
Testing vs. Code Inspection vs. ... What Else?
Male and Female End Users’ Debugging Strategies

Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret Burnett,

Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell Drummond, and Xiaoli Fern

Oregon State University

 Corvallis, OR, USA

{subrahmn,beckwith,grigorev,burnett,narayava,xfern}@cs.orst.edu

Drexel University

Philadelphia, PA

Susan.Wiedenbeck@cis.drexel.edu

ABSTRACT

Little is known about the strategies end-user programmers

use in debugging their programs, and even less is known

about gender differences that may exist in these strategies.

Without this type of information, designers of end-user

programming systems cannot know the ―target‖ at which to

aim, if they are to support male and female end-user pro-

grammers. We present a study investigating this issue. We

asked end-user programmers to debug spreadsheets and to

describe their debugging strategies. Using mixed methods,

we analyzed their strategies and looked for relationships

among participants‘ strategy choices, gender, and debug-

ging success. Our results indicate that males and females

debug in quite different ways, that opportunities for im-

proving support for end-user debugging strategies for both

genders are abundant, and that tools currently available to

end-user debuggers may be especially deficient in support-

ing debugging strategies used by females.

Author Keywords

Gender, debugging, end-user programming, end-user soft-

ware engineering, strategy.

ACM Classification Keywords

D.2.5 [Software Engineering]: Testing and Debugging;

H.1.2 [Information Systems]: User/Machine Systems—

Human factors; H.4.1 [Information Systems Applications]:

Office Automation—Spreadsheets

INTRODUCTION

What strategies do end-user programmers use when debug-

ging? Does gender make a difference in these strategies?

Research has begun to report differences in males‘ and fe-

males‘ behaviors with software. In end-user programming,

gender differences have been reported in programming en-

vironment appeal [15], playful tinkering with features [5],

and attitudes toward and usage of end-user software design

and debugging features [4, 6, 22]. Still, these results fail to

say how males and females would like to approach debug-

ging. Studying environment features, as in previous re-

search, allows consideration of only that which exists. This

paper looks beyond features to debugging strategies, to

consider that which may not yet exist, but should.

This paper reports the results of an experiment we con-

ducted to investigate the strategies used by male and female

end-user programmers in the course of debugging spread-

sheets. Strategy, which refers to a reasoned plan or method

for achieving a specific goal, exists in the head, and in-the-

head data are not easy to obtain reliably. Hence, our expe-

riment is heavily triangulated, using four sources of data—

questionnaire data, session replays, logged behaviors from

the current experiment, and logged behaviors from a pre-

vious data set. Questionnaire data were used primarily to

elicit participants‘ in-the-head strategies, which are not di-

rectly observable; behavior data, which are directly observ-

able, were used to corroborate the presence of these strate-

gies. We used three methods of analysis: qualitative me-

thods, traditional statistical methods, and unsupervised au-

tomated data mining methods.

We were interested not only in strategies used by end-user

programmers, but also in the relationships of these strategy

choices to males‘ and females‘ debugging success. There-

fore, our research questions were:

RQ1: What debugging strategies do end-user programmers

try to use?

RQ2: Are there gender differences in the debugging strate-

gies male and female end-user programmers try to use?

RQ3: Which debugging strategies lead to male and female

end-user programmers’ success?

BACKGROUND AND RELATED WORK

Past research provides reasons to suspect that end-user pro-

grammers might use debugging strategies other than those

of professional programmers. It also provides reasons to

suspect gender differences in males‘ and females‘ strate-

gies, and the ties of these strategies to success. Specifically,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2008, April 5–10, 2008, Florence, Italy.

Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

617

we encountered three reasons to suspect such differences.

First, end-user programmers have elements in common with

novice programmers, and there are known differences be-

tween these two groups‘ strategies [17, 19]. Second, re-

search from other domains, both theoretical and empirical,

suggests gender differences relevant to debugging strategies

[4, 18, 20]. Third, recent findings of gender differences in

feature usage by end-user programmers could actually be

evidence of differences in males‘ and females‘ intended

strategies [4, 6, 13, 22].

Regarding the first reason, we use the term ―end-user pro-

grammers‖ to describe people who program in order to faci-

litate their goals, but without aspiring to become profes-

sional programmers. End-user programmers have some

attributes in common with the more widely studied group

known as ―novice programmers.‖ This term refers to people

who, like end-user programmers, have little programming

experience, but unlike end-user programmers, aspire to be-

come expert programmers. Programming literature indi-

cates that both experts‘ and novices‘ debugging success is

related to program comprehension. Specifically, expert pro-

grammers attempt to gain a high-level understanding of the

program before they begin to debug, whereas novices tend

to jump immediately into the code, with very little context

about the program‘s purpose and structure (e.g., [19]).

When experts on occasion do jump immediately into the

code, they, like the novices, are less likely to succeed [17].

Regarding the second reason, and pertinent to systematic

program comprehension, research in the field of marketing

reports gender differences in information processing. The

Selectivity Hypothesis [18] proposes, and empirical re-

search (e.g., [20]) bears out, that males and females differ in

their information processing in decision making. Specifical-

ly, the hypothesis proposes that females tend to maximize

the comprehensiveness of their information processing

(e.g., attending to details, looking for multiple cues, and

making elaborative inferences) in simple and complex

tasks. In contrast, males have a propensity to use simple

heuristics in information processing (e.g., single cues that

are readily available) to reduce cognitive load. They deviate

from the heuristic strategy only if forced to do more elabor-

ative processing by the needs of a complex task. Gender

differences in information processing could impact both the

choices and the applications of debugging strategies male

and female end-user programmers pursue.

