
Boosting Lazy Decision Trees

Xiaoli Zhang Fern xz@ecn.purdue.edu

Carla E. Brodley brodley@ecn.purdue.edu

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

Abstract
This paper explores the problem of how to
construct lazy decision tree ensembles. We
present and empirically evaluate a relevance-
based boosting-style algorithm that builds a
lazy decision tree ensemble customized for
each test instance. From the experimental
results, we conclude that our boosting-style
algorithm significantly improves the perfor-
mance of the base learner. An empirical
comparison to boosted regular decision trees
shows that ensembles of lazy decision trees
achieve comparable accuracy and better com-
prehensibility. We also introduce a novel
distance-based pruning strategy for the lazy
decision tree algorithm to address the prob-
lem of over-fitting. Our experiments show
that the pruning strategy improves the ac-
curacy and comprehensibility of both single
lazy decision trees and boosted ensembles.

1. Introduction

Boosting (Freund & Schapire, 1997) has been shown to
be extremely effective at increasing the performance of
various learning algorithms, among which decision tree
algorithms have been extensively investigated (Quin-
lan, 1996; Freund & Schapire, 1996; Bauer & Ko-
havi, 1999; Dietterich, 2000). Interestingly, the lazy
decision tree (LazyDT) algorithm (Friedman et al.,
1996), a lazy learning variation of the C4.5 decision
tree algorithm (Quinlan, 1993), has not been explored
in the context of boosting research. Previous work
(Margineantu & Dietterich, 2002) has used the lazy
option tree algorithm, a variant of LazyDT, in a bag-
ging approach (Breiman, 1996) to perform probability
estimation. However, to our knowledge, no boosting-
style algorithm has been proposed. A possible rea-
son is that, as explained in Section 2, an effective and
straightforward method of applying existing boosting
algorithms to LazyDT is not readily apparent.

We chose to explore the topic of boosting lazy decision

trees because LazyDT has some strengths in compar-
ison with regular decision tree algorithms (Friedman
et al., 1996). First, the decision paths built by LazyDT
are often shorter and therefore more comprehensible
than paths of regular decision trees. Second, it is well
known that given limited training data, regular deci-
sion tree algorithms can suffer from the data fragmen-
tation problem (Pagallo & Haussler, 1990). Regular
decision tree algorithms select a test for the root of
each sub-tree based on the average improvement of the
test selection criterion (such as entropy). Because the
choice is based on average improvement, a particular
child branch of the test may see a decrease in the value
of the criterion or remain the same. For instances tak-
ing such a branch, the test may be detrimental since
it fragments the data unnecessarily. This may cause
the resulting path to be less accurate because the re-
maining tests are selected based on fewer training in-
stances. In contrast, LazyDT constructs a customized
“tree” for each test instance, which consists of only a
single path from the root to a labeled leaf node. Given
a test instance, LazyDT selects a test by focusing on
the branch that will be taken by the test instance. By
doing so it avoids unnecessary data fragmentation and
may produce a more accurate classifier for the specific
instance. Given the above strengths of LazyDT, we
are interested in further improving LazyDT by apply-
ing boosting-style ensemble construction techniques.

In this paper, we propose a relevance-based boosting-
style algorithm1 to build a customized LazyDT ensem-
ble for each test instance. We show that our method
significantly improves the performance over the base
learner LazyDT and produces significantly (on aver-
age 50%) less complex ensembles than AdaBoost while
maintaining comparable accuracy. To ameliorate the

1Technically a boosting algorithm is one that transforms
a weak learning algorithm into a strong learning algorithm.
Our algorithm does not have this property but it uses a
boosting-style weight changing process. Thus, we refer to
our algorithm as a boosting-style algorithm and use the
term boosted LazyDT for the resulting ensemble to distin-
guish it from other ensembles such as bagged LazyDT.



