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Abstract
Bayesian Optimization (BO) aims at optimizing
an unknown function that is costly to evaluate.
We focus on applications where concurrent func-
tion evaluations are possible. In such cases, BO
could choose to either sequentially evaluate the
function (sequential mode) or evaluate the func-
tion with multiple inputs at once (batch mode).
The sequential mode generally leads to better op-
timization performance as each function evalua-
tion is selected with more information, whereas
the batch mode is more time efficient (smaller
number of iterations). Our goal is to combine
the strength of both settings. We systemati-
cally analyze BO using a Gaussian Process as
the posterior estimator and provide a hybrid algo-
rithm that dynamically switches between sequen-
tial and batch with variable batch sizes. We the-
oretically justify our algorithm and present ex-
perimental results on eight benchmark BO prob-
lems. The results show that our method achieves
substantial speedup (up to 78%) compared to se-
quential, without suffering any significant perfor-
mance loss.

1. Introduction
Bayesian optimization tries to optimize an unknown func-
tion f(·) by requesting a set of experiments where f(·) is
costly to evaluate (Jones, 2001; Brochu et al., 2009). In
this work, we are interested in finding a point x∗ ∈ X d
such that:

x∗ = argmax
x∈Xd

f(x), (1)
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where X d is a d-dimensional compact input space and f(·)
is the non-concave underlying function that has multiple lo-
cal optima. The function f(·) might be the performance of
a black box device characterized by input x. For example,
in our motivating application we try to optimize the power
output of nano-enhanced Microbial Fuel Cells (MFCs).
MFCs (Bond & Lovley, 2003) use micro-organisms to gen-
erate electricity. It has been shown that the power genera-
tion efficiency of an MFC significantly depends on the sur-
face properties of the anode (Park & Zeikus, 2003). Our
problem involves optimizing the surface properties of the
anodes in order to maximize the output power. The goal is
to develop an efficient BO algorithm for this application
since running an experiment is very expensive and time
consuming.

Focusing on the task of function maximization, each run
of BO consists of two main steps: estimating the values of
the unknown function f(·) via a probabilistic model such
as GP, and selecting the best next experiment(s) according
to the probabilistic model via some selection criterion. The
selected experiments are then run and the results are added
to update the probabilistic model. This cycle is repeated
until we meet a stopping criterion.

Most of the proposed selection criteria in BO are sequen-
tial, where only one experiment is selected at each iteration
(Moore & Schneider, 1995; Jones, 2001; Sacks et al., 1989;
Locatelli, 1997). Sequential policies usually perform very
well in practice, since they optimize the experiment selec-
tion at each iteration by using the maximum available in-
formation for each experiment. However, they are not time
efficient in many applications where running an experiment
takes a long time, and we have the capability to run multiple
experiments in parallel. This motivates batch algorithms
that select more than one experiment at each iteration.

Recently, Azimi et al. (2010) introduced a batch BO ap-
proach that selects a batch of k experiments at each iter-
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ation that approximates the behavior of a given sequen-
tial heuristic. Ginsbourger et al. (2010) introduced a con-
stant liar heuristic algorithm to select a batch of experi-
ments based on the Expected Improvement (EI) (Locatelli,
1997) policy. Specifically, after selecting an experiment
by EI, the output of the selected point is set to a con-
stant value. This experiment is then added to the prior and
the procedure is repeated until k experiments are selected.
Although these two batch algorithms (Azimi et al., 2010;
Ginsbourger et al., 2010) can speedup the experiment se-
lection by a factor of k, their results show that batch se-
lection in general performs worse than the sequential EI
policy, especially when the total number of experiments is
small. This observation motivates us to introduce a Hybrid
BO approach that dynamically alternates between sequen-
tial and batch selection to achieve improved time efficiency
over sequential without degrading the performance.