Although there is no previous research on gender differenc-

es in end-user programmers‘ debugging strategies, there are

reports of gender differences in strategies in other domains,

such as psychology and education (e.g., [13]), which lends

credence to the possibility that such differences might exist

in end-user debugging. The closest work to this paper is

end-user programming studies on feature usage, which re-

lates to our third reason: these studies consistently show

that what males and females did regarding feature usage

was different [4, 6, 22], but do not consider strategies males

and females may have been trying to use that led them to

employ features differently. The contributions of this paper

are in directly investigating the strategies end-user pro-

grammers try to use, evaluating the success of these strate-

gies for males and females, and considering design implica-

tions of these results to better support end-user debugging.

EXPERIMENT

Participants and Procedures

We brought in 37 female and 24 male undergraduate partic-

ipants from a variety of majors. Only 6 females and 5 males

were engineering, science, or math students; none were

computer science students. All had experience working

with spreadsheet formulas, but had little or no programming

experience. Few background differences existed between

genders. Females reported somewhat higher grades than the

males (ANOVA: F(1,59)=3.81, p<.06; males: 3.32 (0.41)

females: 3.51 (0.32)), but, as in prior software studies (e.g.,

[4]), males had significantly higher self-efficacy scores than

the females (ANOVA: F(1,59)=6.30, p<.02; males: 40.96

(4.87) females: 37.73 (4.93)).

After filling out a pre-session questionnaire, the participants

took a 25-minute hands-on tutorial (described below), and

then debugged two spreadsheets. Their actions and the sys-

tem‘s feedback were captured in electronic logs. A post-

session questionnaire asked the participants to describe the

strategies they used for finding and fixing errors.

Triangulation Procedures

As we have mentioned, strategy exists only in the minds of

the participants. Hence, the only direct source of data about

strategy is to ask the participant, which we did via the post-

session questionnaire. Since self-reported data are not al-

ways reliable, it was critical to use as much triangulation as

possible, through multiple sources of data and multiple me-

thods of analysis, to verify them.

There were four types of data related to strategy. First were

the participants‘ own descriptions of their strategies, coded

using content analysis. Second, were electronic logs of be-

haviors, which could show evidence of the strategies. Third,

playbacks of the logs allowed us to detect more complex

behavioral patterns related to claimed strategies than we

might have spotted with statistics and scripts alone. Finally,

a data mining study was conducted independently in paral-

lel [12]. The data used in the data mining study were logs of

participants in [5], in which there were no significant gend-

er differences in participants‘ success. The goal of triangu-

lating with the data mining effort was to see if independent

evidence detected automatically would corroborate results

found by human researchers using more traditional qualita-

tive and quantitative methods.

Software Environment

The study used a research spreadsheet environment that

includes WYSIWYT (―What You See Is What You Test‖)

testing features [8] to help end users test and debug spread-

sheet formulas. (―Testing‖ refers to the process of executing

a program with different values to find errors.) Although

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

618

the WYSIWYT features are intended to support testing-

based strategies, they were flexible enough to allow partici-

pants considerable leeway in the strategies they actually

used. We chose this research spreadsheet system because its

features provide participants more choice of testing and

debugging strategies than Excel. This environment also had

a logging capability to collect the extensive activity data

necessary for statistical analysis of behavior patterns.

With WYSIWYT, if the user notices that a cell‘s value is

correct, he or she can check it off, as in Figure 1. Border

colors then change, reflecting the portion of cells‘ formula

subexpressions that have been covered by the checked-off

values: borders of untested cells are red (light gray in this

paper), partially tested cells are shades of purple (interme-

diate shades of gray), and fully tested cells are blue (black).

Optional dataflow arrows also use this coloring scheme. For

example, if a user checks off MinMidtrm1Midtrm2 in Fig-

ure 1, the system updates all affected cell border colors that

fed into the answer of MinMidtrm1Midtrm2, the colors of

any visible dataflow arrows, and a ―tested %‖ progress bar

(top of Figure 1), all reflecting the formula expressions

covered by the testing so far. If a user instead notices that a

value is wrong, the user can ―X it out,‖ causing the system

to highlight suspect cells, as in Figure 1.

Sometimes it is not easy to conjure up useful test values. In

that case, the user can press a ―Help Me Test‖ button (not

shown), which suggests values that would cover as-yet un-

tested formula subexpressions [8].

When the user displays a formula (lower right of Figure 1),

it stays displayed until closed. This device allowed partici-

pants to have multiple formulas open at once, increasing the

viability of debugging strategies based on code inspection.

These and all features in the environment were supported

with tool tips (shaded text box in Figure 1).

Tutorial

To avoid suggesting strategies to our participants that might

introduce bias, the tutorial covered features only. It did not

emphasize any particular feature over another, nor did it

present any problem-solving scenario that might suggest

how to build a strategy using the feature. We explained the

features and gave participants hands-on practice time. The

tutorial covered Tool tips, Checkmarks, X-Marks, Arrows,

Formula Edits, and Help Me Test. A ―quick reference‖

handout describing the features was also provided.

Half of the tutorial sessions were presented by a male and

half by a female. This design ensured that approximately

50% of participants were instructed by a same-gender in-

structor and 50% by an opposite-gender instructor, serving

to distribute any gender effect of the tutorial presenter

equally over the two genders.

Spreadsheets and Materials

All participants were asked to test two spreadsheets, Grade-

book (Figures 1 and 2) and Payroll. Gradebook was seeded

with six bugs and Payroll with five. Other than the layout of

the cells, the spreadsheets and the seeded bugs replicated

those of [4]. When designing the layout, we took care to

Figure 1: (Top) Tested % progress bar. (Bottom) A portion of

the Gradebook spreadsheet. The user noticed an incorrect val-

ue in Course_Avg and placed an X-mark. As a result of this X

and other X’s and √s, six cells were highlighted as possible

sources of error, with some more likely than others.