Table 1. A generic lazy decision tree algorithm

Inputs: S is the training set
y is the test instance to be classified

Output: class label for the test instance y

1. If all instances in S are from a single class l, return l.

2. Otherwise, select a test T and let t be the value of the
test on instance y. Let S′ be the set of training instances
satisfying T = t and apply the algorithm to S′ and y.

over-fitting problem for LazyDT, we also propose a
new distance-based pruning technique to generate sim-
pler and more accurate lazy decision trees. Currently
this technique is implemented and tested only on data
sets with numerical features. In our experiments, the
proposed pruning method improves the accuracy and
comprehensibility for both single lazy decision trees
and LazyDT ensembles.

The rest of the paper is organized as follows. In
Section 2 we briefly introduce the LazyDT algorithm
and explain the difficulties of applying existing boost-
ing algorithms to LazyDT. Section 3 describes our
boosting-style algorithm for LazyDT. In Section 4, we
empirically evaluate our boosted LazyDT ensembles
on ten data sets and compare their performance with
the base learner LazyDT, bagged LazyDT ensembles
and boosted regular decision tree ensembles. Section
5 introduces the distance-based pruning technique for
LazyDT and illustrates its effectiveness with prelimi-
nary experimental results. Section 6 concludes with a
discussion of related issues and the future work.

2. The Difficulties of Applying Existing
Boosting Algorithms to LazyDT

In Table 1 we briefly describe the general steps of the
LazyDT algorithm. The core part of the algorithm
is how to select a test – LazyDT chooses a test that
“optimizes” the resulting branch taken by the given
test instance. Once a test is selected, only instances
that take the same branch as the test instance are kept
to build the remaining part of the lazy decision tree.
We omit the details of the algorithm and refer readers
to the original paper (Friedman et al., 1996) for an
exact description of the LazyDT algorithm.2

Commonly used boosting algorithms, such as
AdaBoost (Freund & Schapire, 1997), iteratively apply

2Our implementation slightly differs from the original
algorithm in its handling of numeric features. We use
C4.5’s approach rather than discretizing the features be-
fore the tree construction.

a base learner to different distributions of the training
data. Typically it is assumed that the produced base
classifiers can be applied to classify the entire instance
space. In each iteration, AdaBoost adjusts the weights
of training instances according to the classification de-
cisions made by the previously learned classifiers. Mis-
classified instances will be assigned larger weights in
the successive iteration to make the base learner focus
on the “hard” instances.

When LazyDT is used as the base learner, it differs
from regular decision algorithms in two ways. First,
LazyDT generates a single decision path for a given
test instance. This path can only be used to give pre-
dictions to instances that satisfy all of its tests. For
those instances that fail to satisfy the tests, no clas-
sification information is available. Without complete
classification information, the weight changing process
in the above framework can not be directly applied.
Second, the LazyDT algorithm has a rather special
goal – building a decision path that correctly classifies
a given test instance. If a training instance contributes
little information to correctly classifying the given test
instance, even it is a “hard” instance for the current
classifier, not much leverage can be gained by increas-
ing its weight in subsequent iterations.

A tentative solution to the first of these two prob-
lems is to use the confidence-rated boosting algorithm
(Schapire & Singer, 1999), which is capable of han-
dling incomplete classification information. However,
it does not address the second problem. Moreover,
despite the fact that it has been used in SLIPPER
(Cohen & Singer, 1999) to boost decision rules, the
confidence-rated boosting algorithm is not an ideal
choice for our task. In SLIPPER, a rule makes pre-
dictions for the training instances that satisfy all of its
tests with a positive confidence and abstains on the
others by making a prediction with a zero confidence.
The boosting process changes the weight of a training
instance only if it is given a classification with non-
zero confidence. Our investigation of this method did
not give promising results, which we conjecture was
due to the lack of diversity in the resulting ensembles.
LazyDT grows a decision rule (path) until all the in-
stances that are covered by the rule are from the same
class. Typically, only a small part of the training set
will be predicted with non-zero confidence and be as-
signed different weights. Given only small changes of
the distribution, LazyDT tends to produce very sim-
ilar if not identical decision paths for each iteration,
resulting in an ensemble that lacks diversity.

