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In this paper a numerical model for predicting waves generated by nearshore submarine mass-movements is described.

The model is based on the Reynolds averaged Navier–Stokes (RANS) equations with the k2e turbulence model. The

volume of fluid (VOF) method is employed to track the free surface. Numerical results obtained from the present model are

validated with laboratory experiments and analytical solutions. Very good agreements are observed for both submarine

and aerial mass movements. Numerical experiments are performed to obtain the empirical formula for the maximum

runup and rundown as functions of slide properties.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Motivated by the needs for preservation of
human lives and coastal infrastructure, and for the
deployment and operation of special structural and
mechanical systems in coastal areas, the study of
nearshore wave motions and wave–structure inter-
action has been of interest to coastal scientists and
engineers for many years.

Coastal wave generation due to submarine mass
movement is a complex process. While the length
scale of a submarine mass movement is usually
smaller than that of a seafloor displacement created
by a fault rupture, the time-scale is usually longer.
Therefore, the concept of ‘‘initial free surface
69
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displacement’’ in the wave generation region be-
comes a critical issue. Hence the evolution of the
free surface displacement in the source region of
mass movement needs to be modeled entirely.
Furthermore, the characteristics of a submarine
mass movement, including the soil properties,
volume and area of the mass movement, also
require a post-event bathymetry survey.

Several numerical models have been developed to
describe the waves generated by submerged or aerial
mass movements. With the common assumption
that the geometry and the time history of the mass
movement can be prescribed, these models adopt
various additional approximations in hydrody-
namics. For instance, Lynett and Liu (2002)
presented a model based on the depth-integrated
nonlinear wave equations, which include the fre-
quency dispersion effects. Therefore, their model
73.
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can simulate relatively short waves that might be
generated by a submarine mass movement. Grilli
and Watts (1999) adopted a boundary integral
equation method (BIEM), based on the potential
flow theory, and developed a fully nonlinear model
for mass movement-generated waves. However, the
approach does not take into account wave breaking,
which could be important in the vicinity of the
generation region as well as the runup region. The
depth-averaged model suffers the same drawback as
the BIEM model in terms of the lack of capability of
modeling breaking waves. However, it is much more
computationally efficient as it has reduced the 3D
problem to a 2D problem in the horizontal space.
Heinrich (1992) modified the NASA-VOF2D mod-
el, which is a 2D (vertical plane) nonlinear free
surface model based on the Navier–Stokes equa-
tions, to study the generation, propagation and
runup of tsunamis created by landslides. The effects
of turbulence are not considered. Heinrich com-
pared his numerical results for both submarine and
aerial mass movements with his own experiments.
The agreement is reasonable, except in the regions
where wave-breaking-induced turbulence is impor-
tant.

In recent years, significant advancement in
modeling wave-breaking process and interactions
between breaking waves and coastal structures has
been made. For example, Cornell breaking waves
and structures model (COBRAS) is based on the
Reynolds Averaged Navier–Stokes (RANS) equa-
tions with a k2e turbulence closure model. While a
nonlinear Reynolds stress model is employed to
allow anisotropic turbulence, the volume of fluid
(VOF) method is used to track the free surface
movements. COBRAS has been verified and vali-
dated by comparing numerical results with experi-
mental data for runup and rundown of breaking
waves on a uniform beach (Lin and Liu, 1998a,b;
Lin et al., 1999). It also has the capability of
simulating wave–structure interactions, where the
structures are rigid, stationary, fully submerged or
surface piercing (Hsu et al., 2002).

The primary goal of this paper is to modify
COBRAS to allow time-dependent moving solid
boundaries such that mass movement-created waves
can be simulated. Since COBRAS is capable of
calculating turbulence, the modified model will be
able to simulate breaking waves, runup and run-
down. Here, we shall first present briefly the
theoretical background of COBRAS and discuss
the necessary modification to simulate the mass
TED P
ROOF

movement. 2D numerical results are then compared
with experimental data. Some discussions on the
future extensions are given at the end of the paper.