Figure 2: The description handout explained the intent of the

groups of cells on the spreadsheet. (Miniaturized for space

reasons, with one of the callouts blown up for readability.)

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

619

avoid potential confounds among different sequences par-

ticipants might follow. For example, Western reading order

was distinguishable from the order in which our description

handouts introduced the cells and from the order in which

the data flow through the spreadsheet.

The participants were given the spreadsheet, a handout de-

scribing it (Figure 2), and a handout with examples of two

sets of correct values. The order in which the spreadsheet

problems and handouts were presented to the participants

was random across sessions, to avoid the order influencing

participants‘ strategy choices. Time limits of 22 minutes

(Gradebook) and 35 minutes (Payroll) were set, in order to

simulate the presence of time constraints in real-world

computing tasks and to prevent experimental confounds.

The participants were told that a spreadsheet had been up-

dated and that, ―Your task is to test the updated spreadsheet

and if you find any errors, fix them.‖

SUCCESS BY GENDER

We begin with the ―bottom line‖ by gender: who had the

most success debugging? We used changing a faulty formu-

la correctly as our indicator of a bug fixed. In this study,

males were significantly more successful at fixing bugs

(ANOVA: F(1,59)=12.20, p<.001; males: 6.71 (2.46) fe-

males: 4.24 (2.83)).

When analyzing which strategies each gender tried to use,

we considered our entire population. However, when ana-

lyzing strategy ties to bug fixing performance, we needed to

avoid potential confounds of the females‘ lower perfor-

mance affecting other statistical inferences. Since our data

did not meet the requirements for ANCOVA, we instead

tested each gender‘s correlations with success separately.

We also compared successful males with successful fe-

males, where ―successful‖ meant having fixed above the

median number of bugs (11 in total), and ―unsuccessful‖

otherwise. Of the 37 females, 14 were successful and 23

unsuccessful; of the 24 males, 16 were successful and 8

were not.

Our statistical methodology required an array of tests,

which were used according to the following policy. To test

for ties between numeric independent variables and numer-

ic outcomes, we used Pearson‘s correlation test. To test

group differences in numeric outcomes, we used ANOVA.

To test groups‘ ranked outcomes or when the data were

seriously skewed, we used the non-parametric Wilcoxon

test. To test groups‘ binary outcomes (yes/no), we used the

non-parametric Fisher‘s Exact Test, which is appropriate

for such tests on sample sizes from very small to moderate.

THE STRATEGIES

The concept of strategy includes the notion of mental plan-

ning with intent. Since it is not possible to observe this di-

rectly, we asked participants to report the strategies they

used on the post-session questionnaire. We then triangu-

lated these results by looking for evidence in participants‘

observable actions that bore out the reported strategies.

The concepts we found in participants‘ responses to the

post-session question produced the set of codes in Table 1.

The concepts were coded simply as present or absent from

their responses, except for testing. Since some end-user

programmers use the word ―testing‖ imprecisely, using it to

describe anything from testing to code inspection, we could

not give a great deal of credence to use of the word ―test-

ing,‖ and this prevented presence/absence coding. There-

fore, we ranked participants based on the ―level‖ of testing

concepts they reported. We identified four levels of testing

in their responses: (1) talking about values or mentioning

testing, (2) mentioning multiple values for double-checking

results, (3) stating need for covering situations in a cell

(concept of local coverage) or adding in their own test cas-

Strategy Code Definitions Example Participant Statements

Dataflow: Following formula dependencies. ―Systematically go from the formulas that rely wholly on data cells, pro-

gressing to formulas that rely on other formula driven cells.‖

Testing: Trying out different values to evaluate

the resulting values.

―After correcting everything I pressed the ‗Help Me Test‘ button and

double-checked the values to make sure they worked. Next I plugged in

values from the given correct example pages to make sure they worked

well.‖

Code Inspection: Examining formulas to deter-

mine their correctness.

―I then looked at the formulas to see if I could find mistakes.‖

Specification Checking: Comparing the descrip-

tion of what the spreadsheet should do with the

spreadsheet‘s formulas.

―Going for the information given on the handouts and making sure each

formula fit that description…‖

Color Following: Using border colors to guide

their efforts.

―Remove as many red borders as possible, then purple, until all are blue.‖

To-do Listing: Checking off formulas to denote

that they have been examined.

―... find errors using the checks and X‘s to show me what I‘d already

checked.‖

Fixing Formulas: Explicitly described strategy

in terms of editing formulas to fix them.

―...tried to make sense of the formulas and change them as need[ed] the

best I could...‖

Spatial: Following the layout of the spreadsheet. ―Usually top to bottom, left to right...‖

Table 1: Participants’ responses when asked post-session to describe their strategies in finding and fixing the errors.

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

620

es, and (4) covering different situations with an eye to glo-

bally covering all the situations in the spreadsheet. For ex-

ample, the testing entry in Table 1 was coded as level 2.

The codes do not necessarily constitute strategies of which

software engineers would approve, but we did not filter —

if a participant said it was their strategy, we took their word

for it. Because of this, codes are not necessarily orthogonal;

if participants introduced a concept, even if it was related to

another concept, we added a code for it. Two coders inde-

pendently coded portions of the participants‘ responses and

compared them, developing the codes further and iterating

until an acceptable level of agreement was achieved. At the

point the agreement rate reached 84%, demonstrating a rea-

sonably robust set of codes, a single researcher coded all

remaining responses. The results are shown in Table 2.

Most participants (58/61) mentioned multiple strategies, in

which case we assigned multiple codes.

