NN-Kullback-Leibler 87.40
fc, BW 2D Histogram NN-Hellinger 88.13
fc, BW 2D Histogram NN-L1 86.44
fc, BW 2D Histogram NN-L2 83.05
MFCCs Codebook NN-L1 84.41 ± .89
MFCCs Codebook NN-L2 83.49 ± .62
MFCCs Codebook NN-Kullback-Leibler 85.42 ± .62
MFCCs Codebook NN-Hellinger 86.59 ± .50
MFCCs Codebook SVM 87.17 ± .58
Spectrum Density Codebook NN-L1 92.54 ± .44
Spectrum Density Codebook NN-L2 88.28 ± .99
Spectrum Density Codebook NN-Kullback-Leibler 90.70 ± .40
Spectrum Density Codebook NN-Hellinger 92.10 ± .27
Spectrum Density Codebook SVM 88.14 ± .58

Table 2. The accuracy of each classifier in predicting bird species based on 413 thirty-second inter-
vals of sound. NN means nearest neighbor. The values listed for classifiers using a codebook are
average accuracy over 5 trials, ± average deviation. Our proposed methods are listed in bold.

density, and MFCCs, 2D histograms of fc and BW , and
codebook histograms of spectrum density and MFCCs.

Using the above features extracted from the data de-
scribed in Sec. 5.1, we compare several classification al-
gorithms: nearest neighbor with L1, L2, KL and Hellinger
distances, and the Interval-IID MAP classifier proposed in
Sec. 3.2 (22), as well as support vector machines. Of these
classifiers, Interval-IID Map, KL and Hellinger are our pro-
posed methods, and the others are included for comparison.

5.4.1 Support Vector Machines

Support vector machines [6] (SVMs) are a family of algo-
rithms for supervised classification that find a linear de-
cision boundary by maximizing the margin between two
classes. In cases where linear classification is insufficient,
the kernel trick is applied to non-linearly project features
into a higher dimensional space where linear separability
is possible. The implementation of SVMs that we used
is WLSVM [10], which integrates LIBSVM [4] into the
Weka [32] machine learning system. Following Fagerlund
[13], and the recommendations of Hsu, Chang and Lin
[17], we use a radial basis function kernel, and optimize
the SVM parameter C and the kernel parameter γ, by grid

search. We evaluate the SVM at all combinations of C
and γ in {10−1, 100, 101, 102}, and report the best accuracy
achieved with any set of parameters. To handle multiple
classes (in our case, species), LIBSVM use the one-against-
one voting scheme [18].

5.5 Cross Validation and Multiple Trials

To measure the accuracy of the proposed classifiers, we
use them to predict the species in each of 413 thirty-second
intervals of sound. Each classifier is trained using all of
the intervals that do not come from the same recording as
the interval being classified (the data set consists of longer
recordings that are split into intervals). We use this setup
so the classifier must identify species without already hav-
ing example recordings of the individual bird being classi-
fied. Fagerlund [13] used a similar ‘individual independent’
setup for cross-validation.

Classifiers that use a codebook to construct feature his-
tograms depend on a randomized clustering algorithm. To
account for the randomness, we ran five trials with differ-
ent random seeds, and report average accuracy, ± average
deviation.



5.6 Results

Table 2 lists the accuracy of each classifier on the species
recognition problem. We make the following key observa-
tions.

• Regardless of which frame-level features we use, his-
tograms of features achieved better accuracy than av-
erages. One possible explanation of this result is that
feature distributions may be multimodal (Fig. 3(b)),
so the mean alone may not be enough to discriminate
between distributions from different species.

• Using the 2D histogram of fc and BW, the Interval-
IID MAP classifier (22) produced identical results to
a nearest-neighbor classifier with KL divergence. This
result confirms our theoretical argument that a nearest
neighbor classifier using KL divergence is a close ap-
proximation to the Interval-IID MAP classifier. Ac-
cordingly, we recommend using the more efficient
nearest neighbor with KL as opposed to (22), when au-
dio data is believed to be generated as in the Interval-
IID model.

• Comparing different distance functions when using
histograms, we observe that L1, Hellinger and KL
were generally more accurate than using L2, with the
performance of Hellinger being the most robust across
different settings. Interestingly, while L1 is not an ap-
proximation to the FIM, its performance is highly com-
petitive to KL and Hellinger. For histograms of spec-
trum density, L1 slightly outperformed Hellinger (al-
though not statistically significantly). This is possibly
due to the close relationship between L1, Hellinger and
KL, as explained in Sec. 4. Note that MFCCs are es-
sentially a compressed version of the spectrum (from
56 elements to 12), so it is not surprising that classi-
fiers using them are slightly less accurate than those
using spectrum density.

• Despite their relative simplicity, classifiers using 2D
histograms of mean frequency and bandwidth provide
remarkably accurate predictions. Being able to visual-
ize a 2D histogram as an image provides insight into
the structure of bird sound (for example, we can see
that interval feature histograms may be multimodal).

• Finally, we note that the proposed methods achieved
accuracy similar to or better than SVMs. In particu-
lar, using codebook histograms of MFCCs, SVMs are
slightly more accurate than a nearest neighbor classi-
fier with Hellinger, although the difference is not sta-
tistically significant. On codebook histograms of spec-
trum density, nearest-neighbor classifiers using statisti-
cal divergence measures (i.e. L1, Kullback-Leibler and

Hellinger) outperform SVM. We want to emphasize
that unlike SVMs, which require significant parame-
ter tuning, the proposed methods also offer additional
advantages in terms of their simplicity and scalability,
making them more usable in practice.

6 Conclusion and Future Work

In this paper, we addressed the problem of bird species
classification from audio recordings. Following a Bayesian
approach to classification, we introduced the interval-IID
model to describe the distribution of feature vectors within
an interval consisting of frames, and derived the corre-
sponding MAP classifier. The MAP classifier suggests ag-
gregating features into histograms and using KL nearest
neighbor to classify. This connection to nearest neighbor
classification on statistical manifolds led us to extended the
classifier by proposing different metrics (e.g., Hellinger).
To use the MAP classifier with high-dimensional frame-
level features, we employ codebook histograms.

Our study suggests that 1) using histograms of frame-
level features in an audio classifier can produce better re-
sults than using averaged frame-level features 2) nearest-
neighbor classifiers using Kullback-Leibler and Hellinger
distance to compare feature histograms results are com-
petive with state-of-the-art method such as SVM and 3)
metrics appropriate for histograms such as Hellinger, KL,
and L1 perform better than the Euclidean L2 metric.

The classifiers in this study make predictions from inter-
vals based on the collection of frames within the interval. A
common alternative is to instead focus on individual sylla-
bles. We are working on an experimental survey of methods
for classifying bird species from syllables, as well as prob-
ability models that are specialized for this purpose.

The experiments and algorithms presented here are a pre-
liminary step toward analyzing a large (terabyte scale) data
set of bird sounds that our collaborators collected in field
conditions, using an array of omnidirectional microphones.
We intend to apply algorithms for bird species classification
to these recordings to extract information about patterns of
bird activity at an unprecedented spatial and temporal reso-
lution.
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