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Abstract—Rotational symmetries (RoSys) have found uses in several computer graphics applications, such as global surface

parameterization, geometry remeshing, texture and geometry synthesis, and nonphotorealistic visualization of surfaces. The

visualization of N-way rotational symmetry (N-RoSy) fields is a challenging problem due to the ambiguities in the N directions

represented by an N-way symmetry. We provide an algorithm that allows faithful and interactive representation of N-RoSy fields in the

plane and on surfaces, by adapting the well-known line integral convolution (LIC) technique from vector and second-order tensor fields.

Our algorithm captures N directions associated with each point in a given field by decomposing the field into multiple different vector

fields, generating LIC images of these fields, and then blending the results. To address the loss of contrast caused by the blending of

images, we observe that the pixel values in LIC images closely approximate normally distributed random variables. This allows us to

use concepts from probability theory to correct the loss of contrast without the need to perform any image analysis at each frame.

Index Terms—Rotational symmetry, RoSy, visualization, tensor field visualization, image blending, contrast adjustment.

Ç

1 INTRODUCTION

THE visualization of rotational symmetry (RoSy) fields
has many applications in computer graphics, such as

surface parameterization [2], [7], [14]; quadrangular and
triangular geometry remeshing [1], [8]; texture and geome-
try synthesis [23], [8]; architectural modeling [17]; and
nonphotorealistic rendering [4], [24] (Fig. 1). Intuitively, an
N-way rotational symmetry (N-RoSy) represents phenomena
that are invariant under rotations of integer multiples of 2�

N
[13], [15]. Examples of N-RoSys include a vector (N ¼ 1), an
eigenvector of a symmetric matrix (N ¼ 2), and a cross
(N ¼ 4). An N-RoSy field is simply a directional field with a
set of N different directions associated with every point in
the domain, each being a 2k�

N rotation of the others, where k
is an integer.

Despite the number of applications, there has been little
work on the visualization of N-RoSy fields for N > 2. In this
paper, we present a texture-based visualization technique
that adapts the line integral convolution (LIC) algorithm [3]
to handle the N-RoSy case. Texture-based flow visualiza-
tion techniques are known to be space filling, easily adapted
to render surface fields, and usually interactive when
implemented on modern graphics hardware. The images
generated by our method are similar to those seen in the
works by Palacios and Zhang [13], and Ray et al. [15], the
techniques for both of which remain unpublished.

The chief challenge presented by N-RoSy visualization
when N > 2 lies in the fact that there are more than one
trajectory that pass through each point in the domain. As
shown in Fig. 2, it is difficult to understand the structures in

an N-RoSy field when only showing one trajectory per
point, i.e., treating the N-RoSy field as a vector field. In
addition, in the presence of singularities, it is impossible to
convert the N-RoSy field into a vector field without causing
any visual discontinuity (Section 3).

Given a vector field, the LIC algorithm traces a stream-
line in both directions at each pixel, and uses these
streamlines as convolution kernels to anisotropically blur
a noise image. A brute-force way to extend the LIC
algorithm to handle the N-RoSy case involves two changes.
First, at each pixel, one needs to trace multiple trajectories.
For each of these trajectories, the tracing method needs to be
altered so that, at each integration step, all N directions at
the corresponding point are examined, and the one that best
matches the previous direction is chosen. However, choos-
ing the best of N directions at every integration step
introduces a large amount of branching in the tracing
algorithm, which increases linearly with N . This branching
can severely affect performance on modern parallel
architectures, such as graphis processing units (GPUs).

To overcome the difficulty associated with branching,
our algorithm decomposes a given N-RoSy field into
multiple vector fields which, together, capture all N
directions at each point. We then generate LIC images for
each vector field and blend these images together, which
results in an image that visually represents the entire N-
RoSy field. During numerical integration, our algorithm is
significantly faster than the aforementioned brute-force
adaptation of LIC (Table 1).

Further, difficulty arises from a generic problem in
blending images from texture-based flow images; as we
blend more and more images together, the resulting image
begins to converge to the color gray. We thus make a further
contribution in observing that the pixel values of LIC
images generated from a binary noise texture are normally
distributed random variables. This allows us to correct the
loss of contrast resulting from the blending of LIC images
without the need for image analysis. While this technique is
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part of our pipeline for N-RoSy field visualization, we
believe that the fundamental idea can find use in any
application where a number of texture-based vector and
tensor field visualization need to be composited.