The most common co-occurrences were testing and code

inspection. They are complementary, and about three-

fourths of participants who used one also used the other

(Table 2). For example, one participant said that she “first

input some simple example values to start with. Then I just

go from one step to the next making sure that formulas are

correct and the values make sense, and checking them

off…” Replaying her activity log demonstrated exactly that,

showing that she tried out numerous values that she con-

jured up herself, not just the ones from the handout, inters-

persed with examining the formulas. For example, in her

first few actions she examined a formula, and immediately

after, changed an input value impacting that formula, then

checked off that cell when she saw its resulting value. This

way of combining testing and code inspection led her to

edit a formula that did indeed have a bug in it.

Four strategies stood out in what the participants said, either

because of the frequency of mention of these strategies or

because of significant gender differences in what they said

(presented in upcoming sections). The four were dataflow,

testing, code inspection, and specification checking. The

remaining strategies were often adjuncts to the four major

strategies—either facilitating the execution of another strat-

egy or combining with another strategy—so we present

them in the context of related major strategies.

STRATEGY USAGE TIES TO SUCCESS

Dataflow

In programming environments, dataflow is a widely sup-

ported debugging strategy: ever since Weiser‘s classic

study identified slicing as an important strategy for debug-

ging [25], numerous tools have been based on slicing. In

spreadsheets, slicing amounts to following dataflow, i.e.,

cell references. The references form a dataflow chain,

where the chain starts at an input value and ends at a final

calculated output value.

Ten participants reported their strategy to be dataflow: half

of them were successful males but none were successful

females (Fisher‘s Exact: p<.05; 5/16 successful males and

0/14 successful females).

To triangulate against what the participants said, we consi-

dered their behaviors recorded in the logs. While dataflow

order could be either depth-first or breadth-first, we found

no clear evidence of breadth-first. Thus, we henceforth use

the term ―dataflow‖ to refer to depth-first dataflow.

We measured dataflow behavior in two different ways: the

participants‘ number of dataflow instances (sets of multiple

consecutive visits within a single chain, reported here) and

the number of cells visited consecutively in one chain (not

reported here, but consistent with the instance results). The

mean (SD) instances for males was 303.71 (120.49), and for

females 270.27 (88.02). For males, dataflow and bugs fixed

significantly correlated with each other (Pearson: r(22)=.42,

p<.04). For females the same relationship did not hold

(Pearson: r(35)=.20, p<.27). Figure 3 shows these data.

Considering dataflow over time makes clear that, from the

very beginning, males were more dataflow-oriented than

females. In their first task (recall that task order was coun-

terbalanced), males followed dataflow significantly more

than females (ANOVA: F(1,59)=4.39, p<.04; males: 84.29

(71.82), females: 64.27 (40.92)). Although in Task 1,

males‘ dataflow instances did not have a significant asso-

ciation to bugs fixed, by Task 2, this association had

reached significance (Pearson: r(22)=.42, p<.04); but not

for females (Pearson: r(35)=.14, p<.36). The mean (SD) for

dataflow instances in Task 2 for males was 161.25 (62.22),

and for females: 148.97 (63.14).

These behavioral patterns correspond to the successful

males‘ discussion of strategies. For example, one successful

male described his dataflow strategy as: ―...try to follow the Dflo Test Code Spec Colr Todo Fix Spat

Dflo 10 6 5 1 5 0 3 2

Test 46 34 22 5 10 10 3

Code 42 23 4 10 9 3

Spec 30 4 7 11 1

Colr 10 1 2 2

Todo 12 1 0

Fix 18 0

Spat 4
Table 2: Diagonal cells (highlighted) show the number of

participants mentioning each strategy; remaining cells show

co-occurring mentions.

Figure 3: Correlation between total bugs fixed and number of

dataflow instances. Left: male (significant), right: female.

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

621

flow of information...‖ Replaying his actions showed that,

after a period of initial exploration, he began focusing on

one dataflow chain at a time. For example, in Payroll, he

began with a combination of ad hoc code inspection and

testing. About 5 minutes into the task, he turned on dataf-

low arrows, and immediately followed one of the arrows

upstream in the dataflow chain (i.e., toward the initial in-

put). He continued to use arrows throughout the session,

following them upstream within dataflow chains. Whenever

he left a dataflow chain, he switched to a new dataflow

chain, one chain at a time.

Were dataflow strategies related to arrows, the primary da-

taflow feature in the environment? For males, yes. Males‘

total usage of arrows correlated to dataflow usage across

both tasks (Pearson: r(22)=.52, p<.008). But for females,

this was not the case (Pearson: r(35)=.10, p<.49). Perhaps

because of the males‘ association of arrows with dataflow,

males used arrows almost twice as often as females as well

(males: 27.52 (30.99); females 12.73 (13.79)).

As the above statistics make abundantly clear, dataflow

strategies worked much better for males than for females.

One explanation may be the comprehensive processing pre-

ference of females described by the Selectivity Hypothesis

[18, 20]. The dataflow strategy is not comprehensive; it

focuses on a single path, ignoring the other cells, which is

akin to the cue-oriented strategy that this theory associates

with males.

Testing

Testing, in software engineering literature, is executing a

program with different values, with the intent of finding

errors. Hence, testing in this environment can be defined as

modifying the values of the spreadsheet to see the answers

produced.

In contrast to participants‘ mentions of dataflow, which was

a trait of successful males, there were no significant gender

differences between what successful males and successful

females said about using testing as their strategy. The lack

of gender difference may be a ceiling effect due to the very

high frequency with which this strategy was mentioned,

especially by successful participants. In fact, successful

participants of both genders talked of more testing concepts

than unsuccessful participants at a marginally significant

level (Wilcoxon: p<.08). (We used Wilcoxon here because,

as described earlier, our scoring scheme for statements

about testing was based on levels/ranks.)

