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Abstract—We introduce hexagonal global parameterization, a new type of surface parameterization in which parameter lines respect

sixfold rotational symmetries (6-RoSy). Such parameterizations enable the tiling of surfaces with nearly regular hexagonal or triangular

patterns, and can be used for triangular remeshing. Our framework to construct a hexagonal parameterization, referred to as

HEXCOVER, extends the QUADCOVER algorithm and formulates necessary conditions for hexagonal parameterization. We also provide

an algorithm to automatically generate a 6-RoSy field that respects directional and singularity features in the surface. We demonstrate

the usefulness of our geometry-aware global parameterization with applications such as surface tiling with nearly regular textures and

geometry patterns, as well as triangular and hexagonal remeshing.

Index Terms—Surface parameterization, rotational symmetry, hexagonal global parameterization, triangular remeshing, pattern

synthesis on surfaces, texture synthesis, geometry synthesis, regular patterns.
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1 INTRODUCTION

IN this paper, we introduce hexagonal global parameteriza-
tion, a new type of global parameterization that maps a

surface onto the plane so that hexagonal or triangular
patterns in this plane map seamlessly back onto the surface
at all but a finite number of singular points. Such
parameterizations facilitate regular pattern synthesis on
surfaces and triangular remeshing.

1.1 Pattern Synthesis

Regular hexagonal patterns are one of the three regular
patterns that can seamlessly tile a plane. They provide an
optimal approximation to circle packings [1] which have
been linked to the wide appearance of hexagonal patterns in
nature, such as honeycombs, insect eyes, fish eggs, and
snow and water crystals, as well as in man-made objects
such as floor tiling, carpet patterns, and architectural
decorations (Fig. 1).

Tiling a surface with regular texture and geometry
patterns is an important yet challenging problem in pattern
synthesis [2], [1]. Methods based on some local parameter-
ization of the surface often lead to visible breakup of the
patterns along seams, i.e., where the surface is cut open
during parameterization. Global parameterizations can
alleviate this problem when the translational and rotational
discontinuity in the parameterization is compatible with the

tiling pattern in the input texture and geometry. For
example, a quadrangular global parameterization is de-
signed to be compatible with square patterns (Fig. 2a) and is
incompatible with hexagonal patterns (Fig. 2b). In contrast,
a hexagonal global parameterization is compatible with
hexagonal or triangular patterns (Fig. 2c).

1.2 Remeshing

Another motivation of our work is triangular remeshing,
which refers to generating a triangular mesh from an input
triangular mesh to improve its quality. (Note that triangular
and hexagonal meshes are dual to each other, and
triangular remeshing can also be used to perform hexagonal
remeshing.) In triangular remeshing, it is often desirable to
have all the triangles in the mesh being nearly equilateral
and of uniform sizes, and the edges following the curvature
and feature directions in the surface. In addition, special
treatment is needed for irregular vertices (whose valence is
not equal to six) since they impact the overall appearance
and quality of the mesh.

A hexagonal parameterization transforms these chal-
lenges to that of control over the singularities in the
parameterization as well as the spacing and direction of
parameter lines. Smooth parameter lines and a reduced
number of singularities lead to highly regular meshes. Such
meshes are desirable for subdivision surface applications [3].

1.3 Rotational Symmetry

Inspired by recent development in constructing a quad-
rangular global parameterization [4], [5], [6], we compute a
global parameterization given a six-way rotational sym-
metry field, or a 6-RoSy field, an abbreviation introduced
in [7]. An N-RoSy refers to a set of N vectors with evenly
spaced angles, and a 1-, 2-, and 4-RoSy can represent a
vector, a line segment, or a cross, respectively. While a 1-,
2-, and 4-RoSy field can each be used to compute a
quadrangular parameterization, a 4-RoSy field provides the
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most flexibility in terms of modeling branch points, and
thus the types of irregular vertices in a quad mesh.
Specifically, a 1- or 2-RoSy field can always be converted
into a 4-RoSy field with the unfortunate constraint that a
first-order singularity in the 1- or 2-RoSy field becomes a
higher order singularity in the resulting 4-RoSy field.
Consequently, when performing quadrangular remeshing
with a 1- or 2-RoSy field, it is in general impossible to
obtain a valence three or five vertex.

Similarly, while 1-, 2-, 3-, and 6-RoSy fields can all be
used for triangular remeshing, only 6-RoSy fields can be
used to model irregular vertices that have a valence of
either five or seven which are desirable in many cases.

1.4 Parameterization

Automatic generation of a hexagonal parameterization
from an input surface poses a number of challenges. First,
unlike quadrangular parameterization whose parameter
lines are parallel to either the major or the minor principal
curvature directions, in hexagonal parameterization only
one of the two directions can be used at each point on the
surface. One must decide which direction to choose, and
how to propagate such choices from a relatively small set
of points to the whole surface to maintain the smoothness
of the resulting parameterization. Second, existing techni-
ques to explicitly control the singularities in a parameter-
ization are user driven, and it is not an easy task to
provide automatic control over the number and location of
such singularities. Third, the continuity conditions devel-
oped for quadrangular parameterization along seams in
the parameterization are not appropriate for hexagonal
parameterization (Fig. 2).

1.5 Pipeline

To address these challenges, we present a two-step pipeline
to generate a geometry-aware hexagonal global parameter-
ization. First, we automatically select the most appropriate
principal direction with which we align our 6-RoSy field.
Moreover, we introduce an automatic singularity clustering
algorithm that allows nearby singularities to be either

canceled or merged into a higher order singularity, thus

reducing the total number of singularities in the field. Note

that merging two higher order singularities with opposite

signs can lead to a lower order (e.g., first order) singularity.
In the second step of the pipeline, we generate a global

parameterization which is aligned to the 6-Rosy field as

much as possible. The QUADCOVER algorithm [5] is

adapted for handling the symmetries of a hexagonal

parameterization. We also formulate a quadratic energy

which measures the L2 distance of the parameter lines to

the field. During minimization, some variables are con-

strained to an integer grid. We point out that in the

hexagonal parameterization this grid is the set of Eisenstein

integers, which is different from the Gauss integers used in

the quadrangular case. This leads to a parameterization

method that we refer to as HEXCOVER. The resulting

parameters can then be used to generate triangular meshes

free of T-junctions as well as to seamlessly tile a surface

with any regular hexagonal pattern.