The remainder of this paper is organized as follows: we
first review related work in Section 2, and then some
theoretical background on N-RoSy fields in Section 3. In
Section 4, we give the details of our planar algorithm. Our
proposed method of contrast correction is discussed in
Section 5, and Section 6 covers the extension of the planar
algorithm to surfaces. We give our results in Section 7,
where we compare our algorithm to a brute-force imple-
mentation of N-RoSy LIC. Finally, we close with our
conclusions in Section 8.

2 RELATED WORK

WhileN-RoSy fields have been applied to many problems in
geometric modeling and computer graphics, there has been
little published work on their visualization when N > 2.

2.1 N-RoSy Fields

To the best of our knowledge, Hertzmann and Zorin [4]
were the first to use 4-RoSy fields in their work on the
illustration of smooth surfaces. In this work, they use a
“cross” field derived from the principal curvature direc-
tions to guide the orientations of the hatches in their images.

Ray et al. [14] use 4-RoSy fields to specify local uv-
directions in their work on periodic global parameteriza-
tion, which facilitates quadrangular remeshing. They later
develop a design system [15] that allows the user to control
the number and locations of singularities of N-RoSy fields
on surfaces for arbitrary values of N . Their paper features
LIC style images of 4-RoSy fields similar to ours, but the
method used to generate them was never published.
Palacios and Zhang [13] proposed an N-RoSy field design
and analysis system that extracts singularities and separa-
trices for fields of arbitrary N . They also point out that N-
RoSy fields can be represented by a special subspace of
Nth-order symmetric tensor fields, allowing mathemati-
cally sound algebraic operations, such as interpolation and
change of basis. Again, that work features visualizations
similar to ours, although no description of the visualization
technique was provided in the paper.

2.2 Vector and Tensor Field Visualization

To review all previous work in vector and tensor field
visualization is beyond the scope of this paper. We will cover
only the most relevant here (namely, texture-based methods),
and refer the readers to the works by Laramee et al. [9], Zhang
et al. [24], and the references therein for further information.
Texture-based vector field visualizations, first introduced by
Van Wijk [20], are space filling and interactive when
accelerated by modern graphics hardware. Many variations,
accelerations and extensions have been proposed, such as
image based flow visualization (IBFV) [21], IBFV for surfaces
[22], [10]; LIC [3]; and others [19], [18], [5]. IBFV and LIC have
both been adapted to also handle symmetric second-order
tensors fields (2-RoSy), in [6], [25], and [24]. In particular, Hsu
[6] was the first to apply LIC to diffusion tensor visualization,
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Fig. 1. (a) Pen-and-ink surface visualization algorithms, such as the one described in [4], require 4-RoSy fields as an input, as do many global

parameterization algorithms, such as (b) QuadCover [7]. Applications of 6-RoSy fields include (c) regular hexagonal texture tiling, (d) geometry

synthesis as well as (e) regular triangular remeshing. The highly regular triangular meshes generated using field-guided techniques can also be used

as a starting point for circle packing algorithms, which have applications in free-form architecture [17].

Fig. 2. Here, we demonstrate that visualizing only one of the directions
of a 6-RoSy field not only results in a visual discontinuity ((a), the
horizontal line to the right of the colored dot), but also does not allow a
user to see the distinct patterns of the field around features like
singularities. In order to achieve this goal, one must render all six
directions at each point (b).

TABLE 1
A Rendering Time Comparison between Our Algorithm and a

Brute-Force Implementation of an N-RoSy Version of LIC

Rendering times are in milliseconds and mesh sizes in triangles appear
in the second row.



and originated a two-pass method that appropriately blurs

across the LIC result from the principal eigenvector when the

two largest eigenvalues are nearly equal (in which case the

corresponding eigenvectors are not well defined). Sanderson

et al. [16] proposed a vector field visualization based on

reaction-diffusion that combines concepts from glyph,

streamline, and image-based techniques.
In our pipeline, we use a LIC implementation very

similar to the GPU image-space technique presented by Li

et al. [11] to generate each of the N LIC images which are

later composed to produce our final visualization. How-

ever, any other texture-based vector field visualization

technique could also be easily incorporated into our general

framework (e.g., IBFV).

