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Abstract

This paper studies the ensemble selection problem for un-

supervised learning. Given a large library of different clus-

tering solutions, our goal is to select a subset of solutions

to form a smaller but better performing cluster ensemble

than using all available solutions. We design our ensemble

selection methods based on quality and diversity, the two

factors that have been shown to influence cluster ensemble

performance. Our investigation revealed that using qual-

ity or diversity alone may not consistently achieve improved

performance. Based on our observations, we designed three

different selection approaches that jointly consider these two

factors. We empirically evaluated their performances in

comparison with both full ensembles and a random selec-

tion strategy. Our results indicate that by explicitly con-

sidering both quality and diversity in ensemble selection,

we can achieve statistically significant performance improve-

ment over full ensembles.

1 Introduction

Clustering for unsupervised data exploration and anal-
ysis has been investigated for decades in the statistics,
data mining and machine learning communities. The
goal of clustering is to group similar objects together
based on some notion of similarity. Over the years,
many clustering algorithms have been developed, each
utilizing different distance/similarity measures and/or
objective functions. Applying different methods, or the
same methods with different parameter choices to the
same data, we can obtain varying clustering results. A
fundamental question is: given so many possible op-
tions, how should we choose among them? One possible
answer to this question is that we do not need to choose
at all; because we can leverage these different options by
applying all of them and then combining their cluster-
ing results. This is the basic philosophy behind cluster
ensembles [17], which have gained increasing popularity
in the clustering community [5, 6, 9, 10, 11, 18, 19, 20]
in recent years.

A cluster ensemble framework typically produces a
large set of clustering results and then combines them
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using a consensus function to create a final clustering
that is considered to encompass all of the information
contained in the ensemble. In practice, a cluster ensem-
ble can be obtained in many different ways. Multiple
clustering algorithms, different representations of the
data, and different parameter choices can all be used
to produce a diverse set of clustering solutions. It is
common to produce hundreds or even more clustering
solutions to form a single cluster ensemble. Tradition-
ally, all of the available clustering solutions are com-
bined together to produce the final consensus clustering.
However, is it always the best to include all available
solutions in the ensemble? Given a large library of clus-
tering solutions, can we select the clustering solutions
carefully so that we can actually do better than using
the whole library? This is the question we investigate
in this paper and we refer to it as the cluster ensemble
selection problem following the practice of supervised
ensemble learning [3].

Given a large library of clustering solutions, the goal
of cluster ensemble selection is to choose a subset from
the library to form a smaller cluster ensemble that per-
forms as well as or better than using all available clus-
tering solutions. Toward this goal, we investigate two
properties that have been identified by existing research
[5, 11, 10] as important factors for cluster ensembles to
perform well: the quality and the diversity of the clus-
tering solutions in the ensemble. We first consider en-
semble selection based on quality and diversity respec-
tively. The results indicate that: 1) it is often possible
to select a smaller ensemble and achieve better perfor-
mance than using the full ensemble; 2) while it is pos-
sible to do so, using quality or diversity alone can not
reliably achieve this goal.

Based on these results, we propose three ensemble
selection approaches that jointly consider quality and
diversity in selection. The first method proposes a joint
objective function that combines both factors. The
second method organizes different solutions into groups
such that similar solutions are grouped together and
then selects one quality solution from each group. The
last method creates a scatter plot of points, where
each point corresponds to a pair of clustering solutions
represented by their average quality and diversity, and
then uses the convex hull of all points to select solutions.



We empirically compare our methods with the
full ensemble. Our evaluation results suggest that by
explicitly considering quality and diversity together, our
methods were able to achieve statistically significant
performance improvements over the full ensembles. We
further evaluated a random selection strategy, which
failed to achieve statistically significant improvements.
This confirms that the performance improvements we
see is not due to chance.

The remainder of the paper is organized as follows.
In Section 2, we will review the related literature. Sec-
tion 3 presents the basic selection strategies based on
quality and diversity alone and their performances are
evaluated in Section 4. Section 5 and 6 present the
improved selection strategies and their empirical evalu-
ations in comparison with the full ensemble and a ran-
dom strategy. Finally, we summarize our contributions
and conclude the paper in Section 7.