In this paper, we focus on a class of batch policies that is
based on simulating a sequential policy and provide a sys-
tematic approach to analyze such batch BO policies. We
analytically connect the mismatch between the BO’s prob-
abilistic model and the underlying true function to the per-
formance of the batch policy. We provide full characteriza-
tion of simulated-based batch policies when the batch size
is 2. For the purpose of illustration, consider a batch policy
that selects 2 experiments. The first experiment matches
the sequential policy. The choice of the second experiment,
however, will depend on what is the simulated outcome of
the first experiment. We show that the distance between the
second experiment picked by a simulation-based batch pol-
icy (without the knowledge of the output of the first experi-
ment) and the one picked by the sequential policy (with the
knowledge of the output of the first experiment) is upper-
bounded by a quantity that is proportional to the square root
of the estimation error.

This analysis naturally gives rise to our hybrid
batch/sequential algorithm. Our algorithm works as
follows: At each step, given any sequential policy (EI
in this paper), find the best next single experiment and
estimate its possible outcome via BO’s probabilistic model
(GP in this paper). Then, update the prior with that point
and choose the next best single experiment and so on. We
analytically show that this process can be continued until
certain stopping criterion is met. This stopping criterion
measures how much a simulated experiment is going to
bias our probabilistic model (mainly because of inaccuracy
in estimation of the outcomes of the first experiment). If
the bias is small, we continue to add more examples to our
batch; and if it is large, we stop.

The proposed algorithm has the appealing property that it
behaves more like a sequential policy in early stages when
the number of observed experiments is small, and naturally

transits to batch mode in later stages when more experi-
ments are available. This is because the stopping criterion
tends to be more stringent in early stages because the bias
of the prior can be potentially large, forcing the algorithm
to act sequentially. The beauty of this algorithm is that it
evolves from a sequential algorithm to a batch algorithm in
an optimal manner characterized by our theoretical results.

Experimental results show that the proposed algorithm can
achieve up to 78% speedup over the sequential policy with-
out degrading the performance even with a very small num-
ber of experiments.

The paper is organized as follows. We introduce the Gaus-
sian Process which is used as our model in Section 2. The
proposed dynamic batch algorithm is described in Section
3. Section 4 presents the experimental results and the paper
is concluded in Section 5.

2. Gaussian Process
A BO algorithm has two main ingredients: a probabilistic
model for the unknown function, and, a selection criterion
for choosing next best experiment(s) based on the model.
We select GP (Rasmussen & Williams, 2006) as our proba-
bilistic model and EI (Locatelli, 1997) as our selection cri-
terion. We study the properties of GP in this section and
postpone the analysis of EI to the next section.

We use GP to build the posterior over the outcome val-
ues given our observation set O = (xO,yO), where,
xO = {x1, x2, . . . , xn} is the set of inputs and yO =
{y1, y2, . . . , yn} is the set of outcomes (of the experiment)
such that yj = f(xj) and f(·) is the underlying function.

For a new input point xi, GP models the un-
known output yi = f(xi) as a normal random
variable yi ∼ N (µxi|O, σ

2
xi|O), with µxi|O =

k(xi,xO)k(xO,xO)−1yO and σ2
xi|O = k(xi, xi) −

k(xi,xO)k(xO,xO)−1k(xO, xi), where, k(·, ·) is any ar-
bitrary kernel function.

Definition 1. Let x = {x1, x2, . . . , xm} ∈ X \ xO be
any unobserved set of points. Let ŷ = {ŷ1, ŷ2, . . . , ŷm}
be our estimate of their outputs based on GP considering
yi|O ∼ N (µxi|O, σ

2
xi|O). For any new point z ∈ X \

{xO ∪ x}, let yz|O ∼ N (µz|O, σ
2
z|O) and yz|O, (x, ŷ) ∼

N (µ̂z|O,x, σ̂
2
z|O,x).