3 BACKGROUND: N-ROSY FIELDS

In this section, we briefly review the definition and

properties of N-RoSy fields; for more in-depth treatments

of this topic, we refer the reader to the works of Palacios

and Zhang [13], and Ray et al. [15]. As mentioned

previously, an N-RoSy represents phenomena that are

invariant under integer multiples of rotations of 2k�
N . More

formally, an N-RoSy s is a set of N different 2D directions

(or member vectors) of equal magnitude, where each is a 2k�
N

rotation of the others, and k 2 ZZ:

s ¼ � cos �þ 2k�

N

� �
sin �þ 2k�

N

� �� �T ���� 0 � k � N � 1

( )
:

ð1Þ

Here, � is the magnitude of s, and � is the angle of one of the

member vectors; only one member vector must be stored in

order to retrieve the others. N-RoSys can be represented by

a subspace of 2D, symmetric, Nth-order tensors [13].
An N-RoSy field S is a continuous N-RoSy-valued

function of some spatial domain; that is, for every point p

in the domain, there is an associated N-RoSy:

SðpÞ ¼ �ðpÞ cos
�
�ðpÞ þ 2k�

N

�
sin
�
�ðpÞ þ 2k�

N

�� � ���� 0 � k � N � 1

� �
: ð2Þ

Moreover, the continuity of an N-RoSy field is defined in

terms of the continuity of corresponding higher order tensor

field [13]. In this paper, the domain is either the 2D euclidean

plane, or a 2D surface embedded in 3D euclidean space.
A singularity in an N-RoSy field S is any point p0 in the

domain where �ðp0Þ ¼ 0, i.e., �ðp0Þ is undefined. As Fig. 3
demonstrates, it is impossible to decompose the member
vectors of the field in the regions surrounding some
singularities into continuous vector fields. Since part of
our algorithm (described in Section 4) decomposes a given
N-RoSy field into N vector fields, this fact represents an
obstacle that we must overcome in order to produce
quality visualizations.

4 VISUALIZATION OF N-ROSY FIELDS

In this section, we describe our algorithm in further detail.

As previously mentioned, our basic planar algorithm has

the following steps:

1. Decompose the original N-RoSy field into a set of N
member vector fields.

2. Generate texture-based flow images for each of these
vector fields.

3. Compose (blend) these images uniformly into a
single image that captures the original field.

There are some complications that arise from the fact that,

in the general case, a member vector field will be discontin-

uous whenN > 1 (see Section 3), and thus further steps must

be taken to reduce the visual artifacts that result from these

discontinuities. We now describe each step in more detail;

the entire pipeline is outlined in Fig. 5 for a 3-RoSy field.
Recall that every point p in the domain of an N-RoSy

field S (except singularities) has N member vectors (2). We

first discuss the case where N is odd. Our goal for this stage

of our pipeline is to decompose the original field S into a set

of N vector fields fV0; V1; . . . ; VN�1g, such that for every

point p in the domain ViðpÞ 2 SðpÞ and ViðpÞ 6¼ VjðpÞ,
where 0 � i < j � N � 1. That is, the direction at every

point in each vector field Vi is one of the directions at the

same point in S, and none of the vector fields have the same

direction at the same point. Thus, every direction at every

nonsingularity point p in S is represented by the set

fV0ðpÞ; . . .VN�1ðpÞg. As mentioned earlier, in the vicinity of

a singularity visual discontinuity occurs when one attempts

to construct a continuous vector field from S. Consequently,

it is insufficient to use only N vector fields to represent the

N-RoSy field. To address this, we will generate 2N vector

fields which, when blended properly, will result in a high-

quality visualization. To facilitate the discussion, we give

the following definitions.
Given an N-RoSy s ¼ f�ðcosð�þ 2k�

N Þ sinð�þ 2k�
N ÞÞ

T j 0 �
k � N � 1g and a guiding angle � 2 ½0; 2�Þ, let

vs;� ¼ � cos �þ 2ls;��

N

� �
sin �þ 2ls;��

N

� �� �T
; ð3Þ

where
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Fig. 3. Here we see two 4-RoSy singularities; starting with the green
member vectors, we travel around the yellow circles in the counter-
clockwise direction, and track the changes in the angular component of
these member vectors. When we get back to the same point we started
at, the member vector has made a �

2 counterclockwise rotation (a) and a
�
2 clockwise rotation (b) and that the starting and ending vectors are
discontinuous. Notice that it is impossible to convert an N-RoSy field
into a continuous vector field when such singularities are present.



ls;� ¼ argmink
�����þ 2k�

N
� �

����: ð4Þ

Intuitively, vs;� is the member vector of s that has the
smallest angular difference with �. vS;� is a vector field that
is generated by selecting a member vector in this fashion
everywhere in the domain of S. It is well defined at
nonsingularity points and continuous where only one
minimum exists (Fig. 4a). On the other hand, when there
are two minima, we have two candidate member vectors
which are 2�=N apart, an ambiguity which leads to visual
discontinuity (Fig. 4b). In these cases, we choose the one
such that �þ 2k�

N � � > 0. For a given �, the points where
there are two minima for S will be referred to as breaking
points with respect to �.

We then assign ViðpÞ ¼ vSðpÞ;2i�N . fV0; . . . ; VN�1g assigned

in this fashion are mutually different and can collectively

capture all member directions in the N-RoSy field every-

where in the domain. While there will be discontinuities in

each Vi, they will be in the exact same locations.
Further, note that for every two fields Vi and Vj, Vi is a

2�ði�jÞ
N rotation of Vj. Thus, in practice, we only have to

assign V0 in the way described above, and V1; . . . ; VN�1 can
be assigned as rotations of V0.

We now generate N LIC images I0; . . . ; IN�1, one for each
of the respective vector fields V0; . . . ; VN�1 (Figs. 5a, 5b, and
5c). Once we have the N images, we compose them by
blending them uniformly into a new image I ¼ 1

N

PN�1
j¼0 Ij,

which captures all the N directions everywhere in the field
(Fig. 5d). Note, however, that due to the discontinuities in
our vector fields, we have artifacts at the corresponding
locations in I (Fig. 5d).

We thus generate another set of vector fields fV 00 ; V 01 ; . . . ;

V 0N�1g, where V 0i ¼ vS;ð2iþ1Þ�
N

. While these vector fields also

contain visual discontinuities, the discontinuities (set of

breaking points) will also be in the same places (regardless

of i) that are different from the discontinuities in

V0; . . . ; VN�1 (Figs. 4b and 4c).
Now, when we generate LIC images I 00; . . . ; I 0N�1 (Figs. 5f,

5g, and 5h) from this second set of vector fields, and the
image I 0 ¼ 1

N

PN�1
j¼0 I 0j, all of the artifacts appear in comple-

mentary locations to those from I (Fig. 5i). The intersection
of the two sets of artifacts (breaking points) consists of only
the singularities in the field. We can then blend I and I 0 so
that in places where visual artifacts occur in one image we
will use corresponding regions in the other image. There are
different ways in which this can be achieved. We choose to
adapt the weighting scheme of Zhang et al. [24], which
corresponds to the case N ¼ 2. In this scheme, the weighting
functions are cos2 N� and sin2 N� where � is angular
component of one of the member vectors at the correspond-
ing pixel location (Fig. 5e). We chose these blend weights
because they will always sum to 1, because the regions
where there are artifacts in I correspond to the places where
cos2 N�

2 ¼ 0, and because the regions where there are artifacts
in I 0 correspond to the places where sin2 N�

2 ¼ 0. One can also
easily modify this weight so that it is binary valued (either 0
or 1) and the color of a pixel in the composited image will
come from either I or I’, though the difference between the
results these two weights produce is virtually imperceptible.

When N is even, we can save the computational cost by

observing that each of the N directions at every point in S is

the opposite of another direction at the same point, i.e.,

Vi ¼ �ViþN=2. Because of how the LIC algorithm works, we

need only generate N
2 fields (V0; . . . ; VN

2�1) and images

(I0; . . . ; IN
2�1) to visually capture all directions.

The result, shown in Fig. 5j, is an image where the
artifacts due to vector field discontinuities are no longer
visible (except very close to singularities), and where all
directions at every point in the field are captured. Our
technique works for all values of N , including when N ¼ 1
and N ¼ 2 (though when N ¼ 1, there will not be any
breaking points, and thus generating the image I 0 is
unnecessary). Also, note that the image in Fig. 5j is actually
contrast corrected by the process to be described in Section 5.