2 Related Work

The basic idea of combining different clustering so-
lutions to obtain improved clustering has been ex-
plored under different names such as consensus classi-
fication/clustering [15, 14] and evidence accumulation
[7]. The framework of cluster ensembles was recently
formalized by Strehl and Ghosh [17]. Many different
approaches for generating cluster ensembles have been
proposed in the literature [7, 17, 18, 5, 14]. Represen-
tative examples include using different subsamples of
the original data, using different subsets of the orig-
inal features, using different random parameters such
as the number of clusters and random initializations to
the clustering algorithm, and using different clustering
methods. To the best of our knowledge, however, all
of these prior approaches utilize all of the generated
ensemble members when combining them into a final
consensus clustering. The only exception is the work by
Hadjitodorov et al [10], where multiple cluster ensem-
bles were generated and the ensemble with the median
diversity was used to produce the final clustering. In
contrast, our work seeks to select a small subset from a
large given library to form the ensemble.

In supervised ensemble learning, it has been shown
that by carefully selecting a subset of a large number
of classifiers, one can achieve performance similar or
even better than using all available classifiers [13, 3, 2].
For supervised ensemble learning, there are two main
families of selection methods: one is based on the quality
and diversity of the ensemble members, and the other is
guided by cross-validated external objective functions
(such as the prediction accuracy and the area under
ROC curves). In unsupervised learning, cross-validation
based methods are difficult to apply because we do

not have any external objective function to optimize.
Therefore, in this paper we focus on selection methods
that are based on quality and diversity measures of the
ensemble members.

3 Selection Based on Quality and Diversity

In supervised learning, quality and diversity are well de-
fined concepts, where quality measures the accuracy of
the ensemble members and diversity measures the dif-
ference in the predictions made by ensemble members.
For unsupervised learning, however, these concepts are
not so clearly defined. In this section, we first explain
how we measure the quality and diversity of clustering
solutions. We then describe a simple selection strategy
for each of the two measures.

3.1 Definitions: Quality and Diversity
Quality. For unsupervised clustering tasks, we do

not have any external objective function such as accu-
racy to measure the quality of the clustering solutions.
In clustering literature, it is common to use predefined
class labels as a surrogate for the true underlying struc-
ture and then measure the quality of a clustering so-
lution based on how well it recovers the class labels.
This, however, cannot be used in our ensemble selec-
tion because supervised information such as class labels
can not be included in the clustering process. Here we
propose to use an internal quality measure based on
an objective function introduced by Strehl and Ghosh
for designing consensus functions [17]. In particular,
given an ensemble E of r clustering solutions denoted
by E = {C1, C2, · · · , Cr}, Strehl and Ghosh sought to
find a consensus clustering that maximizes the following
criterion:

SNMI(C,E) =
r∑

i=1

NMI(C,Ci)(3.1)

where NMI(C, Ci) is the normalized mutual informa-
tion between clustering C and Ci. If two clusterings de-
fine completely independent partitions, their expected
NMI value is 0. In contrast, if two clustering defines
the same partition of the data, the NMI value is maxi-
mized to be one. Here we refer to this objective function
as the sum of NMI(SNMI). Intuitively, a clustering C
maximizing SNMI maximizes the information it shares
with all the clusterings in the ensemble, thus can be con-
sidered to best capture the information contained in the
ensemble.

In our case, given a large library of clustering so-
lutions L = {C1, C2, · · · , Cr} to select from, we use
SNMI(Ci, L) to measure the quality of each cluster-
ing solution Ci. Intuitively, this measures how well a



particular clustering agrees with the general trend con-
tained in L.

Diversity. There have been a number of different
diversity measures proposed for cluster ensembles. Here
we use the measure introduced by Fern and Brodley [5],
which is based on pair-wise normalized mutual infor-
mation among clustering solutions. In particular, we
measure the pair-wise similarity of two clusterings as
NMI(Ci, Cj) and compute the sum of all pairwise simi-
larities

∑
i 6=j,Ci,Cj∈E NMI(Ci, Cj) within the ensemble

as a measure of the ensemble diversity. The lower the
value, the higher is the diversity.

We chose the above diversity measure because it
has been shown to impact the cluster ensemble perfor-
mance and it is easy to compute. Note that the se-
lection methods we develop in this paper do not limit
themselves to any particular diversity measure. Part of
our future work is to experiment with other diversity
measures proposed in the literature.