2. Description of the model

In this section the mathematical formulation and
the associated numerical algorithm of COBRAS are
discussed briefly. More detailed discussions can be
found in Lin and Liu (1998 a, b). The model is based
on the RANS equations. For a turbulent flow, the
velocity field and pressure field can be decomposed
into two parts: the mean (ensemble average) velocity
and pressure huii and hpi, and the deviatoric (or
turbulent) velocity and pressure u0i and p0. Thus,
ui ¼ huii þ u0i and p ¼ hpi þ p0 in which i ¼ 1; 2; 3
for a 3D flow. If the fluid is assumed incompressible,
the mean flow field is governed by the RANs
equations:

qhuii

qxi

¼ 0, (1)

qhuii
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qhuii

qxj

¼ �
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in which r is the density of the fluid, gi the ith
component of the gravitational acceleration, and
the mean molecular stress tensor htiji ¼ 2mhsiji with
m, the molecular viscosity and hsiji, the rate of strain
tensor of the mean flow. In the momentum equation
(2), the influence of the turbulent fluctuations on the
mean flow field is represented by the Reynolds stress
tensor �rhu0iu

0
ji. Many second-order turbulence

closure models have been developed for different
applications. In the present model, the Reynolds
stress is approximated by a nonlinear algebraic
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in which Cd ;C1;C2 and C3 are empirical coeffi-
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cients, dij the Kronecker delta, k ¼ hu0iu
0
ii=2 the

turbulent kinetic energy, and e ¼ nhðqu0i=qxjÞ
2
ithe

dissipation rate of turbulent kinetic energy, where
n ¼ m=r is the molecular kinematic viscosity. It is
noted that for the conventional eddy viscosity
model C1 ¼ C2 ¼ C3 ¼ 0 in (3) and the eddy
viscosity is then expressed as nt ¼ Cdk2=e. Com-
pared with the conventional eddy viscosity model,
the nonlinear Reynolds stress model (3) can be
applied to general anisotropic turbulent flows.

The governing equations for k and e are modeled
as (Lin and Liu, 1998a, b)

qk

qt
þ huji

qk

qxj

¼
q
qxj

nt

sk

þ n
� �

qk

qxj

� �

� hu0iu
0
ji
qhuii

qxj

� e, ð4Þ

qe
qt
þ huji

qe
qxj

¼
q
qxj

nt

sk

þ n
� �

qe
qxj

� �

þ C1e
e
k
nt

qhuii

qxj

þ
qhuji

qx

� �
qhuii

qxj

� C2e
e2

k
ð5Þ

in which sk; se; C1e and C2e; are empirical coeffi-
cients. The coefficients in Eqs. (3)–(5) have been
determined by performing many simple experiments
and enforcing the physical realizability; the recom-
mended values for these coefficients can be found in
Lin and Liu (1998a, b).

Appropriate boundary conditions need to be
specified. For the mean flow field, both the no-slip
and the free-slip boundary condition can be
imposed on the solid boundary. Along the mass
surface, the velocity of the moving boundary is
either prescribed or determined by dynamic equili-
brium of the mass. The zero-stress condition is
required on the mean free surface by neglecting the
effect of airflow. For the turbulent field, near the
solid boundary, the log–law distribution of mean
tangential velocity in the turbulent boundary layer
is applied so that the values of k and e can be
expressed as functions of distance from the bound-
ary and the mean tangential velocity outside the
viscous sublayer. On the free surface, the zero-
gradient boundary conditions are imposed for both
k and e, i.e., qk=qn ¼ qe=qn ¼ 0. A low level of k for
the initial and inflow boundary conditions is
assumed.

In the numerical model, the RANS equations are
solved by a finite difference two-step projection
TED P
ROOF

method. The forward time difference method is used
to discretize the time derivative. The advection
terms are discretized by the combination of central
difference method and upwind method. The central
difference method is employed to discretize the
pressure gradient terms as well as stress gradient
terms. The VOF method is used to track the free
surface. The transport equations for k and e are
solved with the similar method used in solving the
momentum equations (Lin and Liu, 1998a, b).