Under the GP model, the variance of a point z depends only
on the location of the observed points and is independent
of their outputs, i.e., σ̂2

z|O,x = σ2
z|O,x. Therefore, we can

update the variance of any point z after finalizing our new
query set x without the knowledge of their true outputs y =
f(x). The following theorem characterizes the change in
the variance of z if we query x.
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Theorem 1. Assuming ∆(σz) := σ2
z|O − σ

2
z|O,x, we have

∆(σz) =
(
CA−1BT− k(z,x)

)
D
(
CA−1BT− k(z,x)

)T
,

(2)
where, B = k(x,xO), A = k(xO,xO), C = k(z,xO) and
D = (k(x,x)−BA−1BT )−1.

From a practical point of view, this theorem enables us to
update the variance of z via computing the ∆(σz) and add
it to the previous value. This is much faster than recalcu-
lating the variance of z directly. The computational bottle-
neck of this update is only the matrix inversion in D with
complexityO(m3), considering the fact that k(xO,xO)−1

has been computed before, while the complexity of the di-
rect variance computation is O

(
(n+m)3

)
.

The actual expected value µz|O,x heavily depends on the
true outputs y = f(x), which are not available. Without
the knowledge of the true outputs, we make an estimation
µ̂z|O,x based on the GP-suggested output values ŷ. We
bound this estimation error in the next theorem.

Theorem 2. Let γz =
∥∥(k(z,x)− CA−1BT )D

∥∥
2
. Then,

∣∣µz|O,x − µ̂z|O,x∣∣ ≤ γz ∥∥y − ŷ
∥∥
2∣∣µz|O,x − µz|O∣∣ ≤ γz∥∥y − µx|O
∥∥
2
.

Here, ‖ · ‖2 is vector 2-norm. This theorem tells us that our
estimation error at point z is proportional to the parameter
γz , which is known to us without the knowledge of y. In-
tuitively, if γz is small, we would think that our estimation
µ̂z|O,x is accurate and hence, we can make our decision
about the point z without knowing y, i.e., before the result
of experiment on x returns. This tells us that it is possible
to do batch BO without a big loss in performance.

Remark: If we want to minimize our estimation error of
µ̂z|O,x in expectation, we should set ŷ = µx|O. This is in
some sense trivial and even counter intuitive. One might
claim that if the unknown function is upper-bounded by
M , then the best choice for ŷ is M since it increases the
expected value around the optimal point in the GP model.
However, this theorem shows that this choice is overly op-
timistic.

The previous theorem provides a performance bound based
on our estimation error on ŷ, however, from a practical
point of view, that bound cannot be computed since we do
not know the exact values of y. As a practical measure, we
would like to focus on the expected value of the estimation
error as opposed to the error itself. Next corollary provides
an upper-bound on the expected error, by simply taking
expectation from the result of theorem 2.

Corollary 1. Let θx :=
√∑m

i=1 σ
2
xi|O, then

Ey

[
|µz|O,x − µz|O|

]
≤ γzθx.

Moreover,

Ey

[
|µz|O,x − µ̂z|O,x|

]
≤ γz

(
θx + ‖ŷ − µx|O‖2

)
.

Remark 1: We focus on the second bound in this corollary,
which has two terms. The first term (γzθx) measures “how
close” the point z is to x. The second term captures the
bias of our estimator ŷ. According to this corollary, the
best choice for ŷ is the mean µx|O.

Remark 2: This corollary entails that if for some small
value of ε, we have

γz
(
θx + ‖ŷ − µx|O‖2

)
≤ ε, (3)

then, we are guaranteed that

Ey

[
|µz|O,x − µ̂z|O,x|

]
≤ ε.

Since γz and θx are both computable without the knowl-
edge of y, this observation motivates us to use this as a
stopping criterion for our algorithm to determine if the cur-
rent estimation bias is too large to continue selecting more
examples in the batch. In the nutshell, when we want to
query a batch of samples, if this criterion is met, we are
sure that our estimation of y is accurate and hence, we do
not need to wait for the label of the selected examples be-
fore making the next selection.