3.2 Simple selection strategies
As the first step of our investigation, we use the

above defined quality measure to guide our selection
and include only these solutions that are of high quality
into the ensemble. In particular, given a large library
of clustering solutions L, this strategy simply ranks
all clustering solutions in L based on their qualities as
measured by SNMI(C, L) defined above and selects the
top K solutions to include in the ensemble, where K is
the desired ensemble size. Below we will refer to this
strategy as Quality. Note that if a clustering has high
SNMI value, conceptually it suggests that this solution
has high consistency with the general trends shown by
the overall library. Clustering solutions with low SNMI
values, on the other hand, can be considered as outliers
of the library and may be detrimental to be included
in the ensemble. Generally, we expect the ensembles
selected by “Quality” to have high redundancy in the
chosen solutions.

In contrast, we also examine a greedy strategy that
uses the diversity measure. This strategy begins with
an ensemble E containing the single solution of highest
quality (as measured by SNMI). It then incrementally
selects one solution at a time from the library to add to
E such that the resulting ensemble has the highest di-
versity, i.e. lowest value of

∑
i6=j,Ci,Cj∈E NMI(Ci, Cj)

This process repeats until we reach the desired ensemble
size K. Below we will refer to this strategy as Diver-
sity. In the literature, various heuristics have been sug-
gested for generating diverse clustering solutions and it
is commonly believed that diversifying cluster ensemble
has beneficial effect because mistakes made by differ-
ent ensemble members may cancel each other out. The

Diversity strategy described here follows the same phi-
losophy and explicitly searches for highly diverse subset
from the library to form ensembles. Note that this may
result in including some low quality, outlier-type of so-
lutions into the ensemble.

4 Preliminary results

In this section, we examine the performance of the
ensembles produced by the above described selection
methods and compare them with the performances of
the full ensembles. First we describe the basic settings
of our experiments and the data sets that we use in the
evaluation.

4.1 Basic setting and data sets
Data sets. Our experiments use both benchmark

and real-world data sets. See Table 1 for the basic infor-
mation about these data sets. Among them, CHART,
SEGMENTATION, WINE and ISOLET6 (This is a 6-
class subset of the original ISOLET data set, which con-
tains 26 classes) are benchmark data sets from the UCI
machine learning data repository [1]. We further in-
cluded two real-world data sets in our evaluation. They
are a content based image retrieval (CBIR) data set [4]
and a EOS remote sensing data set which has been used
for land cover type predictions [8]. Although these data
sets are not very large, they do present significant chal-
lenges to standard clustering algorithms due to factors
such as high dimensionality. The performances of stan-
dard algorithms like K-means (with or without ensem-
ble) on these data sets leave ample room for improve-
ment. That is why these data sets were chosen for the
experiments.

Table 1: Basic information of the data sets
#inst. #features #classes

CBIR 1545 183 8
CHART 600 60 6
EOS 2398 20 8
ISOLET6 1440 617 6
SEGMENTATION 2310 18 7
WINE 178 13 3

It should be noted that all six data sets are labeled
and contain supervised class information. The class
labels, however, were only used in evaluating the final
clustering solutions and not used in any way during
clustering or ensemble selection.

Generating the library. To build our clustering
library, we used the K-means algorithm [12] as our base
learner. K-means is chosen because it is one of the



most widely used clustering algorithms and has been
used in many previous cluster ensemble studies. In
order to include a broad range of clustering solutions in
our library, we used three different settings to generate
clustering solutions.

In the first setting, different clustering solutions
were obtained by applying K-means to the same data
with different random initializations. In this setting,
the clustering algorithm has access to all the features
and the variations among clustering runs only come
from different initializations. Therefore, the clustering
solutions obtained in this setting are expected to be of
relatively good quality but low in diversity.

In the second setting, different clustering solutions
are obtained by using different random feature subsets.
Note that for each run, we select d features, where d
is a number drawn randomly between 2 and half of the
dimension of the original data.

Finally, we use different random linear projections
of the features to create different clustering solutions.
Similar to the second setting, we set d, i.e., the number
of linear projections we produce, by randomly drawing
a number between 2 and half of the original dimension.

Following the common practice for cluster ensem-
bles, we further employ some heuristics to diversify the
clustering solutions in the library. In particular, in all
three settings, for each clustering run we set k, the num-
ber of clusters, by randomly drawing a number between
2 and 2×c, where c is the number of classes in the data1.
Each of the above three settings is used to generate 200
clustering solutions, resulting a collection of 600 mod-
els, which we then use as the library to select from. For
each data set, we repeat this process ten times to gen-
erate ten libraries and all reported results are averaged
across these ten runs.