1.6 Contributions

In summary, our contributions in this paper are as follows:

1. We introduce hexagonal global parameterization
and demonstrate its uses with applications such as
triangular remeshing and pattern synthesis on
surfaces. For remeshing, we point out the need for
a geometry-aware 6-RoSy field when generating a
hexagonal global parameterization.

2. We present the first technique to construct a
hexagonal global parameterization given an input
surface with a guiding 6-RoSy field. We formulate
the energy term as well as the continuity condition
for hexagonal global parameterization.

3. We propose an automated pipeline for generating
geometry-aware 6-RoSy fields. As part of the pipe-
line, we point out how to align the field with
principal curvature directions as well as develop a
way of automatically clustering singularities.

The remainder of this paper is organized as follows: We

first cover work in relevant research areas in Section 2.

Next, we describe our pipeline for generating a geometry-

aware 6-RoSy field given an input surface in Section 3, and

our parameterization technique in Section 4. In Section 5,

we demonstrate the usefulness of our techniques with

applications in triangular remeshing and surface tiling with

regular texture and geometry patterns. We conclude in

Section 6 with future work.
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Fig. 1. Hexagonal patterns in nature: (a) honeycombs, (b) insect eyes,

and (c) snowflakes. Appearance in design: (d) star of David, (e) Islamic

pattern, and (f) floor tiling.

Fig. 2. A quadrangular parameterization ensures that the discontinuity

along the cut is invisible (a). The same parameterization is incompatible

with a hexagonal pattern (b), which leads to seams (yellow). In this case,

a hexagonal parameterization is needed (c).



2 RELATED WORK

2.1 Surface Parameterization

Surface parameterization is a well-explored research area.
We will not attempt a complete review of the literature but
instead refer the reader to surveys by Floater and Hormann
[8] and Hormann et al. [9].

Early global parameterization methods focus on con-
formal parameterization [10], [11], [12], which is aimed at
angle preservation at the cost of length distortion. To reduce
length distortion, Kharevych et al. [13] use cone singula-
rities, which relax the constraint of a flat domain at few
isolated points. Singularities have proven essential for high-
quality parameterization and have been used in other
parameterization schemes as well [14], [15].

Dong et al. [16] perform quadrangulation based on
harmonics functions. Later, Dong et al. [17] use a similar
idea for parameterization but create the quadrilateral meta
layout automatically from the Morse-Smale complex of the
eigenfunctions of the mesh Laplacian.

Tong et al. [18] use singularities at the vertices of a
handpicked quadrilateral meta layout on a given surface.
The patches of the meta layout are then parameterized by

solving for a global harmonic one form. Ray et al. [4]
parameterize surfaces of arbitrary genus with periodic
potential functions guided by two orthogonal input vector
fields, or a 4-RoSy field. This leads to a continuous
parameterization except in the vicinity of singularities on
the surface. These singular regions are detected and
reparameterized afterward.

The QUADCOVER algorithm [5] builds upon this idea
by using the input 4-RoSy field to generate a global
parameterization, based on a quadratic energy formula-
tion. Also, the notion of covering spaces is used to
describe a 4-RoSy field as a vector field and to provide a
clear theoretical setting. Our algorithm to generate a
parameterization from a 6-RoSy field is an adaptation of
the QUADCOVER method.

Bommes et al. [6] propose a method similar to the
aforementioned techniques based on the same energy
formulation as in [5], but provide several advancements.
Besides a robust generation of 4-Rosy fields, they propose to
use a mixed-integer-solver for improving the rounding of
the integer variables. They also add constraints that force
parameter lines to capture sharp edges.
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Fig. 3. Hexagonal global parameterization (a), used for regular texture and geometry synthesis with hexagonal patterns ((b) and (c)) and for

geometry-aware triangular remeshing (d).



2.2 Field Processing

Much work has been done on the subject of vector (1-RoSy)
and tensor (2-RoSy) field analysis. Note that a line field is
equivalent to a symmetric tensor field with uniform
magnitude [19]. To review all of this work is beyond the
scope of this paper; here, we refer to only the most relevant
work. Helman and Hesselink [20] propose a method of
vector field visualization based on topological analysis and
provide methods of extracting vector field singularities and
separatrices. Topological analysis techniques for symmetric
second-order tensor fields are later introduced in [21].
Numerous systems have been developed for the purpose of
vector field design, most of which have been for specific
graphics applications such as texture synthesis [22], [23],
[24], fluid simulation [25], and vector field visualization
[26]. Fisher et al. [27] propose a vector field design system
based on discrete one forms. Note that the above systems do
not employ any methods of topological analysis, and do not
extract singularities and separatrices. Systems providing
topological analysis include [28], [29], and [30]. The last has
also been extended to design tensor fields [19], [31]. In
contrast, relatively little work has been done on N-RoSy
fields when N > 2. Hertzmann and Zorin [32] utilize cross
or 4-RoSy fields in their work on nonphotorealistic pen-
and-ink sketching, and provide a method for smoothing
such fields. Ray et al. [33] extend the surface vector field
representation proposed in [29] into a design system for N-
RoSy fields of arbitrary N . Palacios and Zhang [7] propose
an N-RoSy design system that allows initialization using
design elements as well as topological editing of existing
fields. They also provide analysis techniques for the
purpose of locating both singularities and separatrices,
and a visualization technique in [34]. Lai et al. [35] propose
a design method based on a Riemannian metric that gives
the user control over the number and locations of
singularities. Their system also allows for mixed N-RoSy
fields, with different values of N in different regions of the
mesh. However, this method is based on user design while
we focus on automatic and geometry-aware generation.
Bommes et al. [6] offer a method of producing a smooth 4-
RoSy field from sparse constraints, formulated as a mixed-
integer problem. Zhang et al. introduce a quadrangulation
method based on the notion of waves. Their method can
also be used to generate 4-RoSy fields [36]. Crane et al. [37]
handle cone singularities by using the notion of trivial
connection in the surface. These singularities include those
seen in 6-RoSy fields.

Ray et al. [38] propose a framework to generate an N-
RoSy field that follows the natural directions in the surface
and has a reduced number of singularities which tend to fall
into natural locations. In this paper, we make use of this
framework but automatically generate the input constraints,
which relieves the user from labor-intensive manual design.
Furthermore, we introduce to our knowledge the first
automatic singularity clustering algorithm that reduces the
number of singularities in the field.