Some participants may have been encouraged toward test-

ing because their (reported) strategy was to follow the ―tes-

tedness‖ colors; these were the color followers. Ten partici-

pants described their strategies in terms of these colors. In

fact, qualitative analysis of the log files showed that 34 par-

ticipants in Task 1 and 31 participants in Task 2 exhibited

color following behaviors. Interestingly, here a gender dif-

ference surfaced relevant to testing and success: none of the

successful females mentioned following colors.

The parallel data mining study (with different participants)

confirmed behaviorally the existence of testing as a strategy

by end-user programmers. The data mining study searched,

without human supervision, for interesting sequences of

events. One behavioral pattern it identified was sequences

of value edits followed by checking off and/or X-ing out

values, the primary testing operations in this environment.

Successful participants used this pattern significantly more

than unsuccessful participants (ANOVA: F(1,38)=5.71,

p<.03; successful: 8.06 (9.92) unsuccessful: 2.38 (4.18)).

In the current experiment‘s participants‘ logged behaviors,

we counted (1) the number of values participants edited

manually, (2) the number of values they edited manually

plus uses of the Help Me Test button to generate new val-

ues, and (3) percent testedness.

All three measures echoed what the successful males said

(Table 3). In fact, this strategy differentiated males‘ success

levels, with significant differences in all three measures for

successful versus unsuccessful males. However, this was

not the case for females. Further, the amount of testing, as

measured through both value edits and percent tested, sig-

nificantly correlated to the number of bugs fixed for males,

but not for females. Males‘ value edits: r(22)=.47, p<.03;

females: r(35)=.17, p<.33. Males‘ percent tested: r(22)=.46,

p<.03; females: r(35)=.07, p<.68.

Thus, by every behavioral measure, the testing strategy was

strongly tied with males‘ success, but not with females‘

success. This could be because the females had another

strategy they felt would be even more useful to them, name-

ly code inspection.

Code inspection

Code inspection, in software engineering, means examining

the computer source code to uncover errors and defects. In

spreadsheets, this translates to examining formulas to judge

their correctness. Code inspection in spreadsheets is widely

regarded as a necessary part of spreadsheet auditing

Value edits Value edits +

Help Me Test

 % Tested

Males: S vs. U: 16 SM, 8 UM

Succ. males more:

SM 59.8 (31.99)

UM 26.62 (22.93)

p<.01:F(1,22)=7.06

Succ. males more:

SM 64.37 (29.85)

UM 30.87 (22.72)

p<.01: F(1,22)=7.75

Succ. males more:

SM 0.796(0.141)

UM 0.669(0.173)

p<.04: F(1,22)=5.06

Females: S vs. U: 14 SF, 23 UF

Not significant:

SF 36.36 (19.34)

UF 28.78 (12.28)

p<.15:F(1,35)=2.13

Not significant:

SF 39.21 (19.16)

UF 34.39 (14.52)

p<.39: F(1,35)=0.75

Not significant:

SF 0.662 (0.1820)

UF 0.669 (0.0940)

p< .88: F(1,35)=0.22

Successful: M vs. F: 16 SM, 14 SF

Succ. males more:

SM 59.68 (31.99)

SF 36.36 (19.34)

p<.02:F(1,28)=5.88

Succ. males more:

SM 64.37 (29.85)

SF 39.21 (19.16)

p<.01: F(1,28)=7.29

Succ. males more:

SM 0.796 (0.141)

SF 0.662 (0.182)

p<.03: F(1,28)=5.08

Table 3: Males’ and females’ use of testing as it related to suc-

cess. M=Males, F=Females, S=Successful, and U=Unsuccessful.

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

622

processes [21], such as the one used at the U.K. Department

of Revenue and Customs [2]. The WYSIWYT environment

has the unusual (for spreadsheets) ability to display multiple

formulas in the same view as values, which allowed code

inspection to co-occur with testing (Figure 4).

Just plain code inspection

In the questionnaire data, successful females were signifi-

cantly more likely to mention code inspection as their de-

bugging strategy than unsuccessful females (Fisher‘s Exact:

p<.03; 13/14 successful females and 13/23 unsuccessful

females), whereas there were no significant differences

between the reports of successful males and unsuccessful

males, or between successful males and successful females.

There is triangulating evidence from the parallel data min-

ing study that code inspection exists as a behavior by end-

user programmers. The machine‘s unsupervised mining of

the data identified a behavioral pattern of consecutive for-

mula display/undisplay sequences containing only a few

formula edits, demonstrating those participants‘ interest in

reading formulas without editing most of them.

To learn the extent to which our successful participants

relied on code inspection behaviors, we replayed logs of the

Gradebook session and noted each instance of code inspec-

tion. We chose Gradebook because its layout was more

spread out than Payroll, reducing the chance of spatial over-

laps dissuading participants inclined toward code inspec-

tion. Because the qualitative mechanism was time-

consuming, we restricted our replays to the 30 successful

participants, i.e., those who fixed above the median number

of bugs in Gradebook (16 males and 14 females).

After several viewings of the logs, we converged on a defi-

nition of an instance of code inspection: an instance began

when a participant (1) had two or more formulas displayed

simultaneously solely for reading (i.e., no editing was being

done), or (2) displayed multiple formulas consecutively in

rapid succession with no intervening actions. The instance

ended when a participant hid all formulas or when a formu-

la or value was edited. We counted the number of instances

and the number of formulas displayed per instance.

As Table 4 shows, by either measure, successful females

used code inspection significantly more than successful

males.

To-do listing: a variant of code inspection

To-do listing is a variant of code inspection in which partic-

ipants used checkmarks to check off formulas they had ap-

proved or fixed, and used X-marks to form a to-do list of

formulas still needing work.

Twelve participants described to-do listing as their strategy.