It should be noted that we did not focus on generat-
ing optimal libraries — our choices, including the base
clustering algorithm and the diversifying heuristics, are
not necessarily optimized but do provide us with a set
of representative libraries. In a set of follow-up experi-
ments, we also added hierarchical agglomerative cluster-
ing algorithms (complete and average links) to the base
learners. The preliminary results showed no significant
differences in the general trends we observed here.

Consensus function. Once a cluster ensemble is
formed via selection, we need a consensus function
to combine the selected solutions to produce a final
consensus clustering. Many consensus functions have
been proposed in the literature. We experimented with
two popular approaches, the CSPA approach [17] and

1When this information is not available, a good rule of thumb
is to set the upper bound to be

√
n [7].

the HBGF method [6]. Both approaches showed similar
results in terms of how different methods relate to each
other performance wise. Therefore we will focus on the
CSPA method and present only results obtained using
CSPA as the consensus function.

In particular, CSPA builds a similarity matrix based
on the ensemble. This similarity matrix measures for
each pair of data points the frequency of them being
clustered together in the ensemble. This sometimes is
also referred to as the co-association matrix. We then
apply spectral graph partitioning [16] to the similarity
matrix to obtain a final partition of the data points
into c parts, where c is the number of classes in the
data. For more details of the CSPA method and spectral
clustering, please refer to [17] and [16].

Evaluation criterion. To evaluate the final per-
formance of the selected ensembles, we use the pre-
existing class labels as a surrogate for the true under-
lying structure of the data and measure the normalized
mutual information (NMI) [17] between the final con-
sensus cluster labels and the class labels. Note that if
the two labels are independent from each other, the ex-
pected NMI value is zero. The best NMI value is 1,
which is attained when both labels define exactly the
same partition of the data. In general, the higher the
NMI value, the better is the quality.

4.2 Results
We apply the Quality and Diversity selection strategies

to form ensembles of size ten, twenty, and so on, up to
200. Once an ensemble is selected, CSPA is applied
to obtain a consensus clustering solution, whose NMI
value is then computed using the class label information.
In Figure 1, we plot the NMI values of both selection
methods as a function of the ensemble size. Also plotted
is the full ensemble performance. Note that each point
in the graph is obtained by averaging ten results.

We first note from Figure 1 that for all data sets,
it is possible to improve the performance over the full
ensemble by selecting a smaller subset of solutions. In
some cases, significant improvements can be expected
as demonstrated by the WINE data. We notice that
when quality is used to guide the selection, the resulting
ensembles achieve competitive performances early on
when the ensemble size is small. As we increase the en-
semble size, the performances either level off quickly (see
CHART, EOS, ISOLET6) or become unstable and/or
worse (see CBIR, SEGMENTATION and WINE). This
suggests that selecting only solutions that have good
quality can be beneficial when the ensemble size is small.
As we increase the ensemble size, because the selected
good solutions may all be similar to one another, it can
be unlikely to see performance improvement.
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Figure 1: Comparing the Quality and Diversity selection methods with the full ensembles



In contrast, we see a different trend for Diversity.
Notably, with all but the WINE data set, we see
relatively steady performance gain as we include more
and more diverse solutions into the ensemble. However,
the rate of improvement can be too slow sometimes for
this strategy to outperform the full ensemble with a
small subset of solutions. For example, for the CBIR,
ISOLET6 and SEGMENTATION data sets, we see the
diversity method failed to create small ensembles that
outperforms the full ensemble even when the ensemble
size is increased to 200.

The contrasting behavior of these two methods
suggest that in order to reliably select a good subset
of solutions, quality and diversity should be considered
jointly. In next section, we develop three different
selection strategies to achieve this goal.

5 Joint Consideration of Quality and Diversity

Intuitively, an ensemble should work the best when
its clustering solutions are of good quality and at the
same time differ from one another significantly. The
trade off between quality and diversity is the key design
choice that we need to make for ensemble selection. In
this study, we investigate a number of different ways
to address this trade off. Below we describe the three
methods that we develop to jointly consider quality and
diversity for ensemble selection.