3. Numerical results and discussions

To validate the numerical model, numerical
simulations of several laboratory experiments have
been carried out, including waves generated by
vertical bottom movements (Hammack, 1973) and
by a sliding triangular block on a uniform beach
(Heinrich, 1992). In Hammack’s experiments waves
do not break in the generation region and the
present numerical results agree with Hammack’s
data very well. In this paper we shall focus our
discussion on Heinrich’s experiments in which the
generated waves break.

The computational domain is 12m in x-direction
and 2m in y-direction. A variable grid size system is
used in the x-direction with minimum grid size of
0.01m and a fixed grid size of 0.01m is employed in
y-direction. To satisfy all stability conditions and
restrictions of the incorporated methods, a fixed
time step of 5� 10�4 s is used. Numerical results in
generation (i.e., near moving mass) and propagation
regions are compared with experimental data as
shown in Figs. 1 and 2. The submarine mass
movement is modeled by a triangular shaped
moving boundary that is initially located at 0.01m
below the free surface as in Heinrich (1992). The
measured displacement time history from the
Heinrich experiment is used as prescribed motion
of the triangular mass. Since the grid size is not
small enough to resolve the boundary layer, the
free-slip boundary condition is applied on all the
solid boundaries including sliding body, slopes, and
channel bottom. As shown in Figs. 1 and 2, wave
profiles in the generation region and the propaga-
tion region are in good agreement with experimental
data. However, some deviations are observed in
wave profile at t ¼ 1:5 s when the reflected wave
starts to break. It is surmised that the disagreement
in wave profile is caused by the random nature of
turbulence near wave breaking where the ‘‘exact’’
measured value is difficult to determine.
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Fig. 1. Free-surface comparisons between simulation and experimental data at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 s in wave generation region.

First panel shows portion of triangular shape moving boundary.
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UNCORREA convergence test using minimum grid sizes of
0.005, 0.01, 0.02, and 0.04m has been performed. A
fine grid of 30 cells is used to resolve maximum wave
height. It is observed that convergence is achieved
with a grid size 0.01m. This value (or smaller) is
employed throughout the study.

Turbulence generation by the submarine mass
movement on a beach and its evolution are
examined. Fig. 3 shows the contours of turbulence
intensity at t ¼ 0:5; 1:0; 1:5; 2:0; 2:5, and 3.0 s. It is
observed that when the mass is in motion turbulence
is generated around the upper right corner because
of flow separation. Once the waves generated by the
moving mass reach shore, waves are reflected. After
the mass movement stops, turbulence is generated
by the breaking of the reflected wave near the free
surface and turbulence intensity decreases gradu-
ally. The maximum turbulence intensity can reach
0.83m/s, which is almost 50% of the mean velocity.
The influence of the submarine mass movement
velocity is examined by varying the displacement
time history. Denoting by a0 as the initial accelera-
tion of the mass movement measured in the
experiment, we have calculated three additional
cases with accelerations that are 0.5a0, 0.75a0 and
1.25a0, respectively. In these simulations the total
displacement and the volume of mass movement
remain constant so that only one parameter, i.e.,
velocity of the moving mass, is varied. The effects of
mass movement velocity on maximum wave heights,
runup and rundown are shown in Figs. 4 and 5,
respectively. As expected, the magnitudes of the
wave height, runup and rundown increase with
increasing acceleration.

Another case examined is an aerial slide in which
a part of the moving body is initially located above
the free surface and slides down along a uniform
slope. Therefore, the moving solid boundary inter-
sects the free surface until the moving body is
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mental data at x ¼ 4; 8, and 12m in propagation region.
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UNCORRECcompletely submerged. During this period of time, a
special treatment in the VOF function is required to
satisfy the law of mass conservation. This is
necessary because the pressure in the free surface
cell is not calculated from the Poisson pressure
equation, and is specified by the free surface
boundary condition. Thus, a source/sink term
cannot be used in the free surface and the moving
boundary interface cell to generate an equal amount
of fluid corresponding to the volume change due to
the moving boundary. An algorithm to treat the free
surface and moving-boundary interface cell is
developed and incorporated in the code.

