Learning Rules from Incomplete Examples via a Probabilistic Mention Model

Mohammad S. Sorower, Thomas G. Dietterich, Janardhan Rao Doppa, Prasad Tadepalli, and Xiaoli Fern

School of EECS, Oregon State University
Corvallis, OR 97331 USA
{sorower,tgd,doppa,tadepall,xfern} @cs.orst.edu

Abstract

We consider the problem of learning rules from natu-
ral language text sources. These sources, such as news
articles, journal articles, and web texts, are created by
a writer to communicate information to a reader, where
the writer and reader share substantial domain knowl-
edge. Consequently, the texts tend to be concise and
mention the minimum information necessary for the
reader to draw the correct conclusions. We study the
problem of learning domain knowledge from such con-
cise texts, which is an instance of the general problem of
learning in the presence of missing data. However, un-
like standard approaches to missing data, in this setting
we know that facts are more likely to be missing from
the text in cases where the reader can infer them from
the facts that are mentioned combined with the domain
knowledge. Hence, we can explicitly model this “miss-
ingness” process and invert it via probabilistic inference
to learn the underlying domain knowledge. This paper
introduces an explicit probabilistic mention model that
models the probability of facts being mentioned in the
text based on what other facts have already been men-
tioned and domain knowledge in the form of Horn clause
rules. Learning must simultaneously search the space of
rules and learn the parameters of the mention model. We
accomplish this via an application of Expectation Max-
imization within a Markov Logic framework. An ex-
perimental evaluation on synthetic and natural text data
shows that the method can successfully learn accurate
rules and apply them to new texts to make correct infer-
ences.

1 Introduction

The immense volume of textual information available on the
web provides an important opportunity and challenge for Al:
Can we develop methods that can learn domain knowledge
by reading natural texts such as news articles, journal arti-
cles, and web pages. We would like to acquire at least two
kinds of domain knowledge: concrete facts and general rules.
Concrete facts can be extracted as logical relations or as tu-
ples to populate a data base. Systems such as Whirl [Cohen,
2000], TextRunner [Etzioni et al., 2008], and NELL [Carlson

et al., 2010a] learn extraction patterns that can be applied to
text to extract instances of relations.

General rules can be acquired in two ways. First, they may
be stated explicitly in the text—particularly in tutorial texts.
Second, they can be acquired by generalizing from the ex-
tracted concrete facts. In this paper, we focus on the latter
setting: Given an incomplete data base of literals extracted
from natural language texts, we seek to learn a set of proba-
bilistic Horn clauses that capture general rules.

The problem of learning rules from extracted texts has been
studied previously [Nahm and Mooney, 2000; Carlson et al.,
2010b; Schoenmackers et al., 2010]. These systems rely on
finding documents in which all of the facts participating in a
rule are mentioned. If enough such documents can be found,
then standard rule learning algorithms can be applied. A
drawback of this approach is that it is difficult to learn rules
unless there are many documents that provide such complete
training examples. The central hypothesis of our work is that
by explicitly modeling the process by which facts are men-
tioned, we can learn rules from sets of documents that are
smaller and less complete.

To illustrate the challenges, consider the following sen-
tence that discusses a National Football League (NFL) game:

“Given the commanding lead of Kansas city on the road,
Denver Broncos’ 14-10 victory surprised many”

This mentions that Kansas City is the away team and that
the Denver Broncos won the game, but does not mention that
Kansas City lost the game or that the Denver Broncos was
the home team. Of course these facts can be inferred from
domain knowledge rules such as the rule that “if one team is
the winner, the other is the loser (and vice versa)” and the
rule “if one team is the home team, the other is the away team
(and vice versa)”.

In our previous work [Doppa et al., 2010], we employed an
“implicit mention model” that did not explicitly represent the
way in which mentions arise. Instead, it simply modified the
way candidate rules were scored. The current paper builds
on that work to show how an explicit mention model can be
learned and applied.

2 Technical Approach

Consider a writer and a reader who share domain knowl-
edge K. The writer wishes to efficiently communi-
cate the conjunction of two (true) formulas F© A G@G.

Let READERWILLINFER(G, F, K) denote the fact that the
reader, when told F', will infer that G is true by applying the
domain knowledge K. Then it suffices for the writer to men-
tion only I’ and not G. We can express this as the general rule
schema:

MENTION(F') A READERWILLINFER(G, F, K) A G =
—~MENTION(G).