Joint criterion The first method takes a simple
and straight forward approach and combines the quality
and diversity into a joint criterion function. To build an
ensemble of size K, we select K clustering solutions to
optimize the following objective function:

α
∑

i=1,···,K
SNMI(Ci, L)+(1−α)

∑

i 6=j

(1−NMI(Ci, Cj))

(5.2)
where the first component summarizes the qualities
of the selected clustering solutions and the second
component measures their pair-wise diversity. The
parameter controls how much emphasis we put on each
objective. In our experiments, we set α to 0.5 because
there is no clear reason to favor either one without
knowing the specifics of the data. Part of our future
work is to investigate the sensitivity of this method to
the choice of α.

Selection using this criterion is done following the
same procedure as in Diversity, which was described in
Section 3.2. We start with the single highest-quality
solution and incrementally add one solution at a time
to the ensemble to maximize the proposed objective
function. For the remainder of this paper, we will refer
to this method as Joint Criterion(JC).

Cluster and select. In our second method, we
consider each clustering solution in the library as an
entity and examine how they relate to each other.
Despite the fact that we used numerous diversifying
heuristics in generating our library, it is still quite likely
to have clustering solutions that are highly similar to
one another. If two clustering solutions C1 and C2 are
similar and C1 has been included in the ensemble, it is
intuitive to not include C2 to avoid redundancy even
though C2 might have good quality as well. However,
the Joint Criterion method does not necessarily achieve
this. Consider the situation where the existing ensemble
contains a large number of clustering solutions that are
highly different from C2, being similar to C1 will not
prevent C2 from being selected.

One way to address the above issue is to explicitly
remove possible redundancies by grouping the clustering
solutions into similar groups and selecting only one
clustering solution from each group. Specifically, to
form a cluster ensemble of size K, the library of
solutions will be partitioned into K groups. Each group
contains a set of solutions that are considered to be
similar to one another. We then simply select one
solution from each group to form the ensemble. To take
quality (as measured by SNMI) into consideration, we
select the solution with the highest quality from each
group. Note that when K is set to be the size of the
library, this method degrades to using full library. When
K is set to 1, it is equivalent to choosing the solution
with the highest quality.

There are many possible ways to partition the
clustering solutions. Here we apply spectral clustering
[16] to the pair-wise NMI matrix, which in essence
can be considered as a similarity matrix describing the
relationship among clustering solutions. We refer to this
method as Cluster and Select(CAS).

Convex Hull The last method was inspired
by the Kappa-Error Convex-hull pruning method of
Margineantu and Dietterich for pruning classifiers gen-
erated by AdaBoost [13]. This method works as fol-
lows. First, we produce a quality-diversity diagram for
the given library. The quality-diversity diagram is a
scatter-plot where each point corresponds to a pair of
clustering solutions in the library. Given a library of size
n, we will produce a scatter plot of n× (n−1)/2 points.
Consider a point corresponding to solution pair Ci and
Cj , its x coordinate is simply the value of NMI(Ci, Cj)
(1−diversity). Its y coordinate is the average of Ci’s
and Cj ’s SNMI values (average quality). This diagram
visually depicts the diversity and quality level of a given
library and it has been previously successfully used in
the literature for analyzing the impact of diversity and
quality on the final cluster ensemble performances [5].



We leverage the information contained in this diagram
and create a succinct summary of the entire diagram
using the convex hull of all the points in the diagram.
These points will include both the solutions with the
highest quality and the most diverse pair of solutions.
We form an ensemble by including all the clustering so-
lutions that appeared in a solution-pair corresponding
to a point on the convex hull. Note that some clustering
solutions may appear multiple times on the convex hull.
In such cases, we only select them once in the ensemble.
Different from the previous two methods, the ensemble
size here is automatically determined and can not be
adjusted freely. Below we will refer to it as the Convex
Hull (CH) method.

6 Experimental evaluation

In this section, we evaluate the proposed ensemble
selection methods by comparing their performance with
the full ensembles. We use the same data sets and
the same basic settings for experiments as described
in Section 4.1. For each data set, we generate ten
libraries; each library contains six hundred clustering
solutions. To evaluate an ensemble selection method
or base line method, we apply it to each of the ten
libraries. Each resulting ensemble is then combined
using the CSPA consensus function to produce the final
consensus clustering. The consensus clustering is then
evaluated against known class labels using the NMI
measure. The reported final performances are obtained
by averaging the ten NMI values. In Figure 2 we plot
the performances of our methods as a function of the
ensemble size. Note that for the Convex Hull method
and the full ensemble, the ensemble sizes are fixed,
therefore the performance are shown as flat lines.