In summary, we believe that in order to successfully
boost the performance of LazyDT, we need our algo-



rithm to 1) work with incomplete classification infor-
mation; 2) produce diverse lazy decision paths; and
3) take into account the special goal of classifying the
given test instance. To our knowledge none of the
existing boosting algorithms successfully satisfies all
three requirements.

3. A Relevance-Based Boosting-Style
Algorithm for LazyDT

Based on the observations made in Section 2, we
propose a relevance-based boosting-style algorithm to
generate a customized lazy decision tree ensemble for
each test instance. Given a test instance, a training
set and an ensemble size T , our algorithm iteratively
constructs T decision paths. In each iteration, a de-
cision path customized for the given test instance is
produced by applying LazyDT to the training set with
a given distribution represented by instance weights.
In the initial distribution all the training instances are
equally weighted. The instance weights are then ad-
justed according to the learned decision path to form
a new distribution for the next iteration. This pro-
cess repeats for T iterations and the majority vote of
the resulting T decision paths is used to give the final
prediction for the given test instance. Our algorithm
adjusts the weight of a training instance according to
how relevant this instance is to classifying the given
test instance and whether its class label is predicted
by the current decision path. The remainder of this
section first defines what we mean by relevant and
then presents the details of the weight modification
procedure.

To understand how relevant a training instance is to
classifying a test instance, we shall look at how train-
ing instances are used by LazyDT in the path build-
ing process. Given a training set and a test instance,
LazyDT starts by selecting a test for the root node us-
ing all the training instances. Once the test is selected
the training set will be partitioned according to results
of the selected test. Because LazyDT only extends
the branch that is taken by the test instance, those
instances that take other branches will be “discarded”
and not used any further in the learning process for
the given test instance. The remaining instances will
then be used to select the next test for the path. This
process repeats until all remaining instances belong to
the same class, at which point a leaf node is generated
and labeled with that class. The later an instance is
“discarded” in this process the more relevant we con-
sider it is to classifying the given test instance. This is
because it was used to select more tests for the deci-
sion path and hence contributed more information to

at the leaf node
r=3 for instances

discarded at C
r=2 for instances

discarded at B
r=1 for instances

discarded at A
r=0 for instances

A

C

B

Figure 1. A decision path with three test nodes. The train-
ing instances are divided into four groups, each of which
has a different relevance level.

the classification decision.

Given a test instance y and a decision path gener-
ated for y, We define the relevance level, r, of a train-
ing instance x to be the depth of the node at which
the training instance is “discarded” when building the
given decision path. Figure 1 shows an example of a
decision path with three test nodes. This path divides
the training instances into four groups each with a dif-
ferent relevance level. Note that the relevance level of
a training instance is defined with respect to a specific
test instance and decision path. In each iteration of
our algorithm, after a decision path is built the rele-
vance level of each training instance is used to regulate
by what magnitude to change its weight for the next
iteration. A higher relevance level results in a more
dramatic weight change for an instance.

In addition to the magnitude, we also need to decide
the direction of the weight change. Recall that Ad-
aBoost increases the weight of incorrectly classified
training instances and decreases the weight of correctly
classified instances. For LazyDT only a small subset
of the training instances are classified by the decision
path and in most cases all of these are classified cor-
rectly (because the path is grown until purity). To
apply the above idea, we assume the decision path
“classifies” all the training instances as the class of
the leaf node. Therefore, if a training instance has
the same class label as the leaf node, its weight will
be decreased and vice versa. Obviously our assump-
tion could be erroneous for some training instances.
However, for a particular instance, the higher the rel-
evance level, the more “reasonable” our assumption is
to that particular instance because it shows more con-
sistency with the decision path. Recall that we control
the magnitude of the weight change according to the
instance’s relevance level.