Similarly, if the writer wishes to communicate the formula
F' A =G, which is an exception to the general rule that F' =
G, then the writer must explicitly mention that G is not true:

MENTION(F) A READERWILLINFER(G, F, K) A -G =
MENTION(—G).

In this paper, we consider only the first case. In addition,
rather than explicitly modeling the reader’s inference process,
we instantiate the rule schema for each domain knowledge
rule under the assumption that the reader’s reasoning process
can perform simple Horn clause chaining. Hence, given the
rule P = (@, we define the mention rule

MENTION(P) = —MENTION(Q).

To represent and reason with the domain knowledge,
the mention rules, and the observed mentions, we employ
Markov Logic. There are four kinds of rules in our knowl-
edge base (see Figure 1):

e Fact-to-Fact Rules. These are the unknown domain

knowledge rules that we seek to learn. We prefix each lit-
eral with FACT_ and write the rules in the form

FACT_HOMETEAM(g, t2) A
FACT_TEAMINGAME(g, t1) A

FACT_TEAMINGAME(g,t2) = FACT_-AWAYTEAM(g, t1).

TEAMINGAME(g, t) states that team ¢ was one of the teams
playing in game g. HOMETEAM(g,t) states that team ¢
was the home team in game g. Similarly, AWAYTEAM(g, t)
indicates that ¢t was the away team in game g. (We apply the
unique names constraint that variables with unique names
must refer to distinct objects; hence t1 # ¢2 is assumed
implicitly.)

o Fact-to-Mention Rules. These express the belief that if
something is true, it is likely to be mentioned. These rules
are probabilistic, and during learning they are assigned
weights that reflect the baseline probability that any par-
ticular literal will be mentioned.

FACT_HOMETEAM(g,t) = MENTION_HOMETEAM(g, t).

e Mention-to-Fact Rules. These express the belief that the
writer is not lying, so anything that is mentioned is true:

MENTION_HOMETEAM(g,?) = FACT_-HOMETEAM(g,1).

Weights for these rules are not learned. Instead, the rules
are assumed to hold with probability 1 (i.e., have infinite
weight).

o Mention-to-Mention Rules. These rules instantiate the
general mention rule schemas described above.

MENTION_HOMETEAM(g, 12) A
MENTION_TEAMINGAME(g, t1) A
MENTION_TEAMINGAME(g,12) =

— MENTION_AWAYTEAM(g, t1).

Inferred Facts
Fact_TeamInGame(g1, Denver)

Fact_TeamInGame(g1, KansasCity)
Fact_GameAwayTeam(g1, KansasCity)
Fact_GameHomeTeam(g1, Denver)

Fact = Fact Rules
wj: Fact_TeamInGame(g, t1) A Fact_TeamInGame(g, t2)
A Fact_GameAwayTeam(g, t1) = Fact_GameHomeTeam(g, t2)

Mention = Fact Rules
w3: Mention_GameAwayTeam(g, t1)
= Fact_GameAwayTeam(g, t2)

Fact = Mention Rules
w,: Fact_GameAwayTeam(g, t1)
= Mention_GameAwayTeam(g, t2)

Mention = Mention Rules
w,: Mention_TeamInGame(g, t1) A Mention_TeamInGame(g, t2)
A Mention_GameAwayTeam(g, t1) = —Mention_GameHomeTeam(g, t2)

Observed Mentions
Mention_TeamInGame(g1, Denver)
Mention_TeamInGame(g1, KansasCity)
Mention_GameAwayTeam(g1, KansasCity)

Figure 1: Markov Logic Model

In Markov Logic, each of these rules is assigned a (learned)
weight which can be viewed as a cost of violating the rule.
The probability of a world w is proportional to

exp Z w;I[Rule j is satisfied by w] | ,
J

where j iterates over all groundings of the Markov logic rules
in world w and I[¢] is 1 if ¢ is true and O otherwise.

An advantage of Markov Logic is that it allows us to define
a probabilistic model even when there are contradictions and
cycles in the logical rules. Hence, we can include both a rule
that says “if the home team is mentioned, then the away team
is not mentioned” and a rule that says “if the away team is
mentioned, then the home team is not mentioned”. We can
also include rules that say “the home team is mentioned” and
“the away team is mentioned”. Obviously a possible world
w cannot satisfy all of these rules. The relative weights on
these rules determine the probability that particular literals
are actually mentioned.

Learning. We seek to learn both the rules and their
weights. We proceed by first learning the fact-to-fact rules
and then automatically generating the other rules (especially
the mention-to-mention rules) from the general rule schema
described above. Then we apply EM to learn the weights on
all of the rules. This can have the effect of removing unnec-
essary rules by driving their weights to zero.