To provide more information about each method
and the variance of their performances, Tables 2 - 7
report the NMI values of each method for ensemble
sizes 30, 60, 90, 120 and 150 together with the NMI
values of the full ensembles. In addition, we also report
the performances of a random selection strategy, which
forms ensembles by selecting randomly from the library
2. As described earlier, each number reported here is
the average of ten runs. For the proposed selection
methods and the random method, we compare each
of their results with the full ensemble and highlight
those results that are better than full ensemble at a
statistically significant level (p < 0.05, paired t-test) in
bold face. Below we discuss the performance of each
individual method based on the results shown in Figure

2The random selection method was not shown in the figures
because its performance tend to bounce around and make it
difficult to read the figures.

2 and Tables 2- 7.

Joint Criterion. Comparing with full ensembles,
this method achieved comparable or improved perfor-
mance in most of the data sets. In particular, it achieved
statistically significant improvement for the CHART,
EOS and WINE data sets. Note that the performance of
this method is very similar to the performance of select-
ing using diversity alone (see Figure 1). This indicates
that our joint objective function places a rather heavy
weight on diversity, especially for large ensemble sizes.
The influence of quality is more prominent with small
ensemble sizes, producing a better and more stable per-
formances for small sizes than using diversity alone.

The performances of this method typically levels
off before the ensemble size reaches one hundred (most
times much earlier), suggesting that this method is more
appropriate for selecting small ensembles.

Cluster and Select. Using Cluster and Select, we
were able to achieve statistically significant improve-
ment over full ensembles for five out of six data sets
and it never degraded the performances. Particularly
striking is the Wine data set, where we see great im-
provements across a wide range of ensemble sizes.

Interestingly, for the Wine data set, increasing the
ensemble size actually started to hurt the performance
once it went beyond 100. This is possibly because
there were simply not that many distinct groups in the
clustering solutions and forcing such grouping may have
caused the performance to degrade. This suggests that a
possible way to improve this method is to automatically
decide how many groups to partition the solutions into
based on the evidence from the data using techniques
such as the EigenGap [16].

Convex Hull. The method that we adopted from
the supervised learning community did not live up to its
expectation. It failed to achieve significant improvement
for all but the CBIR data set. Further it incurred a
significant loss for the EOS data set. We conjecture that
this is because the convex hull of the scatter plot often
contains points that are on the extreme end and may
actually be outliers. These points may well correspond
to clustering solutions that are of both low quality
and diversity, resulting in suboptimal ensembles. This
suggests that an alternative approach to use the quality-
diversity diagram is to explicitly search for those points
that are located in the high-diversity and high-quality
quadrant of the diagram and avoid outlier points.

Random strategy. The Random selection strat-
egy is included in this evaluation to ensure that the per-
formance improvement we observe with our proposed
methods can not be achieved by chance. Our results
confirm this because the random selection method did



Table 2: Results for CBIR
size 30 60 90 120 150 ConvexHull Full
Joint 0.310 0.319 0.303 0.297 0.294
Criterion (0.017) (0.017) (0.027) (0.024) (0.021)
Cluster and 0.325 0.308 0.310 0.323 0.311 0.341 0.308
Select (0.023) (0.029) (0.030) (0.026) (0.029) (.007) (.026)
Random 0.294 0.304 0.301 0.306 0.299

(0.027) (0.031) (0.030) (0.029) (0.030)

Table 3: Results for CHART
size 30 60 90 120 150 ConvexHull Full
Joint 0.737 0.739 0.777 0.778 0.779
Criterion (0.033) (0.033) (0.006) (0.008) (0.003)
Cluster and 0.747 0.742 0.738 0.742 0.750 0.734 0.735
Select (0.039) (0.039) (0.041) (0.037) (0.035) (.028) (.036)
Random 0.731 0.731 0.730 0.743 0.742

(0.039) (0.038) (0.039) (0.038) (0.040)