The parallel data mining study also automatically picked

out pattern sequences of to-do listing‘s components, namely

sequences of posting and hiding several formulas consecu-

tively, followed ultimately by checking one off.

Neither our questionnaire data nor the parallel data mining

study showed significant ties between to-do listing and any

particular groups. However, turning to the behavior logs,

we were able to analyze ―early‖ to-do listing behaviors for

ties to groups. To accomplish to-do listing, participants co-

opted checkmarks and X-marks, which are for testing. This

introduced difficulty in distinguishing testing from to-do

listing. To avoid this problem, we focused exclusively on

early to-do listing, before useful test values were present.

We counted checkmarks or X-marks placed on formulas the

participant had viewed, provided that all the values were

still 0 (the initial values). Early to-do listing was thus a very

conservative measure of to-do listing.

Using the above measure, in the participants‘ first task there

were no gender differences in to-do listing, but by the

second task, females did significantly more to-do listing

(Wilcoxon, p<.02). (Because many participants did not

place checkmarks and X-marks before any input values

were changed, the number of zero counts skewed these par-

ticular data far from normal; thus we used solely non-

parametric tests in this analysis.) Counts of participants

confirmed this phenomenon, with significantly more fe-

males involved in early to-do listing than males (Fisher‘s

Exact: First task: p<.78, 13/37 females and 7/24 males;

Second task: p<.03, 13/37 females and 2/24 males).

To-do listing is simply code inspection plus the ability to

track code inspection status. In independent interviews con-

ducted in 2006 by the spreadsheet analysis company

i5Logic, all six professional auditors interviewed requested

the equivalent of to-do listing (personal communication

Aug. 29, 2007 with Matthew Johnen, CEO of i5Logic).

Since a significant number of participants, especially fe-

males, tried to engage in to-do listing, this seems to be an

opportunity area for end-user debugging tools.

Figure 4: A participant’s session during code inspection. We

have superimposed dark rectangles on the screenshot to

highlight the formulas being displayed.

 Number of code

inspection in-

stances

Total displayed

formulas in all

instances

16 SM,

14 SF

SF>SM

F(1,28) = 4.99

p < .04

SF>SM

F(1,28) = 5.54

p < .03
Table 4: Code inspection behavior results (SF=Successful

females, SM=Successful males).

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

623

Fixing formulas: code inspection gone wrong

While it is debatable whether fixing formulas is a bona fide

strategy, when participants said editing formulas was their

strategy, we took them at their word. What differentiates

formula fixing from code inspection is that code inspectors

spoke of evaluating the validity of code, whereas formula

fixers spoke explicitly only of changing code.

Fixing formulas was not a good strategy, and females were

particularly subject to this pitfall. Most of the formula fixers

were unsuccessful females: 8/10 females who mentioned

this strategy were unsuccessful compared to only 3/8 males.

For females, unlike males, mentioning fixing formulas as a

strategy correlated to bugs introduced (Pearson: r(35)=.37,

p<.03); see Figure 5. The implication is that most partici-

pants who mentioned this spent their time in an ad hoc

manner, editing formulas, without differentiating buggy

formulas from others.

Code inspection and theory

One explanation of why females used more code inspection

could be the known gender differences in perception of risk.

Blackwell‘s Attention Investment Model [7] explains the

role of perception of risk in problem solving. According to

the model, a user weighs several factors before taking ac-

tion: perceived benefits and pay-off, perceived cost, and

perceived risks. When the user has choices of actions, high

perceived risk and cost of an action that are not offset by

the perceived benefits and pay-offs are likely to result in a

decision not to pursue the action. Research has shown that

females perceive higher risk than males in a wide variety of

situations [9], including intellectual risk taking. Inspecting

formulas could be perceived as low-risk because it does not

require using unusual features; other studies have reported a

disinclination by females to use unusual features [4, 6, 22].

Focusing now on the successful females, why did they use

more code inspection than successful males? We believe at

least part of the explanation comes back to the Selectivity

Hypothesis. Recall its explanation of females‘ apparent lack

of interest in dataflow strategies: females‘ tendency toward

detailed, elaborative information processing strategies were

the opposite of dataflow‘s cue-following approach. Yet,

elaborative processing is consistent with code inspection,

which is by definition examining many formulas.

Specification Checking

Specification checking refers to participants‘ inclination to

look for errors in formulas by consulting the spreadsheet

specifications, i.e., the description handouts (Figure 2).

While 30 participants reported specification checking, there

were no significant differences in reports of specification

checking between the successful males and females. To

determine how to verify specification checking in the logs,

we turned to the log of a female participant who described

checking specifications on her written questionnaire.

In the Gradebook task, she began by visiting the cells de-

scribed by the first callout in the printed description (Figure

2). We defined a ―visit‖ to a cell as any physical touch of

that cell, such as checking off its value, opening its formula,

etc. After several minutes, she moved to two cells that cal-

culate the ―Final Exam‖ score which, in Western reading

order of the description (left to right, gradually downward),

are explained together in the second callout. About 8 mi-

nutes into the task, she moved to the cells described by the

third callout. This callout describes cells that come after the

next ones in Western reading order in the spreadsheet itself,

clearly showing adherence to the description‘s order, rather

than to the order of the spatial layout of the spreadsheet.

We chose such sequences as a conservative indicator of

specification checking behavior. Specifically, we counted

the number of times a participant visited a cell that was

either in the same block of cells (i.e., those described by a

single callout) as the previously visited cell or in the follow-

ing block, according to the callouts. A participant‘s score

was the maximum number of description order visits in a

row as a measure of their dedication to this strategy. We

note that, while a few participants said they used a spatial

strategy (e.g., following the layout of the spreadsheet using

Western reading order), in our experimental design, we had

ensured that other orders—especially cell layout order—

would not be the same as the description callout order in

either Western reading order or column order (top to bot-

tom, gradually rightward). Thus, these orders were not con-

founded with the specification checking indicator.