3 GEOMETRY-AWARE 6-ROSY FIELD GENERATION

In this section, we describe our pipeline for generating a
geometry-aware 6-RoSy field F given an input surface S.

This field will then be used to guide the parameterization
stage of our algorithm (Section 4).

We first review some relevant properties of 6-RoSy
fields [7], [33]. An N-RoSy field F has a set of N
directions at each point p in the domain of the field:
F ðpÞ ¼ fRi

NvðpÞj0 � i � N � 1g, where the vector vðpÞ ¼
�ðpÞðcos �ðpÞ; sin �ðpÞÞT is one of the N directions, and Ri

N

is the linear operator that rotates a given vector by 2i�
N in

the corresponding tangent plane. A singularity is a point
p0 such that �ðp0Þ ¼ 0 and �ðp0Þ is undefined; p0 is
isolated if the value of � 6¼ 0 for all points in a sufficiently
small neighborhood of p0, except at p0. An isolated N-
RoSy singularity can be measured by its index, which is
defined in terms of the Gauss map [7] and has an index
of I

N , where I 2 ZZ. A singularity p0 is of first order if
I ¼ �1. When jIj > 1, p0 is referred to as a higher order
singularity. A higher order singularity with an index of I

N

can be realized by merging I first-order singularities of
the same sign.

3.1 Requirements and Pipeline

There are a number of goals that we wish to achieve with
our automatic field generation.

First, we wish to control the number, location, and type
of singularities in the field. When performing quadrangular
and triangular remeshing, the singularities in the guiding 4-
or 6-RoSy field correspond to irregular vertices in the mesh.
Such singularities can also lead to the breakup of texture
and geometry patterns during pattern synthesis on surfaces.
Consequently, the ability to control the number, location,
and type of singularities in the field can improve quality of
remeshes and surface tilings.

Second, the field needs to be smooth, or distortion can
occur in the resulting parameterization that has undesirable
effects for triangular remeshing and surface tiling.

Third, we need the parameter lines in the parameteriza-
tion to be aligned with the feature lines on the surfaces,
such as ridge and valley lines (see Fig. 4). In addition, it has
been documented that having texture directions aligned
with the feature lines in the mesh can improve the visual
perception of texture [39].

Note that these requirements may conflict with each
other. For example, excessive reduction of singularities can
lead to high distortion in the field, and an overly smoothed
field may deviate from feature lines. To deal with this, we
adopt the framework of Ray et al. [38]. In their framework, a
set of user-specified constraints and a modified Gaussian
curvature �K defined at the vertices are used to generate a
sparse linear system whose solution (after several itera-
tions) is the RoSy field that matches the constraints and �K in
the least square sense. Each constraint represents a desired
N-RoSy value, i.e., N directions, at a given point. In our
case, we wish to have our field aligned with principal
curvature directions. The user-specified �K is a vertex-based
function defined on the mesh, whose value at a vertex
represents the desired discrete Gauss curvature at this
vertex to be reflected by resulting field curvature. The
integral of �K over S must be equal to 2��ðSÞ where �ðSÞ is
the Euler characteristic of the surface S. It allows the user to
specify the location and type of singularities in the field. For
example, a vertex with a �K value of 2k�

N should have a
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singularity of index k
N in the resulting field. We would like

to note that other field generation systems that allow
directional constraints and the specification of singularities
of index greater than 1

N can also be used (such as the one
described in [33] and [37]). We use the geometry-aware
method of Ray et al. because it gives additional control over
the initial number singularities if desired.

Given a surface with complex geometry and topology, it
can be labor intensive to provide all necessary constraints
through a lengthy trial-and-error process. Consequently, we
automatically generate the directional constraints as well as
�K, which is at the core of our algorithm for field generation.

Our algorithm consists of two stages. First, we identify a set
of directional constraints based on the curvature and solve
for an initial 6-RoSy field using these constraints only.
Second, we extract all the singularities in the initial field and
perform iterative singularity pair clustering until the dis-
tance between any singularity pair is above a given thresh-
old. The remaining singularities will be used to generate new
values for the vertex function �K, which will be used to
generate the final RoSy field with reduced singularities. We
describe each of these stages in more detail next.

3.2 Automatic Constraint Identification

To automatically identify directional constraints, we need to
answer the questions of where to place constraints and
what direction is assigned to each constraint.

Recall that we wish to align the parameter lines with
feature lines such as ridges and valleys, i.e., the principal
direction in which the least bending occurs. Note that the
directions in the 6-RoSy field are the gradients of the
parametrization (Section 4). Consequently, we will choose
the principal direction that has the most bending, i.e.,
maximum absolute principal curvature, as one of the
directions in the 6-RoSy. We estimate the curvature tensor
of the mesh using the method of Meyer et al. [40].

Principal curvature directions are most meaningful in
cylindrical and hyperbolic regions due to the strong
anisotropy there. However, while purely hyperbolic regions
possess strong anisotropy, the absolute principal curvatures
are nearly indistinguishable, thus making both principal

curvature directions candidates. Moreover, the two bisec-
tors between the major and minor principal curvature
directions can also provide viable choices for the edge
directions in hyperbolic regions. Due to the excessive choice
of directions in hyperbolic regions and insufficient choice of
directions in planar and spherical regions, we only generate
directional constraints in cylindrical regions. Note that
using the asymptotic directions could result in neighboring
triangles being constrained with directions that differ by
rotations of �2 . While this causes no problems in 4-RoSy field
generation, such constraints conflict in the case of 6-RoSy
field generation.