3. Hybrid Batch Bayesian Optimization
In a sequential approach, we query for only one experi-
ment at a time using a selection criterion (policy), mainly
because the selection criterion requires the output of the
previous query to find the next best one. Suppose we have
the capability of running nb experiments in parallel, and
we are limited by the total number of possible experiments
nl. At each iteration, the question is whether or not we can
query more than one sample to speed up the experimental
procedure without losing performance comparing to the se-
quential approach. We use Expected Improvement (EI) as
our base sequential selection criterion. Below we provide
the formal definition for EI.
Definition 2. EI(Locatelli, 1997) at point xwith associated
GP prediction y|O ∼ N (µx|O, σ

2
x|O) is defined to be

EI(x|O) =
(
− uΦ(−u) + φ(u)

)
σx|O, (4)

where, u = (ymax − µx|O)/σx|O and ymax = max
yi∈yO

yi.

Also, Φ(·) and φ(·) represent standard Gaussian distribu-
tion and density functions respectively.
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Our proposed algorithm selects a batch (possibly one) of
samples at each iteration based on the EI policy, where the
batch size is dynamically determined at each step. In par-
ticular, the algorithm will continue to select more experi-
ments if the condition in (3) is satisfied for the point z.

To explain the algorithm, suppose we are at the beginning
of the first round of the algorithm. Thus far, we have ob-
served yO = f(xO) at some randomly chosen sample
points xO. To form our batch query, we start from an empty
set of samples and gradually add the next best sample one
at a time. The first sample we pick (x1) is identical to the
first sample that sequential EI picks (x∗1), simply because
both maximize the same objective, i.e., x1 = x∗1. To pick
our second sample, we estimate y∗1 = f(x∗1) by some value
ŷ1. This estimation, changes the EI function of all unob-
served points to some ÊI function formulated as

ÊI(z|O, x∗1) =
(
− ûΦ(−û) + φ(û)

)
σz|O,x∗1 ,

where, û =
max(ymax,ŷ1)−µ̂z|O,x∗1

σz|O,x∗1
. This is different from

the true EI function:

EI(z|O, x∗1) =
(
− uΦ(−u) + φ(u)

)
σz|O,x∗1 ,

where, u =
max(ymax,y

∗
1 )−µz|O,x∗1

σz|O,x∗1
. Obviously, optimizing

ÊI might not lead to the optimum of the trueEI . However,
the next lemma shows that these two functions are close to
each other for a good estimation ŷ1.

Lemma 1. At any point z, we have

∣∣∣EI(z|O, x∗1)− ÊI(z|O, x∗1)
∣∣∣ ≤ 1

2

(
1 +

σz|O
σx∗1 |O

)∣∣∣ŷ1 − y∗1
∣∣∣.
(5)

In the light of this lemma, there is hope that x2 =

arg max ÊI (a potential batch sample from our algorithm)
is close to x∗2 = arg max EI (the optimal sample picked
by sequential policy). The next theorem bounds the error
of our algorithm in terms of the second selected point in
comparison to the sequential EI.

Theorem 3. Let Σmin be the minimum singular value of
the Hessian matrix d2ÊI

dx2 (x) on the line intersecting x2 and
x∗2. Then,

∥∥∥x∗2 − x2

∥∥∥2

2
≤ 2

Σmin

(
1 +

max(σx2|O, σx∗2 |O)

σx∗1 |O

) ∣∣∣ŷ1 − y∗1
∣∣∣.
(6)

Here x2 is the second point selected by our simulation
based batch method without knowing the outcome of x1,
whereas x∗2 is the second point selected by the sequential
EI method after knowing the outcome of x1.

Remark 1: The parameter Σmin captures the curvature of
the ÊI function around its optimal point x2. This curvature
cannot be zero unless x∗2 is very far from x2, which is very
unlikely due to the closeness of their expected values (see
Corollary 1).

Remark 2: This theorem shows that the sample estimation
error is proportional to the square root of the estimation
error of y∗1 . This means that the sample estimation is more
sensitive to the output estimation error for functions taking
value in [0, 1].