Learning Fact-to-Fact Rules. For each predicate, we gen-
erate a set of candidate Horn clauses with that predicate as
the head. We consider all conjunctions of literals involving
other predicates (i.e., we do not allow recursive rules) up to a
fixed maximum length. Each candidate rule is scored on the
training documents for support (number of training examples
that satisfy the body) and confidence (the conditional proba-
bility that the head is true given that the body is satisfied). We
discard all rules that do not achieve minimum support ¢ and
then keep the top 7 most confident rules. The values of o and
7 are determined via cross-validation within the training set.
The selected rules are then entered into the knowledge base.

From each rule, we also derive a mention-to-mention rule that
says if all of the literals in the body have been mentioned, then
the head will not be mentioned. For each predicate, we also
generate fact-to-mention and mention-to-fact rules.
Learning Weights. The goal of weight learning is to max-

imize the likelihood of the observed mentions (in the training
set) by adjusting the weights of the rules. Because our train-
ing data only consists of mentions and no facts, the facts are
latent (hidden variables), and we must apply the EM algo-
rithm to learn the weights. Each game can be summarized
by four literals: HOMETEAM(g,t1), AWAYTEAM(g,t2),
GAMEWINNER(g, t3), and GAMELOSER(g,¢4). For pur-
poses of weight learning, we must consider these four
literals together, so we introduce an auxiliary predicate
GTUPLE(g, t1,t2,t3,t4) and introduce the hard rule
GTUPLE(g, t1,12,t3,t4) =

HOMETEAM(g,t1) A AWAYTEAM(g,t2) A

GAMEWINNER(g,t3) A GAMELOSER(g, t4).

Given two teams, there are 16 possible instantiations of
this literal in each game. Let us index them from O
to 15 corresponding to GTUPLE(g, A, A, A, A) through
GTuPLE(g, B, B, B, B).

We employ the Markov Logic system Alchemy [Kok et
al., 2007] for learning and inference. In the E step, we
apply the lazy MCSAT inference algorithm to estimate the
marginal probability of each of the 16 possible instantia-
tions of GTUPLE. In the M step, we then treat these pos-
sible instantiations as weighted evidence and apply gener-
ative learning to find the weight values that maximize the
pseudo-likelihood of the weighted evidence. To introduce
weighted evidence into Alchemy, we apply the following
“dummy evidence trick”. Specifically, suppose we wish
to introduce the evidence GTUPLE(gl, A, B, A, B) (config-
uration 5) with probability ps, for teams A and B. We
define an evidence literal GEVIDENCE(¢l, A, B, A, B) in
Alchemy’s database file, and then add to the “mln” file a rule
GEVIDENCE(gl, A, B, A, B) = GTUPLE(gyl, A, B, A, B)
with a weight of

1K
w5 =logps — 7=) _log i,
k=1
where pj is the marginal probability of configuration k.
To avoid an explosion of instantiations during inference in
Alchemy, we arbitrarily rename the teams in all of the games
to be the constants A and B. This is a hand-coded form of
lifted inference.

EM is iterated to convergence, which only requires a few
iterations. Algorithm 1 summarizes the pseudo-code of the
algorithm.

Treating Missing Mentions as Missing At Random: An
alternative to the explicit mention model described above
is to assume that the writer choose which facts to mention
(or omit) at random according to some unknown probability.
When data are missing-at-random (MAR), it is possible to
obtain unbiased estimates of the true distribution via impu-
tation using EM. We implemented this approach as follows.
we apply the same method of learning rules (requiring mini-
mum support o and then taking the 7 most confident rules).

Algorithm 1 Learn Explicit Mention Model

Input: D; =Incomplete training examples
7 = number of rules per head

0 = minimum support per rule

Output: M = Explicit mention model

LEARN MENTION MODEL:
exhaustively learn rules for each head
discard rules with less than o support
select the 7 most confident rules R for each head
R =R
for each rule (factP => factQ) € R do
R’ =R’ U {mentionP = —mentionQ}
end for
for every factP € R do
add factP = mentionP to R’
add mentionP = factP to R’
: end for
: repeat
E-Step: apply inference to predict weighted facts F
define complete weighted data D¢ := Dy U F
M-Step: learn weights for rules in R’ using data D¢
: until convergence
: return the set of weighted rules R’

S AR S s

el e e
e A A T T

Each learned rule has the general form MENTION_.A =
MENTION_B. The collection of rules is treated as a model
of the joint distribution over the mentions (or, more precisely,
over the possible groundings of GTUPLE). Generative weight
learning in then applied to learn the weights on these rules.
The marginal probabilities of GTUPLE are computed using
the rule weights.