We make use of a representation of the curvature tensor
that readily exposes where on this spectrum of classification
any point on a given surface falls. Using the trace-and-
deviator decomposition similar to those employed in [41],
the curvature tensor T at a point p 2 S can be rewritten as

T ¼ �1 � �2

2

cos 2� sin 2�

sin 2� � cos 2�

� �
þ �1 þ �2

2
Id

� �

¼ �ffiffiffi
2
p cos�

cos 2� sin 2�

sin 2� � cos 2�

� �
þ sin� � Id

� �
;

ð1Þ

where �1 and �2 are the principal curvatures at p,
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2

p
, � 2 ½��=2; �=2� ¼ arctanð�1þ�2

�1��2
Þ, � 2 ½0; �Þ is

the angular component of the maximum principal direc-
tion measured in the local frame at p, and Id denotes the
identity matrix. Note that the first component in the sum
is traceless and symmetric, while the second is a multiple
of the identity matrix. T ðpÞ can now be classified using
ð�ðpÞ; �ðpÞÞ, which spans a half plane. There are six
special configurations on this half plane, the first satisfy-
ing �ðpÞ ¼ 0, i.e., the local geometry near p is planar. For
the remaining five configurations, we have �ðpÞ > 0.
Respectively, they correspond to �ðpÞ ¼ �

2 (spherical),
�ðpÞ ¼ �

4 (cylindrical), �ðpÞ ¼ 0 (purely hyperbolic),
�ðpÞ ¼ � �

4 (inverted cylindrical), and �ðpÞ ¼ � �
2 (inverted

spherical). With this representation, we can classify any
point p as being planar if �ðpÞ is smaller than a given
threshold �, elliptical if �ðpÞ � � and j�ðpÞj > 3�

8 , hyper-
bolic if �ðpÞ � � and j�ðpÞj < �

8 , and cylindrical otherwise,
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Fig. 4. For remeshing, edges should follow principal curvature directions (right). Edges ignoring surface features (left) cause “twisting” artifacts (on

the ears).



i.e., �ðpÞ � � and �
8 � j�ðpÞj � 3�

8 . We wish to point out

that the tensor-based decomposition is equivalent to the

concept of shape index [42].
Given the classification, we propagate the directions in

the cylindrical regions into noncylindrical regions (planar,

spherical, hyperbolic) using energy minimization, an

approach taken in [6]. To accomplish this, we pick the

points where � (the tensor magnitude) is above a certain

threshold t�, and label these points as having “strong”

curvature (in all of our examples, we have chosen t� so that

35 percent of the area of S is so labeled). From this set of

points, we use only the directions of the cylindrical points

as constraints, that is, the points for which � 2
½�3�=8;��=8� [ ½�=8; 3�=8� (Fig. 6). Finally, we select the

maximum direction � as the constraint direction at points

where � > 0 and the minimum direction �þ �=2 where

� < 0. Recall that the directions in the output field specify

the gradients in our resulting parameterization, and we

wish one of the isolines of the parameters to be orthogonal

to the direction in which the surface is bending the most.

Clearly, the above directions satisfy this requirement (see

the shapes on the right side of the right image in Fig. 5).

Finally, the constraints are used to set up a linear system

[38] whose solution gives rise to our initial RoSy field.
For our solver, we use the geometry-aware N-RoSy field

generation technique proposed by Ray et al. [38], as it

allows us to control the level of geometric detail that is

reflected by singularities, and also plays a role in the

implementation of our singularity clustering technique.

This system, based on discrete exterior calculus (DEC) [43],

filters (locally averages) the Gauss curvature K of S to

produce �K and then computes a target field curvature Ct

using the difference between K and �K. Ct is then used to

modify the angles by which directions rotate when parallel

transported along mesh edges. This compensates for the

actual curvature of S, and direction fields computed on S

under these conditions behave as though S has a Gauss

curvature of �K. Since �K is smoother than K, such fields

have reduced topological noise, which makes them more

suitable for our parameterization algorithm.

3.3 Automatic Singularity Clustering

Our initial field was obtained from directional constraints
only. Consequently, it typically consists of only first-order
singularities. Given a surface with complex geometry and
topology, the number of singularities can be rather large.
Furthermore, while the location of the singularities tend to
be appropriate (in high-curvature regions), many of them
form dense clusters. Having singularities in closer proxi-
mity can lead to difficulties in the resulting parameteriza-
tion. This is because the singularities will be constrained to
be on a regular lattice in the parameter space as typically
required by most global parameterization methods [5], [6].
Consequently, the smallest distance between any singular-
ity pair will be mapped to a unit in the parameter space. If
the smallest distance is too small, the two involved
singularities may be mapped to the same point on the
lattice, leading to a locally infinite stretching in the
parameterization. Fig. 15 illustrates this.

To address this, many field generation techniques
constrain the number of singularities to be as few as
possible [33], but this represents another extreme, where the
field directions can become highly distorted in some
regions. Furthermore, many of the aforementioned ap-
proaches require much user interaction [7], [33], [38], which
can be time consuming for models with complex geometry
and topology.

Our goal is to automatically reduce the number of
singularities in the field while retaining the locations of the
remaining singularities inside high-curvature regions. To
achieve this, we employ the following process.

First, we extract the singularities in the initial RoSy field
(using the method described in [38]) which we use to build
a graph embedded in the surface. The nodes of this graph
are the singularities in the field, and the edges representing
proximity information between singularity pairs. We refer
to this graph as the singularity graph G. To construct G, we
compute a Voronoi diagram with the singularities as sites.
The dual graph gives rise to the singularity graph [44].

Second, we iteratively perform edge collapses [55] on this
graph, which is equivalent to performing singularity pair
clustering (merging or cancellation), until the minimal
surface distance between any singularity pair is above a
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Fig. 5. Surface classification scheme to determine directional con-
straints. � 2 ½��=2; �=2� is color mapped to the [blue, red] arc in HSV
color space: Left top: continuous mapping. Bottom: binned classification.
The legend (right) shows surfaces patches which are locally similar to
points with given values.

Fig. 6. Selection of constraints. Left: color mapping of �. Middle: highest
35 percent of values; colors are based on � as in Fig. 5. We use
maximum curvature directions where � > 0 (yellow) and minimum
directions where � < 0 (cyan) as being orthogonal to the direction in
which the surface is bending the most (see closeup, right). Notice that
chosen directions in nearby yellow and cyan regions agree as they
would not if we had selected only one of the curvature directions
everywhere.



given threshold. Every time a singularity pair is clustered, we
compute the sum of the singularity indexes and place a
singular constraint with the sum as its desired index. Note
that we do this even if the sum is zero, i.e., singularity pair
cancelation. The singularity constraint is placed on the path
between the two original singularities p0 and p1, closer to the
one with the Gaussian curvature of highest magnitude. This is
an attempt to keep singularities near the features that caused
them to originally appear during initialization and is
accomplished by interpolating along the geodesic from p0

to p1 using the value jKðp1Þj=ðjKðp0Þ þKðp1Þj, where KðpÞ
is the Gaussian curvature at p 2 S. We continue to collapse
edges in the order of increasing edge length onGuntil no edge
of length less than dsing remains. At the end of this process,
we will have generated a set of singularity constraints, i.e., the
remaining vertices in the graph, which is then used to update
the field in the vicinity of these singularities. In the case of
fields generated for remeshing, dsing can be selected based on
the edge length of the output mesh. We choose dsing to be 0:1B
where B is the size of the bounding box for the model. For a
visual summary of the algorithm, see Fig. 7.