Numerical simulations are performed and com-
pared with the experimental data obtained by
Heinrich (1992) to validate the predictive capability
of the numerical model for an aerial sliding. The
problem setup is exactly the same as that for the
submarine slide except that the moving body is
located initially just above the free surface. Wave
profiles in the generation region at t ¼ 0:6; 1:0, and
1.5 s are compared with experimental data as shown
TED P
ROOF

in Fig. 6. From the wave profile at t ¼ 0:6 s, we
observe that the wave starts to break and becomes
highly random. The discrepancy of wave profiles at
t ¼ 1:5 s might be attributed to turbulence.

The numerical model developed in this study is
utilized to investigate the functional relationship
between both the runup and rundown of submarine
slide generated waves and the geometric parameters
of the sliding body and slope. From the previous
work by Chen (2002), the following form of
functional relation is employed.

Zrd

b
¼ c0gc1

Al

Aw

� �c2

ðsin yÞc3 ðsin bÞc4 , (6)

Zup

b
¼ d0gd1

Al

Aw

� �d2

ðsin yÞd3ðsin bÞd4 . (7)

In the above equation, c0, c1, c2, c3, c4, d0, d1, d2, d3,
and d4 are constants to be determined, Zrd the
maximum rundown, Zup the maximum runup, b the
base length of triangular sliding body, y the slope
angle, g the specific weight of sliding body, b the
angle of top face of sliding body, Al the area of
sliding body, and Aw the area of fluid above the
sliding body. A series of numerical experiments is
conducted to examine the functional relations.

In previous studies (Chen, 2002; Grilli and Watts,
1999) of functional relations between submarine
slide and runup/rundown, the motion of sliding
body is determined by solving the differential
equation obtained by balancing inertial, added
mass, gravitational, buoyancy, and fluid dynamic
drag forces. In this study, the sliding body move-
ment is not predetermined but obtained by con-
sidering the instantaneous dynamic equilibrium of
the moving body including the coupled fluid–struc-
ture interaction. An iterative procedure is intro-
duced to compute the sliding body movement. For
the parametric study of maximum runup and
rundown presented in this study, no prescribed
sliding body motion is used because there is no
experimental data available. Details of the fluid–-
structure interaction modeling will be presented in a
future paper. The numerical results shown in Fig. 1
are obtained by using predetermined time history of
sliding block. The time history of sliding block
measured from the experiment conducted by
Heinrich (1991) is used for sliding block motion in
that particular simulation.

For the numerical experiments for runup and
rundown, the computational domain is discretized
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Fig. 7. Computational domain and numerical experiment setup.
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by 410� 280 grids points in horizontal and vertical
direction, respectively, and variable time step is used
to advance solutions in time so that stability
conditions are satisfied. The slope where landslides
occur and runup/rundown is measured is located on
TED
the left end of computational domain. In addition to
specifying the domain boundary at the right edge as
‘‘open’’, a sponge layer of sufficient width is placed
on the right side to prevent reflections of waves at
domain boundary and ensure full energy absorption
(see Fig. 7).

Four sets of numerical experiments are con-
ducted. In each set, only one parameter is varied
with all others being fixed so that the effects of
varying the particular parameter can be examined.
The parameter space used in this study is shown in
Table 1. The range of parameter variation is
determined by considering the possibility of physical
realization. For example, the specific density of
landslides can be less than 1.0, but physically it may
not be realizable because of the buoyant force.

To measure the runup and rundown, numerical
wave gauges are placed along the slope. However,
maximum and minimum vertical elevations of the
free surface on the slope are recorded as runup and
rundown, respectively. The distance that waves
move along the slope can also be calculated using
the maximum and minimum values in the vertical
direction and the slope angle.

Figs. 8 and 9 show the effects of parameters
considered in this study on rundown/runup and the



UNCORREC

ARTICLE IN PRESS

CAGEO : 1646

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

rundown

y = 0.4178x0.8677

R2 = 0.9424

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(γ)0.1676(A
l
/A

w
)0.323(sinβ)1.659(sinθ)0.5861  

η rd
/b

Fig. 8. Least-squares fit of rundown to numerical simulation

data.