Color can be integrated into LIC with relative ease, as has
been done in several other works [12], [14], [15]. We find
that with the larger amount of directional information
present in N-RoSy fields, color often helps the LIC streaks
in the final image stand out better against each other,
making the directions at each point more apparent (Fig. 11).

To perform a colored version of our algorithm, we simply
generate three different black and white noise textures, map
each to a color channel, and use this “colored” noise image
as the initial LIC image in the steps above. Note that this is
the same as performing LIC three times in parallel.

5 CONTRAST CORRECTION

Uniformly blending the images I0; . . . ; IM�1 (where M is
equal to N or N=2, depending on whether N is odd or even)
can result in I having lower contrast than each Ij, making
the image appear faded and the directions at each difficult
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Fig. 4. In (a), we see how the guiding angle � (indicated by the blue
arrow) allows us to select one of the N directions (in red) from an N-
RoSy (N ¼ 4 in this case). Note that if we use N guiding angles with
values of �þ 2i�

N (� ¼ 0 in this case), we will get one of the N directions
for each. In (b), we see that if there are two directions (in green) that are
equally close to � for a given N-RoSy s, then there will also be two such
directions for each �þ 2i�

N . (c) illustrates that using �þ ð2iþ1Þ�
N as our set

of guiding angles on the same N-RoSy from (b) will result in one
direction. These facts together indicate that if we assign each Vi by using
guiding angles of �þ 2i�

N (i ¼ 0; 1; . . .N � 1), all directions at every point
will be captured, the breaking points will be in the same locations in each
Vi, and Vi and V 0i will have nonoverlapping sets of breaking points
(except at singularities).



to discern (Fig. 5d). Here, we explore this issue further, and

provide a systematic solution which will eliminate this

contrast loss without performing any image analysis.

Recall that, given a pixel P in the image I (defined in

Section 4) and M signals at that pixel P0; . . . ; PM�1 (one from

each respective Ij), we have P ¼ 1
M

PM�1
j¼0 Pj. Given that each

Ij is generated from the same initial noise texture with the

same LIC parameter L, P0; . . . ; PM�1 are normally distrib-

uted random variables with the same mean � and and

variance �2 (that is, Pj � Nð�; �2Þ, where 0 � j �M � 1).

Consequently, P is also normally distributed as follows:

P � N �;
�2

M

� �
: ð5Þ

Note that the mean has remained the same (in our

experiments the mean is always almost exactly 0.5), but

the variance has shrunk by a factor of 1
M . This explains why

the images I and I 0 appear more gray than I0; . . . ; IM�1 and

I 00; . . . ; I 0M�1 (Figs. 6a, 6b, and 6c).
Fortunately, in order to “correct” P so that its distribu-

tion is the same as that of P0; . . . ; PM�1, we need only apply

the following transformation:

Pcorrected ¼
ffiffiffiffiffi
M
p
ðP � �Þ þ �: ð6Þ

Note that Pcorrected � Nð�; �2Þ, and our empirical data

support this hypothesis (Fig. 6d). Further, note that if we

apply this transformation to every pixel in I (and I 0) using

our empirical value of � ¼ 0:5, this amounts to contrast

scaling. Note that the scaling can be applied either before or
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Fig. 5. Our visualization algorithm is demonstrated with an example 3-RoSy field S. In (a), (b), and (c), we applied the LIC algorithm to V0, V1, and V2

(the guiding angle for each is shown in the upper-right corner) to obtain I0, I1, and I2, respectively. Notice that while (a), (b), and (c) provide a
complete coverage of the streamlines passing through any regular point in the domain, they have the same regions of breaking points (left X-axis).
By blending them uniformly, we obtain I (d), a visualization of S with visual artifacts in the same place (a closeup of the artifact, highlighted in red, is
seen as an inset with the contrast enhanced; note the curving patterns in a region that should be regular). To remedy the problem, we also apply the
LIC algorithm to V 00 , V 01 , and V 02 , generating the images I 00 (f), I 01 (g), and I 02 (h), and blend them uniformly to obtain I 0 (i). The visual artifacts in I 0

appear on the right side (again, a closeup is inset) of the X-axis. By blending I and I 0 using the weight map w (e), we obtain the final image in (j) in
which the artifacts due to field discontinuities are no longer visible. Note that the image in (j) has had its contrast corrected via the transformation
described in Section 5.