Third, we modify �K based on the singularity constraints.
Recall that the �K is simply a smoothed version of the
discrete Gauss curvature during the generation of the initial
field. The singularity constraints, produced in the previous
step, consist of a set of vertices in the mesh and a desired
singularity index tðpÞ for each such singularity constraint p.
We modify �K such that it is zero everywhere on the surface
except at singularity constraints where the value of �K is
2�
N tðpÞ. Notice that such assignment satisfies the constraint
that the integral of �K over S is equal to 2��ðSÞ. We now
modify the 6-RoSy field by solving the same system used to
generate the initial field, with one difference: we do not
update the field everywhere on the surface. Instead, we
generate a region R ¼ fpjdistðp; VcollapseÞ < dsingg, where
Vcollapse is the set of vertices that were members of collapsed
edges in G, and update the field only in R. That is, the field
values are fixed in the complement of R and the values on
the boundary of R will serve as the boundary conditions
when updating the field in R; the original directional
constraints are ignored in this step. In this way, we largely
preserve the results of the field generated from the
directional constraints, but force the merging and cancela-
tion of singularities in the regions where large clusters had
appeared before. The field values for triangles inside R are
then updated. We have found this to be efficient in
controlling the singularities.

We wish to point out that our automatic field generation
method can be applied to N-RoSy field generation for any
N that is even, in particular 4-RoSy fields. Fig. 8 shows an
example generated using our method. The only change in
the whole field generation pipeline occurs during automatic
identification of directional constraints. Instead of choosing
� or �þ �

2 as one of the six directions for constraints, we
choose both for the case of 4-RoSy fields.

4 HEXCOVER PARAMETERIZATION

In this section, we describe the second stage of our pipeline,
which constructs a hexagonal global parameterization given
an input triangular mesh surface along with a 6-RoSy field
defined on it. We will first introduce the notion of
hexagonal parameterization before describing our HEX-

COVER parameterization technique which is an extension
of the QUADCOVER method for quad remeshing.

4.1 Hexagonal Parameterization and Energy.

Given a triangular mesh surface S with jT j triangles, a global
parameterization ’ : S 7! IR2 respecting anN-RoSy symmetry
is a collection of linear maps f’i j 1 � i � jT jg where each
’i : ti ! IR2 maps triangle ti 2 S onto IR2 with the following
property. For any adjacent triangles ti and tj, we have
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Fig. 7. Clustering pipeline: (a) Initial field. (b) Singularity graph G. (c) Reduced graph obtained by performing edge collapses. The region R is shown

in green. (d) Reduced field generated by resolving in R with singular constraints at the nodes of G and directional constraints at the boundary of R.

Fig. 8. Geometry-aware 4-RoSy field and corresponding texture tiling.



’jðpÞ ¼ Rrij
N ’iðpÞ þ wij; 8p 2 ti \ tj; ð2Þ

where rij 2 f0; 1; . . . ; N � 1g and wij 2 IR2 are the rotational
and translational discontinuities, respectively. Recall that
Rk
N is the linear operator that rotates a vector by 2k�

N in its
tangent plane (Section 3). The maps ’i are restricted to be
linear on each triangle. They are defined by their values at
vertices, while rij and wij are defined on edges.

In quadrangular case whereN ¼ 4, parameter lines can be
visualized by treating ’�1 as the map that textures the
surface with a 2D regular unit grid. To ensure continuity in
parameter lines, translational discontinuitieswij are required
to be on the set of Gauss integers G4 :¼ fða; bÞT j a; b 2 ZZg.

Hexagonal parameterization (N ¼ 6) is similar, except
that in this case the texture image needs to respect
hexagonal rotational symmetries. A canonical choice is a
hexagonal or triangular pattern as shown in Fig. 9 (left). The
texture image has an aspect ratio of 1 :

ffiffiffi
3
p

and tiles the
plane seamlessly. It is furthermore invariant under rotations
of �

3 around the center of each hexagon. The set of these
center points is known as the Eisenstein integer lattice,
shown in Fig. 9 (right)

G6 :¼ a
1
0

� �
þ b 1=2ffiffiffi

3
p

=2

� � ���� a; b 2 ZZ

� �
: ð3Þ

Besides the rotational invariance, the hexagonal grid also
remains invariant under translations by any vector in G6.
While a hexagonal parameterization is a discontinuous
map, the discontinuities are not visible if all wij are in G6

because of the repeating structure of the texture image
(Fig. 2).

A hexagonal parameterization can be generated from a
guiding 6-RoSy field F . Given a point p, the edges of the
hexagons are aligned with the six vectors of F in p. This is
achieved by optimizing the alignment in L2 sense. Specially,
we minimize the quadratic energy

Eðu; vÞ :¼
Z
S

ðkru� Fuk2 þ krv� Fvk2ÞdA; ð4Þ

where ðu; vÞ is the parameterization, FuðpÞ is one of the six
vectors of F at p 2 S, and FvðpÞ :¼ R1

4FuðpÞ is perpendi-
cular to it. We further define ui ¼ ujti and vi ¼ vjti .

The parameterization must fulfill the integer constraints
in (2), whereas rij’s encode which of the 6-RoSy vectors in
adjacent triangles ti and tj are paired, i.e., Fu in ti is paired
with R

rij
6 Fu in tj. rij’s are held fixed during energy

minimization, whereas ui’s, vi’s, and wij’s are optimized.
Notice that the energy is independent of the choice of Fu

(there are six choices per triangle) due to the rotational
symmetries of ’ from (2). A different choice of Fu in one
triangle will result in the same change in the rij’s along all

adjacent edges. The resulting minimizer of the energy (4) is
then locally rotated by a multiple of �

3 in this triangle,
resulting in the same pattern.