Table 2. Comparing LazyDT, boosted LazyDT(BO-LazyDT) and bagged LazyDT(BA-LazyDT)

Data set Insts Attrs Classes LazyDT BO-LazyDT BA-LazyDT

Cleveland 303 13 2 71.95±2.19 76.73±1.06 ⊕ 74.59±1.15 ⊕
Crx 541 15 2 86.32±1.18 85.84±0.69 85.84±0.47

German 1000 20 2 72.05±0.89 73.88±0.92 ⊕ 74.40±0.37 ⊕
Hepatitis 155 19 2 85.87±1.10 85.42±0.72 84.65±0.99 	
Lympho 148 18 4 81.35±1.82 80.61±1.01 79.12±2.04 	
Monk2 601 6 2 86.99±1.29 91.40±0.93 ⊕ 76.74±1.11 	
Pima 768 8 2 72.04±0.70 73.13±0.74 ⊕ 74.61±0.74 ⊕
Road 2056 7 9 78.52±0.26 79.86±0.45 ⊕ 80.25±0.27 ⊕
Tahoe 2237 6 5 72.31±0.41 74.31±0.37 ⊕ 75.07±0.37 ⊕
Yeast 1484 8 10 49.44±0.47 51.72±0.78 ⊕ 53.20±0.78 ⊕

Specifically, the weight changing process works as fol-
lows. Given a decision path R, we first calculate for
each training instance x its relevance level r as the
depth of the node where x is “discarded” when build-
ing R. Then we compare x’s class label with R’s leaf
node class. If x has the same class label, its weight
is multiplied by a factor αr , otherwise it is multiplied
by a factor βr , where α < 1 and β > 1. After all
individual updates, the instance weights are normal-
ized to form a valid distribution for the next iteration.
Consider the example shown in Figure 1, the weight
update factor for instances that are located at the leaf
node will be α3 or β3 based on whether the instance
has the same class label as the leaf node.3 Note that
the weight update factor will be one for those instances
that have zero relevance level (i.e., those discarded at
node A), but the normalization step will adjust the
weights of those instances.

In implementing the algorithm, we need to specify the
values for α and β. In our experiments we arbitrarily
selected a basic setting α = 0.98 and β = 1.15. How
to optimize the choice of α and β is an open prob-
lem. Fortunately within a reasonable range the per-
formance of the algorithm appeared to be rather ro-
bust – in the tests of other settings we did not observe
significant performance changes when the parameters
are within range 0.85 < α < 1 and 1 < β < 1.15.
When values outside of this range were used, the per-
formance started to decrease. This is possibly because
the weight change magnitude increases exponentially
as the relevance level increases. When extreme param-
eter values are used, the weight change magnitude can
be so big that a few training instances may have most
of the weight and the resulting distribution may fail

3LazyDT stops growing a decision path when only one
training instance remains. Our implementation of LazyDT
with weighted instances stops if the total weight of all re-
maining instances is less than one, making it possible to
produce leaf nodes with instances from more than one class.

to retain sufficient information to build an accurate
decision path for the given test instance.

4. Experiments

In this section we compare boosted LazyDT with its
base learner LazyDT, bagged LazyDT and boosted
regular decision trees. Ten well-known benchmark
data sets from the UCI data collection (Blake & Merz,
1998) are used in the comparison. The characteristics
of these data sets are summarized in columns 1-4 of
Table 2. For each data set, ten runs of a stratified ten-
fold cross-validation are conducted and the reported
results are averaged over ten runs. An ensemble size
of ten is used for all ensemble methods. Experiments
with an ensemble size of twenty show similar trends as
those of size ten and are thus omitted from the result
tables.

Comparison of boosted LazyDT, LazyDT, and
bagged LazyDT: The base learner LazyDT was
implemented based on MLC++ library (Kohavi et al.,
1994). Bagging was implemented as follows. Given a
test instance and the training set, bagging generates T
bootstrap samples of the original training set, where
T is the ensemble size. Each sample is generated by
uniformly sampling m instances from the training set
with replacement, where m is set to be the size of the
original training set. On average, each sample con-
tains about 63.2% distinct instances from the original
training set. Each bootstrap sample is then used as
the training set to build a lazy decision tree to clas-
sify the given test instance. A majority vote among
the resulting T lazy decision trees is used as the final
output of the bagged LazyDT ensemble.