Using this measure, females‘ specification checking score

positively correlated to bugs fixed (Pearson: r(35)=.33,

p<.04), but males‘ use of the strategy had no such correla-

tion. See Figure 6. Although it may appear untidy, the result

was resilient to outliers; in fact, removing outliers identified

via studentized residuals produced p<.02. Interestingly,

although use of this strategy correlated to success for fe-

0

5

10

15

 FF Not FF

E
d

it
s

ti
e
d

 t
o

 b
u

g
s

in
tr

o
d

u
c
e
d

Figure 5: Mean number of edits to cells where participants

introduced new bugs. By Formula Fixers (left) and the other

participants (right). Dark: male, Light: female. All males

mean (SD): 5.83 (3.68); all females: 7.92 (5.04).

Figure 6: Specification checking’s ties to the number of bugs

fixed. Left: Male, Right: Female (significant).

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

624

males and not males, differences in total usage of this strat-

egy by males and females were not significant (males:

190.08 (54.77), females: 189.73 (57.59); successful males:

184.81 (46.09), successful females: 210.21 (67.00)).

What made specification checking a successful strategy for

females, if it was not the difference in how much it was

used? As in code inspection, the Selectivity Hypothesis

gives a possible explanation. Specification checking can

provide a big picture of how the spreadsheet‘s cells should

interact, aligning well with the comprehensive processing

strategy. Another possible explanation may be that verbal-

oriented users were attracted to reading these descriptions

of functionality. Although there is controversy about gender

differences in verbal ability, some studies have reported

females to exhibit higher verbal performance (e.g., [14]).

DISCUSSION AND IMPLICATIONS

We summarize the answers to our research questions as

follows:

RQ1: Debugging strategies end-user programmers tried to

use: Participants described eight strategies: dataflow, test-

ing, code inspection, specification checking, color follow-

ing, to-do listing, fixing formulas, and spatial.

RQ2: Gender differences in debugging strategies and

RQ3: Ties to success: There was significant evidence that

males and females tried to engage in different strategies.

Males engaged in dataflow and testing to much greater ex-

tents than females did. More to the point, these two strate-

gies were successful primarily for males, but not for fe-

males. Instead, the females‘ major successful strategies

were code inspection and specification checking. This dif-

ference may explain why one feature-oriented study of end-

user debugging found that males used testing features more,

and females worked on formulas more [4].

In support of the males‘ strategies, like many other end-user

environments (e.g., the Why Line [16], UCheck [1], and

Woodstein [24]), WYSIWYT supports dataflow. It goes

further than other end-user environments in supporting test-

ing, but many end-user environments, including virtually all

spreadsheets and programming-by-demonstration systems,

put at least some emphasis on evaluating the program

through its outputs.

Implications for design are that dataflow and testing

represent important strategies for male end-user debuggers‘

success, and should be supported in end-user programming

environments. Examples of supporting devices from our

experiment included colors to guide testing, dataflow ar-

rows, Help Me Test, and providing example values. Envi-

ronments with limited support for dataflow and testing may

benefit by increasing their support for systematic use of

these strategies.

Regarding females, the main strategies with which they

succeeded, code inspection and specification checking, are

well respected in both the software engineering [3] and the

spreadsheet auditing communities [21]. Yet, a recurring

theme in our results is that these strategies by females are

mismatched with the features available, in this environment

and in most other end-user programming environments.

For example, code inspection, possible but a little costly in

our environment, is not viable in many environments. Most

spreadsheet systems do not allow displaying multiple for-

mulas without tedious mode switching. Some program-

ming-by-demonstration systems provide no view of the

program at all. To-do listing, i.e., tracked code inspection,

was not supported. When to-do listers cleverly repurposed

the testing features to track the status of formulas, the re-

sulting colors were misleading, since the system was rea-

soning about values it thought the user had approved, not

about the formulas they had actually inspected. Specifica-

tion checking was supported through a handout only, not

through features in the environment; it is likewise absent

from other end-user programming environments.

Implications for design following from our code inspection

and specification checking results are that these are impor-

tant strategies for female end-user debuggers‘ success, and

should be supported in end-user programming environ-

ments. One possible way to do so was suggested by the

females‘ behaviors: they used checkmarks and X-marks to

track code inspection. If specifications could also be sup-

ported in end-user programming environments, these track-

ing devices might also be tied to the specifications.

And what of the large number of unsuccessful females?

One possibility is that these females did poorly in debug-

ging simply because they used poor strategies. A case in

point was the fixing formulas strategy, an unfortunate va-

riant of code inspection. But this ―bad‖ strategy may be

transitioned into a better one if appropriate support were

available. Guiding users toward a particular strategy in the

context of real work may be possible using the principles of

minimalist learning [10]. One direction that shows promise

uses minimalist learning layered with short ―how to‖ videos

of debugging strategy tips [23].

Finally, note that no single female is likely to have every

trait statistically associated with females, nor is any single

male likely to have every trait statistically associated with

males. Thus, we do not propose gendered software such as

―spreadsheets for females.‖ Rather, we hope software de-

velopers will find ways to support the strategy needs we

have reported so as not to penalize anyone, male or female,

regardless of their strategy preferences.

CONCLUSION

This paper reports our investigation into strategies end-user

programmers try to use when debugging. Because strategies

exist in the head, we triangulated extensively. Thus, we

triangulated what our participants said with replays of what

they did, logs of what they did, and logs of what an inde-

pendent set of participants did. Our analysis used qualita-

tive, quantitative, and unsupervised data mining methods.