A key observation in QUADCOVER [5] is that the
optimization can be divided into two subproblems and
solved independently:

1. Local step. Minimize the energy (4) for ui; vi; wij 2
IR, ignoring the integer constraint on wij. In QUAD-

COVER, the minimizer is computed by removing the
curl of F , making it locally integrable, and defining
ui; vi as its potential. This leads to a local parameter-
ization ’0.

2. Global step. Convert ’0 into a global parameteriza-
tion by incorporating the aforementioned integer
constraints.

4.2 HEXCOVER and Covering Spaces
Minimizing (4) directly presents some challenges due to the

fact that Fu and Fv are both multivalued (there are six
values per triangle). Here, we make use the notion of
covering space, which transforms the problem of computing
a global parameterization on S under a guiding 6-RoSy field
F to generating a global parameterization on an N-fold
cover S0 of S under a guiding vector field F 0. The benefit of
doing this is that we can use standard vector field calculus
without having to deal with an N-RoSy field.

In fact, the covering is just used as theoretical foundation
and is not explicitly computed in either QUADCOVER or
HEXCOVER. The covering is implicitly represented by the
values rij resulting in additional constraints (2) during
optimization. Note that covering spaces are used implicitly
by other approaches optimizing a piecewise-linear global
parameterization [18], [6].

In the hexagonal case, F can be lifted to F 0 on a sixfold
covering surface S0 of S, which is defined as follows: every
triangle ti in S has six corresponding triangles in S0:
ti;0; . . . ; ti;5. The vector field F 0 distributes the six vectors of
F onto the six copies, i.e., F 0ðtiÞ ¼ Ri

6F0ðtiÞ where F0ðtiÞ is
one of the six directions of F in ti. For adjacent triangles ti, tj
in S, the corresponding copies are combinatorially con-
nected, depending on the rotational discontinuity rij. The
triangles ti;k, k 2 f0; . . . ; 5g are thereby connected with
tj;kþrij mod 6. Note that S0 is a Riemann surface with branch
points at those positions where the original 6-RoSy field has
singularities. All six copies of a triangle are geometrically
identical, so there is not necessarily an embedding without
self-intersections. This does not present any difficulty for
us, however, since the algorithm does not rely on an explicit
embedding of S0.

The problem now turns into minimizing the energy in (4)
on the covering space S0, using F 0u :¼ F 0, F 0v :¼ R1

4F
0 (see

Fig. 10). Due to the symmetry of the covering surface and
the symmetric behavior of the algorithm, the resulting
texture images on different copies of each triangle are
congruent and their projection onto the domain S is a global
parameterization which satisfies (2). Again, the use of
coverings is only a theoretical view. The algorithm will not
compute the covering, but represents it implicitly by storing
the values rij.
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Fig. 9. Left: texture with hexagonal rotational symmetries. Right:

Eisenstein integer lattice G6.



4.3 Local Step

In the local step, Energy (4) is minimized for values of the
parameterization uiðpjÞ, viðpjÞ at each vertex pj in all
incident triangles ti, and for the translational discontinuities
wij 2 IR2. Due the high number of variables and additional
constraints (2), QUADCOVER proposes to solve an alter-
native energy providing the same result but with a much
smaller system of equations and no constraints. We use a
similar simplification for HEXCOVER.

Let ’ ¼ ðu; vÞT be the minimizer of Energy (4). A key
observation is derived from the discrete Hodge-Helmholtz
decomposition of vector fields [45]: the field ðFu �ru; Fv �
rvÞ is exactly a cogradient field ðR1

4ru�; R1
4rv�Þ which

minimizes the energy

E�ðu�; v�Þ :¼
Z
S

�
kR1

4ru� � Fuk
2 þ kR1

4rv� � Fvk
2	dA: ð5Þ

Here, u� and v� are scalar nonconforming finite element
functions, which are linear in each triangle and defined by
values on edge midpoints. At boundary edges, u� and v� are
fixed to 0. The constraints (2) simplify to

u�jti
v�jti

� �
¼ Rrij

6

u�jtj
v�jtj

� �
; ð6Þ

for adjacent triangles ti, tj. Notice that the translational
discontinuities wij do not appear in this formulation.

Equation (6) directly relates the values of u� and v� in
both adjacent triangles of each edge; therefore, only one free
u� variable and one free v� variable remain left per edge. We
build a system of linear equations by setting all partial
derivatives of Energy (5) for the free variables to 0. The
matrix of this system has dimension 2jEj 	 2jEj, where jEj
is the number of edges in the mesh. We solve this system
and obtain ðu�; v�Þ from which we compute ðru;rvÞ.

The parameterization ðu; vÞ is computed by first cutting
the mesh open to a simply connected disk and then directly
integrating the gradients. We cut the surface along the
shortest homotopy generators similar to [46]. The result is a
graph G on edges, such that the complement S nG is simply
connected. We also need to connect all singularities with the
cut graph, since they can be seen as infinitesimally small
holes. For this purpose, the method was adapted to include
the surface boundary and singularities in [47].

The gradient fields ðru;rvÞ are integrated by setting
ðu; vÞ ¼ ð0; 0Þ at an arbitrary root vertex v0 in triangle t0 and
directly integrating the piecewise constant vectors in t0 and
adjacent triangles until the whole surface is covered. When

crossing an edge, the values of ðu; vÞ must be rotated
according to (2). Note that the translational discontinuities
are set to 0 in the interior of S nG. The solution is consistent
and does not depend on the traversal of the triangles, as
long as the edges in the cut graph G is not involved in this
propagation.

4.4 Global Step

While the parameterization ðu; vÞ is a minimizer of (4), it
may be discontinuous along the edges of G. For a global
hexagonal parameterization, such discontinuities lead to
seams in the parameter lines if the wij’s are not in the set of
G6 (the Eisenstein integer lattice). However, when perform-
ing local integration in the previous step, we only require
that wij 2 IR. In this section, we discuss how to modify the
initial parameterization to enforce the integer constraints.

The graph G can be considered as union of paths 	i, each
of which is either a closed loop or a segment starting and
ending at a singularity. An important property of the
solution of Energy (4) is that the translational discontinuity
wij is constant for all edges on the same path 	i. Let wi be
the constant for path 	i, which can be computed from the
coordinates of ðu; vÞ at both sides of an edge of 	i. Note that
the translational discontinuities can add up if two paths
partially overlap.