Fig. 6. Here we demonstrate our contrast correction and enhancement for a constant 6-RoSy field. Note that the inset histograms only show the red
channel of the color images, but the distributions for the other two channels are similar. The three member vector field images I0 (a), I1 (b), and I2

(not shown) are blended uniformly to get I (c). However, the pixel signals in I have reduced variance, which makes the image appear washed out
and gray, and so we apply the transformation in (6) to get Icorrected (d), whose pixel signals have the same variance as those in I0 and I1. We can then
(optionally) expand the variance further, by using the same transformation with a larger scaling factor to get the image in (e).



after image blending; this is because that we do not have to
perform any image analysis on the blended image.

On the other hand, we do not perform contrast correction
when blending the images I and I 0. Because of how these
images are generated (using the same noise image, and the
same field), I and I 0 end up being almost exactly identical,
except in the regions near their artifacts caused by breaking
points (Figs. 2b and 2c and Figs. 5d and 5i). Thus, there is very
little interference between pixel signals when blending these
two images, leading to little loss of contrast in the resulting
image.

Finally, when performing the colored version of our
algorithm, the above operations can be performed in exactly
the same manner, but per channel; in this case, we are
correcting a loss of variance in image hue (Fig. 6c).

6 EXTENSION TO SURFACES

The algorithm described in Section 4 can be adapted to
visualize N-RoSy fields on surfaces with relative ease, by
performing almost all of the previously described opera-
tions in image space and adding diffuse lighting; this is
akin to techniques proposed by Van Wijk [22] and
Laramee et al. [10]. Fig. 11 shows our results on several
surfaces. The implementation is almost identical to that of
the planar case, except that we must take care to use the
correct set of member vectors; this is because the member
vectors at a point on the surface are rotations of integer
multiples of 2�

N of each other in tangent space, but their

projections onto the view plane do not necessarily share
this property (Fig. 7).

This distinction, however, actually leads to an issue
which lessens the effectiveness of our artifact reduction
step (see Section 4). Because the projections of the member
vectors in the view plane do not preserve the rotational
relationships between them, the weights we use to to
blend I and I 0 are less effective in places where the surface
normal is not parallel to the view direction. This can lead
to the reappearance of the artifacts described in Section 4
in the corresponding regions of the image (Fig. 8 left and
middle). While these artifacts always appear in regions
that are not directly facing the view plane, they can
nonetheless be distracting, and so we propose a method to
eliminate them here.

At each point p on the surface whose normal is not
parallel to the normal of the view plane, there is a unique
minimal rotation R that takes a vector in the tangent plane
at p to be parallel to the view plane. This 3D rotation will
introduce a rigid, orientation-preserving transformation

between tangent vectors from the two planes: the tangent
plane at p and the view plane. Consequently, an N-RoSy
can be maintained during this transformation. Using this
transformation, we simply rotate each N-RoSy into the view
plane, and then perform the field decomposition and
weight computation on these rotated RoSys. The resulting

vector fields can then be translated back into tangent space
by the inverse rotation R�1. As Fig. 8b shows, this
completely eliminates the artifacts.
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Fig. 7. On the left, we see a 4-RoSy on a plane that is parallel to the view

plane; all of its directions are 2k�
4 rotations of the others, where k is an

integer. As the plane is rotated so that it is nearly orthogonal to the view

plane (middle and left), these relationships no longer hold.

Fig. 8. (a) A 4-RoSy field on a sphere that forms a cube pattern. In the

left side of (b), a closeup is shown of an artifact in the visualization on the

left (the region indicated by the black box in (a)). We propose a method

to fix the problem (b) in Section 6.

Fig. 9. Our method can represent continuous N-RoSy fields by mapping

the magnitude to color (a), varying the length of the streamline traced

per pixel, or both (b).

Fig. 10. We find that due to the abundance of directional information at

each point, the effectiveness of our algorithm is decreased as N reaches

higher numbers, such as 5 (a) and 7 (b).



7 RESULTS

Our algorithm produces accurate visual representations of
N-RoSy fields at interactive frame rates. Table 1 shows
rendering times for our algorithm compared to those for a
brute-force implementation of N-RoSy LIC. Recall that a

brute-force implementation simply alters the tracing meth-

od of the LIC algorithm so that all the N directions are

examined at each integration step, and the one that most

closely matches the direction at the previous step is chosen.