This line of analysis can be extended to next samples.
These results show that an algorithm based on the es-
timation can be successful. In practice, after we opti-
mized ÊI for x2, then, we check the condition (3) (i.e.,
γx2

(θx∗1 + ‖ŷ1 − µy|O‖2) ≤ ε) and if this condition is sat-
isfied, we add x2 to our batch query and move on to x3 and
so on. Algorithm 1 summarizes our proposed method for
hybrid batch Bayesian optimization.

Algorithm 1 Hybrid Batch Expected Improvement
Input: Total budget of experiments (nl), maximum batch size
(nb), the predictor (ŷ), current observation O = (xO ,yO) and
stopping threshold ε.

while nl > 0 do
x∗1 ← arg max

x∈X
EI(x|O).

A ← (x∗1, ŷ1), nl ← nl − 1.

z ← arg max
x∈X

ÊI(x|O ∪ A).

while
(
γz(θxA + ‖ŷA − µxA|O‖2) ≤ ε

)
and (nl > 0) and

(|A| < nb) do
A ← A∪ (z, ŷz), nl ← nl − 1.

z ← arg max
x∈X

ÊI(x|O ∪ A).

end while
yA ← RunExperiment(xA)
O ← O ∪ (xA,yA)

end while
return max(yO)

In early stages, this algorithm behaves more like a sequen-
tial policy since the criterion for building up a batch is very
hard to satisfy, mainly because θx is large when we have
only a few samples in O. After collecting enough samples,
the term θx starts decreasing and as it gets closer and closer
to zero, we can select larger and larger batch sizes. Thus,
the algorithm gradually transits into a batch policy while
maintaining a close match to the performance to the pure
sequential policy.

4. Experimental Results
Benchmarks. We consider 6 well-known synthetic bench-
mark functions: Cosines and Rosenbrock (Anderson et al.,
2000; Brunato et al., 2006) over [0, 1]2, Hartman(3)(Dixon
& Szeg, 1978) over [0, 1]3, Hartman(6)(Dixon & Szeg,
1978) over [0, 1]6, Shekel(Dixon & Szeg, 1978) over [3, 6]4
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Figure 1. The contour plot for FuelCell and Hydrogen.

and Michalewicz (Michalewicz, 1994) over [0, π]5. The an-
alytic expression for these functions are shown in Table 1.

The other two real benchmarks are Fuel Cell and Hydro-
gen. In Fuel Cell, the goal is to maximize the generated
electricity from microbial fuel cells with by changing the
nano structure properties of the anodes. We fit a regression
model on the data to build our function f(·) for evaluation.
In Hydrogen benchmark, the data has been collected as part
of a study on Hydrogen production from a particular bacte-
ria where the goal is to maximize the amount of Hydrogen
production by optimizing the PH and Nitrogen levels of
growth medium. Both Fuel cell and Hydrogen data are in
[0, 1]2. Their contour plots are shown in Figure 1.

Setting. We use a GP using a zero-mean prior and
Gaussian kernel function k(x, y) = exp(− 1

l ‖ x − y ‖
2),

with kernel width l = 0.01Σdi=1li, where, li is the length
of the ith dimension (Azimi et al., 2010). For this kernel
function, we can directly drive the next two corollaries
from theorems 1, 2.

Corollary 2. For all points z ∈ X \ {O, x∗1}, and kernel

function k(x, y) = e−
‖x−y‖2

l , we have ∆(σz) ≥ ε if

‖ z − x∗1 ‖2≤ −l ln
(√

n ‖ A−1BT ‖2 +σx∗1 |O
√
ε
)
.

This corollary entails that after selecting the first ex-
periment x∗1, the set of points z such that ∆(σz) ≥ ε
are located inside a hyper sphere centered at x∗1. In
other words, the variance of those inside the hyper sphere
are affected significantly (more than ε) when x∗1 is selected.