To enforce the integer constraints, we modify the
translational discontinuity wij for every edge in G by
rounding them to the nearest integer in G6. Then, Energy (4)
is minimized, holding all discontinuities wij fixed.

The coordinates of a singularity are uniquely determined
by the wi of all of its incident paths 	i. For a singular vertex
with valence 
, there are 
 constraints (2) that relate the 

coordinate vectors of the vertex in its adjacent triangles.
Thus, rounding the values wi is similar to prescribing the
coordinates of singularities.

For each regular vertex of valence 
, one of the 
 relations
(2) is redundant since the total discontinuity adds up to
zero, reflecting a zero Poincaré index. Therefore, its
coordinates are determined by the coordinates in one of
its incident triangles. Consequently, we obtain one free
variable for u and one for v per vertex. Energy (4) is
minimized by setting all partial derivatives to 0 resulting in
a sparse linear system. The matrix has dimension 2jV j 	
2jV j with jV j being the number of regular vertices.

Fig. 11 shows the hexagonal parameterization of two
minimal surfaces using our technique.

4.5 Rounding Technique

The presented rounding technique for the wi is just a
heuristic for the problem of finding an optimal parameter-
ization yielding the integer conditions. In general, this
problem is NP-hard, since it is equivalent to minimizing a
quadratic function on a given lattice (also called the closest
vector problem).

The rounding technique used in QUADCOVER [5] where
all integer variables are rounded at once can be contrasted
with that from Mixed Integer Quadrangulation (MIQ) [6],
which iterates between rounding integer variables and
solving the system with the new boundary condition. In
QUADCOVER, the translational discontinuities wij are used
as integer variables, whereas MIQ uses the coordinates of
singularities. Since the coordinates of singularities are
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Fig. 10. Left: triangle ti with a 6-RoSy field. Right: sixfold covering of ti

with vector fields F 0u, F
0
v.



uniquely determined by the wij (up to global translation),
both approaches consider a similar space but use a different
basis for representation.

In all our tests, both rounding techniques (direct and
mixed integer rounding) give similar results. We conjecture
that the reason behind this is our use of the shortest cut
graph G. It appears that shorter paths give the constants wi
a more local influence, hence directly rounding integer
variables becomes more accurate.

In this work, we have opted to use the direct rounding,
although one can easily replace it with a mixed integer
solver.

5 RESULTS AND APPLICATIONS

Here, we apply hexagonal parameterization to two graphics
applications: pattern synthesis, and triangular remeshing.

5.1 Pattern Synthesis on Surfaces

Example-based texture and geometry synthesis on surfaces
has received much attention from the graphics community
in recent years. We refer to [48] for a complete survey. Here,
we will refer to the most relevant work.

Wei and Levoy [24] are the first to point out that N-RoSy
fields of N > 1 are suitable for specification of special
symmetries in textures. Liu et al. [49] propose techniques
for the analysis, manipulation, and synthesis of near-regular
textures (i.e., very structured textures with repeating
patterns) in the plane. Kaplan and Salesin [2] address the
design of Islamic star patterns in the plane. There has been
some recent work in constructing circle patterns from a
triangular mesh for architectural models [1].

Generating regular patterns on a surface can be greatly
facilitated given an appropriate global parameterization.
Given a regular hexagonal texture or geometry pattern, it is
simply tiled in the parameter space of the mesh and the
texture should stitch (relatively) seamlessly everywhere
(Fig. 12). For example, to achieve circle packing for
architectural patterns, our hexagonal parameterization al-
lows nice hexagonal patterns to be generated from a surface,
which can be used as input to such algorithms as shown in
Fig. 12 (right). Our method provides necessary smoothness
and feature alignment, thus leading to a high-quality model,

even in the case of relatively high geometric and topological
complexity. Fig. 3b and 3c provides some additional exam-
ples in which regular hexagonal texture and geometry
patterns are placed on the dragon.

We also comment that our field generation algorithm can
also automatically generate geometry-aware 4-RoSy fields,
which lead to coherent synthesized patterns that align with
surface features (Fig. 8).

5.2 Triangular Remeshing

There has been much work in triangular remeshing. To
review all past work is beyond the scope of this paper. We
refer the reader to [50] for a complete survey of triangular
remeshing literature, and review only the most relevant
work here. Common methods of mesh triangulation are
typically based on either a parameterization [51], [52], [53],
[54], local optimization methods [55], [56], [57], or Delaunay
triangulations and centroidal Voronoi tessellations [58], [59].

The focus of triangular remeshing is on shape preserva-
tion, good triangle aspect ratio, feature-aware triangle
sizing, and control of irregular vertices (valence not equal
to six). These objectives often conflict with one another, and
the output mesh is a result of a compromise among these
factors. For example, many parameterization-based meth-
ods suffer from artifacts in the triangulation at the locations
of the chart boundaries (though this problem can be
alleviated by using a global parameterization as in [54]).
Direct and local optimization methods suffer from a lack of
global control over the structure of the triangulation such as
the location and number of irregular vertices.

In this paper, we perform triangular remeshing using a
hexagonal global parameterization derived from a shape-
aware 6-RoSy field. There are a number of benefits to this.
First, such an approach can lead to overall better aspect
ratio for triangles in the remesh (equilateral). Second, the
number of irregular vertices can be reduced and their
locations can be controlled as these vertices correspond
exactly to the set of singularities in the 6-RoSy field. Third,
we have incorporated the ability to match the orientations
of the RoSy field based on natural anisotropy on the
surfaces. Fourth, the size of the triangles can be controlled
through a scalar sizing function. The frames are just scaled
by the corresponding sizing value. A smaller scaling results
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Fig. 11. Minimal surfaces. Left: Schwarz surface with eight singularities of index �1=2. Right: Neovius surface with eight index �1=2 and six index �1

singularities.



in bigger triangles whereas a high value generates a finer
triangle mesh (Fig. 13).

We can influence the number of singularities in the mesh
by singularity clustering as described in Section 3. Fig. 14
shows that the distance between singularities impacts the
smoothness of the parameterization, with more singularities
reproducing more feature details of the surface. However,
metric distortion also increases when more singularities are
used as can be represented with the actual mesh resolution
(see Fig. 15). Choosing the number of singularities can be
considered as a trade-off between the smoothness of mesh
elements and feature preservation. In Table 1, we compare
the statistics for the three bunny remeshing results. Notice
that the Hausdorff error and the standard deviation in
angles of the triangles in the remesh are the lowest for the
case when there are 65 singularities, corresponding to the
parameter values that we used to generate all our models.
The other two models have 23 and 151 singularities,
respectively. They were the results of more and less
aggressive singularity clustering. Fig. 14 compares the three
models visually. Notice that features such as ridges along
the ears are usually less preserved when there are too few
singularities.