Table 4: Results for EOS
size 30 60 90 120 150 ConvexHull Full
Joint 0.295 0.304 0.306 0.300 0.300
Criterion (0.014) (0.017) (0.019) (0.015) (0.006)
Cluster and 0.290 0.294 0.297 0.295 0.296 0.277 0.287
Select (0.012) (0.006) (0.005) (0.003) (0.004) (.009) (.003)
Random 0.284 0.290 0.289 0.289 0.287

(0.009) (0.005) (0.007) (0.004) (0.003)

Table 5: Results for ISOLET6
size 30 60 90 120 150 ConvexHull Full
Joint 0.819 0.811 0.813 0.816 0.816
Criterion (0.029) (0.005) (0.003) (0.003) (0.003)
Cluster and 0.850 0.849 0.850 0.851 0.851 0.806 0.838
Select (0.001) (0.002) (0.002) (0.002) (0.002) (.048) (.016)
Random 0.797 0.797 0.822 0.822 0.832

(0.052) (0.052) (0.041) (0.041) (0.033)

Table 6: Results for SEGMENTATION
size 30 60 90 120 150 ConvexHull Full
Joint 0.576 0.583 0.582 0.578 0.577
Criterion (0.049) (0.026) (0.008) (0.013) (0.009)
Cluster and 0.597 0.603 0.596 0.597 0.595 0.584 0.576
Select (0.015) (0.012) (0.027) (0.013) (0.018) (.040) (.030)
Random 0.567 0.566 0.561 0.563 0.574

(0.035) (0.035) (0.045) (0.027) (0.027)

Table 7: Results for WINE
size 30 60 90 120 150 ConvexHull Full
Joint 0.458 0.458 0.458 0.457 0.459
Criterion (0.005) (0.004) (0.007) (0.006) (0.006)
Cluster and 0.620 0.701 0.730 0.696 0.627 0.429 0.447
Select (0.124) (0.079) (0.119) (0.079) (0.082) (.021) (.013)
Random 0.432 0.429 0.438 0.433 0.429

(0.019) (0.013) (0.013) (0.015) (0.015)
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Figure 2: Performance comparison of the “Joint Criterion” (JC), “Cluster and Select” (CAS), “Convex Hull”
(CH) methods and Full ensembles



not significantly improve over full ensemble in any of the
data sets across different ensemble sizes. It is interesting
to note that for the CHART and EOS data sets, the
random selection method performed respectably well for
ensemble size as small as 30. This suggests that there
exists large amount of redundancy in the libraries. Due
to such redundancy, we can expect strategies favoring
diversity to work well for these data sets. This is
consistent with our experimental results, where the
Joint Criterion method achieved the best performance
for these two data sets.

Comparison across methods. Comparing the
three proposed methods and the base line systems, we
see that both Joint Criterion and Cluster and Select
achieved promising performances toward our goal, that
is to select smaller and better performing ensembles.
The random selection method provided a good reference
point to confirm that the performance improvements are
not created by chance. In particular, the Cluster and Se-
lect method achieved the best overall performance and
statistically significantly improved over full ensembles
for all but one data set. Further examination of this
method reveals that this method attains a good com-
promise between the Quality method and the Diversity
method. We believe this is because this strategy ex-
plicitly seeks to remove redundant solutions and retain
quality solutions at the same time.

7 Conclusions

In this paper, we make the following contributions.
First, we defined the cluster ensemble selection

problem. Given a large library of clustering solutions,
the goal is to select a subset of solutions to form a small
ensemble that achieves better performance than using
all available solutions. While the ensemble selection
problem has been studied in the supervised setting,
our work is the first investigation in the unsupervised
domain.

Second, we proposed and examined three different
selection strategies that jointly consider the quality and
diversity of the clustering solutions. Among them, we
identified the Cluster and Select method as the best
performing method and consider it highly promising
toward our goal. In particular, in our experiments it
achieved statistically significant improvements over full
ensembles for five out of six data sets. Our experimental
evaluation of the random selection strategy further
confirmed that such performance improvements can not
be obtained by chance.

In this study, we chose to use SNMI to measure
the quality of a clustering solution and use NMI to
measure pair-wise diversity. It should be noted that

the methods we developed are not restricted to these
particular choices. They can be easily replaced by other
quality and diversity measures, which will be part of our
future work. Another future direction is to revise the
Cluster and Select method to automatically determine
the number of groups into which we should partition
the library, which will enable us to choose the most
appropriate ensemble size.
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