ηη up
/b

runup

y = 1.066x1.0914

R2 = 0.8845

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(γ)0.1904(A
l
/A

w
)0.1731(sinβ)3.3108(sinθ)1.5179

Fig. 9. Least-squares fit of runup to numerical simulation data.

Table 1

Parameters used for runup and rundown simulations

Test sin y g b Al Aw Al/Aw sinb

1 0.707 1.4 1.0 0.250 0.240 1.0399 0.707

2 0.707 1.8 1.0 0.250 0.240 1.0399 0.707

3 0.707 2.0 1.0 0.250 0.240 1.0399 0.707

4 0.707 2.4 1.0 0.250 0.240 1.0399 0.707

5 0.707 2.8 1.0 0.250 0.240 1.0399 0.707

6 0.707 2.12 0.707 0.125 0.071 1.768 0.707

7 0.707 2.12 0.707 0.125 0.115 1.083 0.707

8 0.707 2.12 0.707 0.125 0.145 0.865 0.707

9 0.707 2.12 0.707 0.125 0.180 0.695 0.707

10 0.707 2.12 0.707 0.125 0.212 0.589 0.707

11 0.707 2.12 0.707 0.125 0.248 0.505 0.707

12 0.707 2.0 1.0 0.25 0.311 2.24 0.985

13 0.707 2.0 1.0 0.25 0.311 2.24 0.966

14 0.707 2.0 1.0 0.25 0.311 2.24 0.940

15 0.707 2.0 1.0 0.25 0.311 2.24 0.866

16 0.707 2.0 1.0 0.25 0.24 1.040 0.707

17 0.643 2.0 1.0 0.25 0.24 1.040 0.707

18 0.574 2.0 1.0 0.25 0.24 1.040 0.707

19 0.500 2.0 1.0 0.25 0.24 1.040 0.707

20 0.423 2.0 1.0 0.25 0.24 1.040 0.707

21 0.342 2.0 1.0 0.25 0.24 1.040 0.707
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results of regression analysis. The power curves used
to fit the data ensure that runup and rundown do
not occur when any of parameters are zero. In
determining the final formula for runup and run-
down, the power curves are used again and the
exponents from curve fit are multiplied to obtain the
coefficients for final runup and rundown formula.

Based on the numerical results shown in Figs. 8
and 9, the functional relationships between runup/
rundown and the parameters are found to be

Zrd

b
¼ 0:4178g0:1454

Al

Aw

� �0:2803

ðsin bÞ1:4395ðsin yÞ0:5086,

(8)

Zup

b
¼ 1:0593g0:2078

Al

Aw

� �0:1889

ðsin bÞ3:6134ðsin yÞ1:6566.

(9)

Note that larger runup and rundown are observed
as expected for increasing mass density, face angle,
slope angle, and decreasing initial submergence of
the landslide.

4. Concluding remarks

The capability and accuracy of the present
numerical model in predicting wave generation by
submarine and aerial mass movements and propa-
gation has been validated. In addition, the influence
of moving body velocity on runup and rundown has
been examined. For the higher sliding body velocity,
maximum runup and rundown are increased as
expected.

Turbulence generation by triangular shape mov-
ing body occurs around the upper right corner due
to flow separation and near the free surface where
waves break. Careful experiments measuring the
velocity field are desirable to validate the prediction
of the turbulence intensity.

Relationships between maximum runup and
maximum rundown as functions of specific density,
initial submergence level, angle of the moving mass
as well as slope angle are identified. The runup and
rundown formulae show good agreement with
physical intuitions.

Finally we should remark that the present results
are limited to 2D slides, which are uniform along
the shoreline. In reality slides are 3D. The predicted
maximum runup based on the present 2D slides
might not be conservative. In the case of a 3D slide,
additional lateral (in the alongshore direction) as
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well as the on-offshore waves can be generated due
to the free surface drawdown and rebound above
the moving slide. This feature requires further
study.
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