Table 2 presents the accuracies of LazyDT, boosted
LazyDT and bagged LazyDT in columns 5, 6 and 7
respectively. A paired t-test with 0.05-level is used to
compare each ensemble method to their base method



Table 3. Comparing boosted LazyDT(BO-LazyDT) and AdaBoost applied to C4.5(ADAC45)

Accuracy Decision path length

Data set BO-LazyDT ADAC45 BO-LazyDT ADAC45

Cleveland 76.73±1.06 78.95±0.87 2.87±0.67 4.78±0.78

Crx 85.84±0.69 85.42±0.98 2.91±0.69 4.17±0.72

German 73.88±0.92 70.44±1.24 3.21±0.65 6.20±1.23

Hepatitis 85.42±0.72 82.45±1.83 3.01±1.33 3.35±0.76

Lympho 80.61±1.01 78.65±1.82 2.25±0.77 2.42±0.61

Monk2 91.40±0.93 64.11±1.45 5.12±0.98 1.28±0.46

Pima 73.13±0.74 72.45±1.02 2.89±0.63 5.64±1.37

Road 79.86±0.45 83.03±0.36 2.87±0.72 7.69±1.37

Tahoe 74.31±0.37 74.71±0.31 3.07±0.88 8.41±2.01

Yeast 51.72±0.78 56.48±0.87 3.39±0.92 10.31±2.54

LazyDT. In Table 2, “⊕” is used to indicate a sig-
nificantly better performance than LazyDT and “	”
is used to indicate a significantly worse performance
than LazyDT.

Among the ten data sets, boosted lazy decision trees
perform significantly better than the base learner for
seven data sets and never significantly worse. Bagged
lazy decision trees show similar performance improve-
ment over LazyDT for most of the data sets but be-
have less consistently. For three data sets, Hepatitis,
Lympho and Monk2, bagging significantly degrades
the performance of the base learner. This is possibly
caused by the sub-sampling procedure used by bagging
to generate different distributions, which may lose im-
portant information in the training set. In contrast,
our boosting-style algorithm generates an ensemble
of classifiers through adjusting instance weights and
avoids such detrimental information loss.

Comparison of boosted LazyDT and AdaBoost:
To compare the performance of our algorithm to
boosted regular decision trees, we implemented the
AdaBoost algorithm based on MLC++ (Kohavi et al.,
1994) and the C4.5 source code. Note that C4.5 was
run in its default mode with pruning enabled.

Table 3 presents the accuracy and the average deci-
sion path length of the resulting ensembles of the two
algorithms. The average decision path length is calcu-
lated as follows. For each test instance, we calculate
the decision path length averaged over all classifiers in
the ensemble and then take the average across all test
instances. For a regular decision tree, the path that is
taken by the test instance is used as its decision path.

We observe from Table 3 that boosted LazyDT gives
comparable performance to boosted regular decision
trees. There is no strong evidence for superiority of

either algorithm. However, we observe that the aver-
age decision path length of the boosted lazy decision
trees is significantly (on average 41.77%) shorter than
boosted regular decision trees. The Monk2 data set is
an interesting outlier in the results. It contains an ar-
tificial concept that can not be represented by the C4.5
decision tree. In this case, the path length of the regu-
lar decision tree ensemble is extremely short but such
simplicity comes with a large sacrifice of accuracy – it
fails to capture the underlying concept and performs
poorly as opposed to the LazyDT ensemble. Excluding
the Monk2 data set, the average decision path length
of boosted lazy decision trees is 50% shorter than that
of boosted regular decision trees.