Corollary 3. Under the assumption of Corollary 2, we
have E[|µz|O,x − µ̂z|O,x|] ≥ ε if

‖ z − x∗1 ‖2≤ −l ln
√

πε2

2σ6
x∗1 |O

− n ‖ A−1BT ‖22.

Similar to corollary 2, the corollary 3 represents a hyper
sphere centered at x∗1 and the points which are inside the
hyper sphere are those whose expected values are affected
more than ε when x∗1 is selected.

We run our algorithm on each benchmark for 100 inde-
pendent times and the average simple regret is reported
as the result. The simple regret is the difference between
the maximum value of f(·), denoted by M , and ymax
after finishing the experimental procedure. In each run,
the algorithm starts with 2 initial random points for 2, 3-
dimensional benchmarks and 5 initial random points for
higher dimensional benchmarks. The total number of ex-
periments nl is set to 15 for 2, 3-dimensional and 30 for
the higher dimensional benchmarks. The maximum batch
size at each iteration, nb, is set to 5. The parameter ε is set
to 0.02 for 2, 3-dimensional and 0.2 for higher dimensional
benchmarks. Note that, our experimental setup is designed
to match typical scenarios encountered in real applications,
where we typically start with a very small number of ran-
dom experiments, and are restricted with a total budget.

Results. Our algorithm requires us to select a specific es-
timation for ŷ. Recall that our theoretical analysis from
Theorem 2 suggests that to minimize the estimation error
of µ̂z|O,x in expectation, we should use ŷ = µx|O. Here
we hope to confirm this by comparing different possible es-
timations for ŷ. In particular, we consider 6 different esti-
mations of ŷ including: 1) ŷ = M , which means we expect
to observe the best possible output for each experiment se-
lected by EI; 2) ŷ = ymax, where ymax = maxyi∈yO yi
is our current best observation; 3) ŷ = (1 + ζ)ymax, which
means each step of EI algorithm is expected to improve the
best current observation by margin ζ, we set the value of
ζ to 0.1 in our experiment; 4) ŷ = µ̂x|O, which means we
set the value of ŷ to be the expected output at that point;
5) ŷ = ymin, where ymin = minyi∈yO yi is the current
minimum observed output; and 6) ŷ = random, which set
ŷ to a uniform random value drawn in [ymin, ymax].

To demonstrate the effectiveness of our algorithm, we con-
sider two state-of-the-art batch BO algorithms in the lit-
erature: 1) simulation matching (Matching) (Azimi et al.,
2010) and 2) the constant liar approach in which the output
of the selected samples in the batch is set to their mean in
order to select the next experiment (CL(µ̂)) (Ginsbourger
et al., 2010). For both methods, we set the batch size to
k = 5. We have also reported the performance of the se-
quential EI and pure random selection policies.

The speedup of our proposed approach is calculated as the
percentage of the samples in the whole experiment that are
selected in batch mode. More specifically, if we finish nl
samples in T steps, the speedup is calculated as 1 − T

nl
.

Clearly, the maximum speedup in our setting is %80, that
can be only achieved if we select 5 experiments at each
time steps. For example, the speedup of proposed baseline
batch approaches, Matching and CL(µ̂), are %80. Table 2
shows the result.

Interestingly, all of the 6 considered estimators achieved
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Table 1. Benchmark Functions

Cosines(2) 1− (u2+ v2− 0.3 cos(3πu)− 0.3 cos(3πv)) Rosenbrock(2) 10−100(y− x2)2−(1− x)2

u = 1.6x− 0.5, v = 1.6y − 0.5

Hartman(3,6)
∑4
i=1 Ωi exp

(
−
∑d
j=1 Aij(xj − Pij)

2
)

Michalewicz(5) −
∑5
i=1 sin(xi) sin

(
i x2i
π

)20

Ω1×4, A4×d, P4×d are constants
Shekel(4)