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

625

Of the eight strategies we identified, there was ample trian-

gulated evidence of seven of them (all but spatial), strongly

indicating that these strategies are real—and each of these

seven strategies also showed significant gender differences.

Especially important, the debugging strategies that worked

well for males were not the ones that worked well for fe-

males. Dataflow and testing (and its cousin, color follow-

ing) worked well for males, and code inspection and speci-

fication checking worked well for females. Finally, the un-

successful fixing formulas strategy was a pitfall to which

females were more prone than males.

Female participants attempted a number of strategies that

are reasonable, but are almost entirely unsupported in end-

user programming environments. Males‘ strategies, on the

other hand, are supported in many environments, to at least

some extent. These results reveal several opportunities for

end-user debugging tools to better support end-user pro-

grammers, both male and female.

ACKNOWLEDGMENTS

This work was supported in part by Microsoft Research and

by NSF CNS-0420533, ITR-0325273 and CCR-0324844.

REFERENCES
1. Abraham, R., Erwig, M. UCheck: A spreadsheet unit checker

for end users, J. Vis. Langs. Comput. 18, 1 (2007), 71-95.

2. Anonymous, H. M. Customs and Excise Computer Audit Ser-

vice, Methodology for the Audit of Spreadsheet Models, 2001.

http://customs.hmrc.gov.uk/channelsPortalWebApp/

channelsPortalWebApp.portal?_nfpb=true&_pageLabel=

pageVAT_ShowContent&id=HMCE_PROD_009443&

propertyType=document (downloaded Aug. 28, 2007).

3. Basili, V., Selby, R. Comparing the effectiveness of software

testing strategies, IEEE Trans. Soft. Eng. 13, 12 (1987) 1278-

1296.

4. Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S.,

and Hastings, M. Effectiveness of end-user debugging software

features: Are there gender issues? In Proc. CHI 2005, ACM

Press (2005), 869-878.

5. Beckwith, L. Kissinger, C., Burnett, M., Wiedenbeck, S., La-

wrance, J., Blackwell, A., and Cook, C. Tinkering and gender in

end-user programmers‘ debugging, In Proc. CHI 2006, ACM

Press (2006), 231-240.

6. Beckwith, L., Inman, D., Rector, K., and Burnett, M. On to the

real world: Gender and self-efficacy in Excel, In Proc. VLHCC,

IEEE (2007).

7. Blackwell, A. First steps in programming: a rationale for atten-

tion investment models. In Proc. VLHCC, IEEE (2002), 2-10.

8. Burnett, M., Cook, C., and Rothermel G. End-user software

engineering. Comm. ACM 47, 9 (2004), 53-58.

9. Byrnes, J., Miller, C., and Schafer D. Gender differences in risk

taking: A meta-analysis. Psych. Bulletin 125 (1999), 367-383.

10. Carroll, J. (Ed.), Minimalism Beyond “The Nurnberg Funnel”,

MIT Press, Cambridge, MA, 1998.

11. Cross, N. Expertise in design: An overview. Design Studies

25, 5 (2004), 427-441.

12. Fern, X., Komireddy, C., Burnett, M. Mining interpretable

human strategies: A case study, In Proc. ICDM, IEEE (2007).

13. Gallagher A., De Lisi R., Holst P., McGillicuddy-De Lisi A.,

Morely M., Cahalan C. Gender differences in advanced ma-

thematical problem solving, J. Experimental Child Psychology

75, 3 (2000), 165-190.

14. Halpern, D. Sex Differences in Cognitive Abilities, 3rd Edition.

Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2000.

15. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling Alice

motivates middle school girls to learn computer programming,

In Proc. CHI 2007, ACM Press (2007), 1455-1464.

16. Ko, A. and Myers, B. Designing the Whyline: A debugging

interface for asking questions about program failures. In Proc.

CHI 2004, ACM Press (2004), 151–158.

17. Littman, D., Pinto, J., Letovsky, S., and Soloway, E. Mental

models and software maintenance. In E. Soloway and S. Iyen-

gar (Eds), In Proc. ESP. Ablex, Norwood, NJ (1986), 80-98.

18. Meyers-Levy, J. Gender differences in information processing:

A selectivity interpretation. In P. Cafferata & A. Tybout, (Eds)

Cognitive and Affective Responses to Advertising. Lexington,

Ma, Lexington Books, 1989.

19. Nanja, N. and Cook, C. An analysis of the on-line debugging

process. In G. M. Olson, S. Sheppard, and E. Soloway (Eds.),

In Proc. ESP. Ablex, Norwood, NJ, 1987.

20. O‘Donnell, E. and Johnson, E. The effects of auditor gender

and task complexity on information processing efficiency. Int.

J. Auditing 5 (2001), 91-105.

21. Powell, S., Baker, K., Lawson, B. An Auditing Protocol for

Spreadsheet Models, Jan. 2007. http://mba.tuck.dartmouth.edu/

spreadsheet/product_pubs.html (downloaded Aug. 28, 2007).

22. Rosson, M., Sinha, H., Bhattacharya, M., Zhao, D. Design

planning in end-user web development, In Proc. VLHCC, IEEE

(2007).

23. Subrahmaniyan N., Kissinger, C., Rector, K., Inman, D., Kap-

lan, J., Beckwith, L., Burnett, M., Explaining debugging strate-

gies to end-user programmers, In Proc. VLHCC, IEEE (2007).

24. Wagner, E. and Lieberman, H. Supporting user hypotheses in

problem diagnosis on the web and elsewhere. In Proc. IUI,

ACM Press (2004), 30–37.

25. Weiser, M. Programmers use slices when debugging, Comm.

ACM 25, 7 (1982), 446-452.

CHI 2008 Proceedings · Beyond End-User Programming April 5-10, 2008 · Florence, Italy

626