5. Further Improvement with Pruning

A drawback of LazyDT is that it is highly prone to
over-fitting. This is because LazyDT grows a deci-
sion path until a pure node is reached. We believe
an effective pruning strategy will reduce over-fitting
and improve the performance of LazyDT—in fact, lack
of pruning is considered “the weakest point” of the
LazyDT algorithm in the original paper (Friedman
et al., 1996). In this section we introduce our distance-
based pruning strategy for LazyDT.

As the decision path generated by LazyDT has the
form of a decision rule, LazyDT pruning is closely re-
lated to rule pruning. Traditional rule pruning tech-
niques (Quinlan, 1993; Cohen, 1995; Cohen & Singer,
1999) prune an overly-specific rule by deleting tests
from the rule and evaluating the resulting rules with a
hold-out pruning set or the original training set. Typ-
ically the goal of such pruning is to produce a more
general rule for the particular class that is covered by
the rule. For LazyDT, a decision rule is generated to
classify a given test instance. A proper pruning heuris-



20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

Test instance 
Rule boundary 

Class x 

Class o 

(a) Original decision rule

20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

Test instance 

Class o 

Class x 

Rule boundary 

(b) Pruned decision rule

Figure 2. An example of LazyDT pruning from Tahoe dataset

tic should evaluate a rule’s effectiveness in classifying
the given test instance. However, traditional rule prun-
ing heuristics such as the class coverage over a pruning
set or the training set can not fulfill this task. A more
fundamental problem is that applying traditional rule
pruning techniques to LazyDT will not correct any
classification mistakes since these techniques always
associate the rule with the same class label through-
out the pruning process.

Visually a lazy decision rule defines a region containing
the test instance in the instance space and labels the
test instance based on the majority class within this
region. Intuitively we would like the test instance to
be at the center of the defined region, which ideally
is homogeneous, compact and far away from the other
classes. We designed our pruning heuristic based on
this intuition.

Let S = {< xi, yi >: i = 1, 2, ..., n} be the training
set, where xi is the feature vector of instance i and
yi is its class label that takes a value from the set
Y = {1, 2, ...,m}. Let Ci represent the set of training
instances belonging to class i. A rule R partitions S
into two disjoint sets < and <̄, where < contains all the
instances that are covered by the rule and <̄ contains
the rest. To evaluate the goodness of R with respect to
classifying test instance x, we calculate the <-distance
and <̄-distance of R with respect to x as follows.

Definition 1: Df(x,A), the distance between an in-
stance x and an instance set A, is defined as the av-
erage Euclidean distance between x and its k-nearest
neighbors in set A where the Euclidean distance is cal-
culated on feature set f .

Assume rule R predicts class j and let fr be the feature
set that is used by R, we define:

Definition 2:

<-distance = Dfr(x,Cj ∩ <)

i.e., the distance between x and the instance set Cj∩<
calculated on the feature set fr.

Definition 3:

<̄-distance = min
y∈Y−{j}

Df r(x,Cy)

The above distance measurements are both defined in
a subspace formed with the set of features used by the
rule R. <-distance measures the distance between the
test instance and the majority class in the set < and
<̄-distance measures the distance between the test in-
stance and the closest cluster of instances from other
classes. A rule with a small <-distance and a large <̄-
distance for the test instance is considered good since
it has the properties we described above. In light of
the fact that for different rules different numbers of
features are used to calculate the distance, the ratio
<̄−distance
<−distance is used to remove the influence of dimen-
sionality. A larger heuristic value indicates a better
rule. Currently our heuristic is limited to data sets
with only numeric features and k in Definition 1 is
arbitrarily set to be ten.