Fig. 16 compares the results of the foot and Venus
models using our method with that of [52] and [59]. Table 1
provides the quality statistics of all tested models and the
comparison. Notice that our method has better overall

triangle aspect ratios (larger minimum angle, smaller
maximum angle, and smaller standard deviation of angles)
than [52]. All three methods capture the underlying
geometry well (comparable Hausdorff distances to the
original input mesh) but our method tends to have the
fewest irregular vertices among all three methods. This is a
direct result of automatic singularity clustering in the field
generation step (Section 3) while achieving good triangle
aspect ratios is due to the nature of the hexagonal
parameterization. In addition, our method tends to produce
edge directions that better align with the features in the
mesh (such as along Venus’ nose ridge) than [52].
Additional remeshing results can be found in Fig. 3.

5.3 Performance

The amount of time to automatically generate a geometry-
aware 6-RoSy field is on average 40 seconds for a model of
40K triangles, measured on a PC with a dual-core CPU of
2:8 GHz CPU and 4 GB RAM. The time to generate the
parameterization is approximately 120 seconds per model,
measured on a PC with a 2:13 GHz four-core CPU with 8
GB RAM. The running time of both stages is impacted by
the mesh size as well as the number of singularities in the
RoSy field. The computation time for both the field
generation and parameterization stages is dominated by
solving linear systems whose size is OðjEjÞ where jEj is the
number of edges in the mesh. We solve these systems using
a biconjugate gradient solver, whose complexity is sub-
quadratic.
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Fig. 12. Seamless tiling of hexagonal textures (left, middle) and geometry patterns (right).

Fig. 13. Adaptive sizing of triangles. Left: linear scaling along the y-axis.

Right: scaling by the absolute maximal principle curvature value. Fig. 14. Remeshing with 23, 65, and 151 singularities.



6 FUTURE WORK

There are a number of possible future research directions.

First, we plan to add the capability to have parameter lines

passing through sharp edges in the model, as considered in

the quadrangulation case [6]. Second, we wish to study
objects that are close to N-RoSy, which we refer to as near-

regular RoSy’s. In these objects, theN member vectors do not

have identical magnitude nor even angular spacings. Such

objects can allow more flexibility in both quadrangular and

triangular remeshing. Third, pentagonal symmetry appears

in many natural objects such as flowers. We wish to pursue

graphics applications that deal with pentagonal symmetry.

While an N-gon can tile a plane only if N ¼ 3, 4, and 6, it can

tile a hyperbolic surface for any N > 2. Consequently,

pentagonal patterns have the potential of being used to tile

hyperbolic regions in a surface or for a hyperbolic para-
meterization. Notice our parameterization technique can

actually handle a parameterization based on anN-RoSy field

for any N � 2. In another direction, we plan to investigate

appropriate mathematical representations that handle other
types of wallpaper textures which may contain reflections
and gliding reflections. Surface tiling with at least two
different types of rotational symmetries is another potential
future direction. Such patterns have applications in cyclic
weaving over surfaces [60] and remeshing [35].
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TABLE 1
Quality of Meshes: Hausdorff Distance (Percent of Bounding
Box); Minimum, Maximum, and Standard Deviation (SD) of

Angles, and Number of Irregular Vertices

Fig. 15. Singularities which are closer than the grid size may force the

parameterization to degenerate locally (left). This artifact can be avoided

by either choosing a finer grid size (middle) or by merging nearby

singularities with our clustering approach (right).

Fig. 16. Comparison of our method (right) to those from [52] (left) and [59] (middle). The histograms show occurring inner angles (on the X-axis from

0 to �=3). For each model, the scale on the Y -axis is the same.
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[59] D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, “Isotropic

Remeshing with Fast and Exact Computation of Restricted
Voronoi Diagram,” Proc. Symp. Geometry Processing (SGP),
pp. 1445-1454, 2009.

[60] E. Akleman, J. Chen, Q. Xing, and J.L. Gross, “Cyclic Plain-
Weaving on Polygonal Mesh Surfaces with Graph Rotation
Systems,” ACM Trans. Graphics, vol. 28, no. 3, pp. 1-8, 2009.

Matthias Nieser is currently working toward the
PhD degree at the Department of Mathematics
at Freie Universität Berlin, studying under
Konrad Polthier. His current research focuses
on discrete differential geometry, in particular
the parameterization and structuring of surfaces
and volumes. He is also a member of the DFG
research center MATHEON.

Jonathan Palacios is currently working toward
the PhD degree at the Department of Electrical
Engineering and Computer Science at Oregon
State University, studying under Dr. Eugene
Zhang. His primary research areas are com-
puter graphics, geometric modeling, symmetry,
and higher order tensor field visualization and
analysis. He is a US National Science Foun-
dation (NSF) IGERT fellow, and a member of
the ACM.

Konrad Polthier received the PhD degree from
the University of Bonn in 1994, and headed
research groups at Technische Universität
Berlin and Zuse-Institute Berlin. He is a
professor of mathematics at Freie Universität
Berlin and DFG research center MATHEON, and
chair of the Berlin Mathematical School. His
current research focuses on discrete differential
geometry and geometry processing. He coe-
dited several books on mathematical visualiza-

tion, and coproduced mathematical video films. His recent video MESH
(www.mesh-film.de, joint with Beau Janzen) has received international
awards including “Best Animation” at the New York International
Independent Film Festival. He served as paper or event cochair on
international conferences including Symposium on Geometry Proces-
sing in 2006 and 2009.

Eugene Zhang received the PhD degree in
computer science from Georgia Institute of
Technology in 2004. He is currently an associate
professor at Oregon State University, where he is
a member of the School of Electrical Engineering
and Computer Science. His research interests
include computer graphics, scientific visualiza-
tion, geometric modeling, and computational
topology. He received the US National Science
Foundation (NSF) CAREER award in 2006. He is

a senior member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

878 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 6, JUNE 2012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