∑10
i=1

1
ωi+Σj=14(xj−Bji)2

ω1×10, B4a×10 are constants

Table 2. Benchmarks Performance
Cosines Hydrogen FC Rosenbrock Hartman 3 Michalewicz Shekel Hartman 6

Sequential 0.223 0.048 0.211 0.013 0.042 0.431 0.389 0.263
Random 0.490 0.282 0.307 0.485 0.206 0.607 0.680 0.505

ŷ = M 0.223 0.048 0.211 0.014 0.040 0.429 0.386 0.270
Speedup 2% 4% 3% 3% 2% 2% 10% 2%
ŷ = (1 + ζ)ymax 0.222 0.049 0.214 0.012 0.044 0.438 0.401 0.263
Speedup 22% 14% 5% 10% 6% 7% 19% 7%
ŷ = ymax 0.210 0.050 0.219 0.013 0.040 0.440 0.375 0.276
Speedup 23% 15% 5% 10% 11% 12% 25% 13%
ŷ = µ̂ 0.222 0.050 0.214 0.011 0.052 0.450 0.412 0.271
Speedup 45% 57% 43% 37% 70% 77% 78% 75%
ŷ = ymin 0.212 0.050 0.213 0.011 0.067 0.444 0.430 0.283
Speedup 38% 50% 32% 18% 54% 75% 77% 72%
ŷ = random 0.212 0.050 0.211 0.012 0.047 0.440 0.382 0.284
Speedup 39% 38% 20% 20% 47% 58% 60% 58%

Matching 0.295 0.085 0.246 0.012 0.078 0.430 0.521 0.320
CL(µ̂) 0.301 0.084 0.257 0.012 0.081 0.451 0.551 0.319

similar performance (comparable to EI) in terms of their
regrets. The key difference between the different estima-
tors is the level of speedup they achieve. In particular, we
observe that the most speedup is achieved by ŷ = µ̂x|O,
for which we are able to produce over 70% speedup (very
close to fully batch) for the three high dimensional func-
tions Michalewicz, Shekel and Hartman 6.

Further inspection of the speedup rates reveal that setting ŷ
to a large value, for example M , ymax, and (1 + ζ)ymax,
generally leads to less speedup than the other choices. This
can be explained by noting that a large value of ŷ will
lead to higher chance of violating the condition required
for making the next experiment selection in Algorithm 1,
which is stated in Equation 3. In particular, for a large ŷ,
the next point selected by EI will most likely be very close
to x, since the mean of the points close to x are high. This
will lead to a large γz . Further, the quantity ‖ŷ − µx|O‖2
is likely very large. Consequently, it is easy to violate this
condition thus stop the selection process early on. In con-
trast, if ŷ = ymin, although ‖ŷ−µx|O‖2 is large, we expect
γz to be small because the next point z selected by EI will
likely to be far away from x since the mean and variance
of the points close to x are very small. Considering the
two terms jointly, we expect to achieve a higher speedup by
setting ŷ = ymin comparing to setting ŷ to a large value,
which is exactly what we observe in our experiments. Fi-
nally, by setting ŷ to µx|O, we have ‖ŷ − µx|O‖2 = 0 and

the stopping criterion only depends on γzθx. Thus we ex-
pect to achieve the maximum speedup among the different
choices we consider for ŷ.

Our experimental investigation shows that the size of the
batch generally increases as the experiment goes forward.
This is consistent with our theoretical results in which the
value of γz

(
θx + ‖ŷ − µx|O‖2

)
decreases as the variances

decreases. Note that, sampling at any arbitrary point when
the number of observations is small would change the vari-
ance of the input space significantly comparing to the case
where there are a lot of observation points. Therefore, the
stopping criteria of Algorithm 1 is less likely to be met in
the early stages of the experimental procedure where there
are a few observation points.