Our pruning algorithm works iteratively. In each iter-
ation, the algorithm performs a greedy search to select
a deletion of test from the rule conditions. Each possi-
ble deletion produces a candidate rule, whose goodness
is evaluated using the heuristic defined above. The
deletion that results in the largest heuristic improve-
ment will be performed—resulting in a new rule. This



Table 4. Accuracy of LazyDT and boosted LazyDT with and without pruning

Dataset Cleveland Pima Road Tahoe

LazyDT 71.95±2.19 72.04±0.70 78.52±0.26 72.31±0.41

Pruned LazyDT 73.01±2.15 74.27±1.14 79.84±0.21 74.95±0.52

BO-LazyDT 76.73±1.06 73.13±0.74 79.86±0.45 74.31±0.37

Pruned BO-LazyDT 78.25±1.09 76.00±0.61 80.58±0.28 75.66±0.20

process repeats until no further improvement can be
achieved. Note that a pruned rule will give a different
prediction if the new region it defines has a different
majority class. This is fundamentally different from
regular rule pruning techniques – making it possible
for the proposed pruning strategy to correct a classifi-
cation mistake made by an original rule.

Figure 2 shows a pruning example from the Tahoe data
set. This data set has five classes, among which two
are shown in the figure as “o” and “x”. The others
are omitted because they are either not present near
the region defined by the rule or are too rare to be no-
ticed. The original rule, shown in Figure 2(a), consists
of three tests on two features. It defines a region con-
taining only class “x”instances and classifies the test
instance as class “x”. However, the test instance is
close to the region boundary and is visually closer to
class “o” than to the predicted class “x”. The pruned
rule, shown in Figure 2(b), defines a new region with a
different majority class and classifies the test instance
as class “o”—the real class of the test instance in this
case. Our pruning strategy successfully corrected the
mistake made by the original rule. Note that the pro-
posed pruning strategy is built on an intuitive heuristic
without a certain guarantee, therefore it may also re-
verse a correct classification in some cases. However,
we hypothesize that on average this strategy will im-
prove the classification accuracy and our preliminary
experiments support this hypothesis.

We applied the proposed pruning strategy to LazyDT
and boosted LazyDT with an ensemble size of ten. In
Table 4 we report the accuracy of LazyDT and boosted
LazyDT with and without pruning on four data sets.
Only four data sets are used here because our current
implementation of the pruning method can not handle
non-numeric features or missing values. On average,
pruning improves the accuracy of LazyDT by 1.81%.
For boosted LazyDT, pruning also improves the accu-
racy by an average of 1.61%. In addition, pruning sig-
nificantly reduces the complexity of the resulting rules
– on average we observe a 22% size reduction for reg-
ular LazyDT and 25% reduction for boosted LazyDT.
The average length of pruned LazyDT and LazyDT

ensemble is 2.13 and 2.19 respectively. This indicates
that most resulting rules use only two or three features,
forming a low dimensional feature space in which we
can easily visualize the rules. We believe this can
greatly enhance the comprehensibility of the resulting
decision rules.

Because the experiments are somewhat limited, we can
not conclusively comment on the effectiveness of our
pruning algorithm in general. However, the prelimi-
nary results do indicate that the pruning algorithm is
potentially useful for handling the over-fitting problem
for the LazyDT algorithm and it merits more thorough
examination. The ensemble performance gain induced
by pruning is rather interesting because previous work
(Bauer & Kohavi, 1999; Dietterich, 2000) has indi-
cated that pruning often has no significant impact on
the performance of boosted decision tree ensembles.
Here we provide two possible explanations. First, our
experiments set the ensemble size to be ten, the ef-
fect of pruning may become negligible if larger ensem-
bles are used. Second, this is also possibly due to the
fact that our “boosting” algorithm is only a “boosting-
style” algorithm – pruning may have a different impact
in this case.

A drawback of our pruning heuristic is that it is biased
toward the majority class, thus minority class perfor-
mance may degrade. For example, the Tahoe data
set has two minority classes - class 2 and 4, together
covering only 4.74% of the whole data set. Pruning de-
creased the accuracy of LazyDT on these two classes
from 14.34% to 9.06%. We conjecture that this is be-
cause on average a test instance is more likely to be
closer to majority class instances because there are
many more of them in the instance space. Future work
will address how to incorporate a cost function into our
pruning process to alleviate this problem for data sets
where the misclassification cost of a minority class is
greater than that of a majority class.