Further, N (N=2 when N is even) streamlines are traced for
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Fig. 11. Here, we see 4-RoSy fields on the Bunny (a)-(b), triple-torus (c), and Rocker Arm models visualized using our system. Color can be
added by performing our algorithm three times in parallel and mapping each output to a color channel, resulting in a plaid-like pattern;
alternatively color can be reserved for for visualizing other values, such as field magnitude. In (e), we see a 6-RoSy field field on the Moai
statue and another on the torus in (f).



each pixel (one for each direction at that pixel), used as
convolution kernels to anisotropically blur the noise texture,
and the result from these kernels is then uniformly blended
to get the final pixel color. In this method, there is no need
to decompose the original field into vector fields. However,
choosing the best direction at every tracing step requires a
great deal of branching, making this algorithm suboptimal
for parallel architectures, such as graphics cards. In
contrast, our algorithm benefits greatly from parallelization.

All of our experiments were performed on a desktop
computer with a dual-core 3.73 GHz Intel Pentium D
processor and an NVIDIA GeForce 8600 GTS video card.
Both algorithms were accelerated using the programmable
graphics hardware, and all renderings were done at a
resolution of 512� 512 using the surface implementations
of these algorithms. The two methods produce virtually
identical images. Our algorithm outperforms the brute-
force implementation in all of our experiments, and
maintains interactive frame rates for fields with values of
N ¼ 2; 3; 4, and 6, even for large meshes.

Not only is our algorithm faster, it also scales much
better with N ; as N and the number of directions at each
point increase, the brute-force algorithm suffers greatly due
to increased branching. Our algorithm incurs only a
moderate additional cost associated with generating addi-
tional LIC images. Note the cases where N ¼ 4 outperform
the ones where N ¼ 3; this is because when N is even, we
only need generate N=2 images to represent all N directions
everywhere in the field. The brute-force implementation
takes advantage of this as well, but is still outperformed by
our method in every experiment.

Also note that, at a fixed resolution, a large increase in
mesh size (from 12K to 200K triangles) results in only a
relatively small offset in rendering time for both algorithms.
This indicates that the rendering time is pixel bound, which
is to be expected for image space methods.

In all of the applications that we know of involvingN-RoSy
fields (whereN > 2), it is the directions of the RoSy that are of
ultimate importance. On the other hand, the magnitude is
equally important in vector and tensor field visualization
(N ¼ 1; 2). Our framework inherits the flexibility of texture-
based methods in which the magnitude can be conveyed by
color, varying length of streamlines, or both (Fig. 9).

The effectiveness of this visualization technique begins to
lessen as N increases, and computational cost grows; it
becomes difficult to discern meaningful information in
cases where N ¼ 5; 7, and beyond (Fig. 10). Fortunately, for
the known applications involving N-RoSy fields, such as
surface parameterization, remeshing, and nonphotorealistic
rendering, only fields where N ¼ 2, 4, and 6 have found
uses thus far.

8 CONCLUSIONS

We have presented an interactive texture-based visualiza-
tion algorithm for N-RoSy fields on surfaces. Our algorithm
can show all the N directions at every point and captures
the features of N-RoSy fields, such as singularities. In our
technique, an N-RoSy field is decomposed into a number of
vector fields, which are visualized using the LIC techniques
and then combined. We note that the number of vector
fields used is only twice that of the minimal number of
images needed in order to show all the N directions.

Further, we have observed that the pixel values in LIC
images are normally distributed random variables, allowing
us to use concepts from probability theory to correct the loss
of contrast usually associated with the blending of such
images. Contrast can also be further enhanced if desired.

In the future, we wish to investigate efficient contrast
adjustment when the input images are not gray scale and
have different hues. One example of this is to visualize both
the major and minor eigenvector fields of a second-order
tensor. In addition, we will consider how to best adjust the
contrast given lighting conditions. Also of interest are new
decomposition strategies that will lead to fewer images to
blend, thus increasing the interactivity. Finally, N-RoSy
fields are special types of Nth-order symmetric tensors. We
wish to extend our method to handle symmetric Nth-order
tensor field visualization, in which angles between neigh-
boring member vectors are no longer constant.
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