The µ-Constant Batch Approach. This part of the ex-
periments is motivated by our theoretical analysis and the
goal is to shed some lights on a batch method recently pro-
posed by Ginsbourger et al. (2010), which selects a batch of
experiments that jointly maximize the EI objective. They
show that finding such a batch of experiments is practi-
cally intractable. Therefore, they introduced a heuristic
approach called Constant liar to select a batch of k ex-
periments. After selecting the first experiment, Constant
liar sets the output of the selected experiment as a constant
value c. That experiment is then added to the set of observa-
tions and the next experiment is selected. This procedure is
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ŷ = M
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Figure 2. The performance of different batch algorithms for batch size 5.

repeated until k experiments are selected. They introduced
several possible ways for setting c, including c = M , c = µ̂
and c = ymin. They empirically demonstrated that setting
c = M provided them a good result for their particular test
functions. However, there is no theoretical justification or
guidance toward what is the best c.

Our theoretical analysis, in particular Corollary 1, indicates
that by setting c (ŷ in this paper) to µ̂x|O, the condition
for continued experiment selection can be easily met com-
paring to other settings, i.e., γzθx ≤ ε. Thus, a batch of
k ≥ 1 experiments are requested at most iterations with-
out degrading the performance. This theoretical result also
justifies the choice of setting c = µ̂x|O in the constant liar
approach. We call this approach µ-Constant Batch. We
run this algorithm on proposed 8 benchmarks for different
batch sizes 5 and 10. Figures 2 and 3 show the performance
of µ-Constant along with 5 competitive approaches: 1) Se-
quential EI; 2) Constant liar with ŷ = M ; 3) Constant liar
with ŷ = ymax; 4) Constant liar with ŷ = ymin; and 5)
Matching, which is a recently proposed approach by Azimi
et al. (2010). For this set of experiments, we use the same
experimental setup as used in Table 2.

The results show that the µ-constant batch approach per-
forms very competitively compared to the Matching ap-
proach, which is one of the best existing batch Bayesian
optimization approach in the literature. In addition, it is
more practical than the Matching approach for high dimen-
sional applications since its computational complexity is
significantly less than the Matching algorithm. Note that
the performance of µ-Constant is also shown in Table 2
as CL(µ̂). It is worth emphasizing that while µ-Constant

achieves highly competitive batch performance, it is con-
sistently worse than sequential EI and the proposed Hy-
brid Batch EI algorithm. This result suggests that the stop-
ping criterion used in Algorithm 1 is in fact effective to-
ward identifying the condition under which we must stop
increasing the batch size to avoid significant performance
degradation compared to the sequential EI.

5. Conclusion
In the Bayesian optimization framework, we investigated
the problem of batch query selection with the goal of main-
taining the performance of a sequential policy which using
fewer iterations. Although our results are for general BO
problems, for the sake of clarity, we focused on the task
of maximizing an unknown non-convex/concave function.
There are two main contributions in this paper.

Firstly, we introduce a systematic way to analyze the per-
formance and limits of simulation-based batch BO methods
by a) proving universal bounds on the bias caused by the
simulation error; and b) analyzing the selection of the sec-
ond experiment when we have an estimate of the outcome
of the first experiment. In all cases, we provide theoreti-
cal bounds on the error, relating the simulation error to the
prediction error of the next best experiment.

Secondly, based on the analysis above, we proposed an al-
gorithm that behaves optimally in expectation. This algo-
rithm at each step decides whether or not to pick another
query to add to the current batch, and as such dynamically
determines the appropriate batch size at each step. In early
iterations, our algorithm behaves more similar to the se-
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ŷ = ymin
Matching

10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.90.9

# of Experimets

R
eg

re
t

 

 

Sequential
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ŷ = µ
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Figure 3. The performance of different batch algorithms for batch size 10.

quential policy and gradually moves toward a batch policy
with variable batch sizes.

The empirical evaluation over both synthetic and real data
shows substantial speedup (up to 78% ) compared to the
corresponding sequential policy, with little to nothing loss
in the optimization performance. Our theoretical results
also shed some interesting light on the Constant-liar ap-
proach, a recently proposed batch selection method based
on the EI objective.
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