6. Conclusions

In this paper, we presented and empirically evaluated a
relevance-based boosting-style algorithm to build lazy



decision tree ensembles. Given a test instance, the
algorithm builds an ensemble of lazy decision trees
by adjusting training instance weights and then uses
majority vote to make the final classification. The
training instance weights are adjusted according to
their relevance to classifying the given test instance.
Experimental results show that our boosted lazy de-
cision trees significantly outperform the base learner
LazyDT. Compared to bagged LazyDT, our algorithm
shows more consistent performance improvement over
LazyDT. In comparison with boosted regular decision
trees, boosted LazyDT achieves better comprehensibil-
ity while maintaining comparable accuracy. A problem
of the proposed algorithm is that it is time-inefficient.
We see its best use in situations where the number of
test instances is limited and the classifier’s accuracy
and comprehensibility are both important for individ-
ual test instances.

A second contribution of this paper is a novel distance-
based pruning technique for LazyDT. Different from
traditional rule pruning methods, our method is capa-
ble of correcting classification mistakes for the given
test instance. Demonstrated by preliminary experi-
mental results, our pruning method produces simpler
lazy decision trees with improved classification perfor-
mance. As explained in Section 5, our pruning method
is biased against minority classes, thus should not be
used when minority class accuracy is more important
than overall accuracy. Indeed an open question is how
to incorporate misclassification costs into LazyDT and
our pruning technique.

In boosting algorithms such as AdaBoost, when a base
learner fails to generate a classifier with an accuracy
over 50%, the boosting process will stop or be reset and
the “bad” classifier will be discarded. Such a stopping
criterion is missing in our relevance-based LazyDT en-
semble algorithm. In our future work we will investi-
gate using the distance-based heuristic to weight the
rules to avoid strong detrimental influence of “bad”
rules.

Acknowledgment

The authors were supported by NASA under Award
number NCC2-1245. Many thanks to the anonymous
reviewers for their valuable comments that helped im-
prove this paper.

References

Bauer, E., & Kohavi, R. (1999). An empirical com-
parison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36, 105–

139.

Blake, C. L., & Merz, C. J. (1998). UCI repository of
machine learning databases.

Breiman, L. (1996). Bagging predictors. Machine
Learning, 24, 123–140.

Cohen, W. W. (1995). Fast effective rule induction.
Proceedings of the Twelfth International Conference
on Machine Learning (pp. 115–123).

Cohen, W. W., & Singer, Y. (1999). A simple, fast, and
effective rule learner. Proceedings of the Sixteenth
National Conference on Artificial Intelligence (pp.
335–342).

Dietterich, T. G. (2000). An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization.
Machine Learning, 40, 139–157.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. Proceedings of
the Thirteenth International Conference on Machine
Learning (pp. 148–156). Morgan Kaufmann.

Freund, Y., & Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Science, 55, 119–139.

Friedman, J. H., Kohavi, R., & Yun, Y. (1996). Lazy
decision trees. Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (pp. 717–
724). AAAI Press.

Kohavi, R., John, G., Long, R., Manley, D., & Pfleger,
K. (1994). MLC++: A machine learning library in
C++.

Margineantu, D. D., & Dietterich, T. G. (2002). Im-
proved class probability estimates from decision tree
models. Nonlinear Estimation and Classification;
Lecture Notes in Statistics (pp. 169–184).

Pagallo, G., & Haussler, D. (1990). Boolean feature
discovery in empirical learning. Machine Learning,
5, 71–99.

Quinlan, R. J. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann.

Quinlan, R. J. (1996). Bagging, boosting, and C4.5.
Proceedings of the Thirteenth National Conference
on Artificial Intelligence (pp. 725–730).

Schapire, R. E., & Singer, Y. (1999). Improved boost-
ing algorithms using confidence-rated predictions.
Machine Learning, 37, 297–336.