3 Experimental Evaluation

We evaluated our mention model approach on a synthetic data
set to understand its behavior as we varied the amount of
missing data. Then we compared its performance to the MAR
approach on actual extractions from news stories about NFL
football games.

Synthetic Data Experiment. The goal of this experiment
was to evaluate the ability of our method to learn accurate
rules from data that match the assumptions of the algorithm.
We also sought to understand how performance varied as a
function of the amount of information omitted from the text.

The synthetic data were generated using a database
of NFL games (from 1998 and 2000-2005) down-

loaded from www.databasefootball.com.
These data were then encoded using the follow-
ing predicates: TEAMINGAME(Game, Team),

GAMEWINNER(Game, Team),
GAMELOSER(Game, Team), HOMETEAM(Game, Team),
AWAYTEAM(Game, Team), and
TEAMGAMESCORE(Game, Team, Score), and treated
as the ground truth. Note that these predicates
can be divided into two correlated sets: WL =
{GAMEWINNER, GAMELOSER, TEAMGAMESCORE}
and HA = {HOMETEAM, AWAYTEAM}.

From this ground truth, we generate a set of mentions for

Table 1: Synthetic Data Properties

Table 3: Fraction of Literals Correctly Predicted for ¢ = 0.97

Table 2: Probabilistic Mention Model Performance on Syn-
thetic Data. Each cell indicates the fraction of complete
records inferred.

Test g

Training ¢ | 0.17 | 0.33 | 0.50 | 0.67 | 0.83 | 0.97
0.17 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.33 | 1.00 | 0.99 | 097 | 0.96 | 0.90 | 0.85
0.50 | 1.00 | 0.99 | 098 | 0.97 | 0.93 | 0.87
0.67 | 1.00 | 098 | 0.92 | 0.92 | 0.81 | 0.66
083 | 099 | 098 | 0.72 | 0.71 | 0.61 | 0.54
097 | 091 | 0.81 | 0.72 | 0.68 | 0.56 | 0.41

each game as follows. One literal is chosen uniformly at ran-
dom from each of WL and H A and mentioned. Then each
of the remaining literals is mentioned with probability 1 — ¢,
where ¢ is a parameter that we varied in the experiments. Ta-
ble 1 shows the average percentage of literals mentioned in
each generated “news story” and the percentage of generated
“news stories” that mentioned all literals. Note that the sto-
ries generated in this way reflect the actual statistics of game
scores and outcomes.

Synthetic Experiments. For each ¢, we generated 5 dif-
ferent datasets, each containing 235 games. For each value
of g, we ran the algorithm five times. In each iteration, one
dataset was used for training, another for validation, and the
remaining 3 for testing. The training and validation datasets
shared the same value of q. The resulting learned rules were
evaluated on the test sets for all of the different values of q.
The validation set is employed to determine the thresholds 7
and o during rule learning and to decide when to terminate
EM.

Table 2 reports the proportion of complete game records
(i.e., all four literals) that were correctly inferred, averaged
over the five runs. Note that any facts mentioned in the gen-
erated articles are automatically correctly inferred, so if no
inference was performed at all, the results would match the
second row of Table 1. Notice that when trained on data with
low missingness (e.g. ¢ = 0.17), the algorithm was able to
learn rules that predict well over articles with much higher
levels of missing values. This is because ¢ = 0.17 means that
only 8.62% of the literals are missing in the training dataset,
which results in 61.70% complete records. These are suffi-
cient to allow learning highly-accurate rules. However, as the
proportion of missing literals in training data increases, the al-
gorithm starts learning incorrect rules, so performance drops.
In particular, when ¢ = 0.97, the training documents contain
no complete records (Table 1). Nonetheless, the learned rules

q 0.17 | 0.33 | 0.50 | 0.67 | 0.83 | 0.97 Test ¢
Mentioned Training ¢ | 0.17 | 0.33 | 0.50 | 0.67 | 0.83 | 0.97
literals(%) | 21-38| 80.74| 68.72] 63.51) 51.70) 42.13 0.97 | 0.98 [0.95 [0.93 [0.92 | 0.89 | 0.85
Complete 1 56/ 3064/ 851 | 5.53 | 043 | 0.00

records(%)

are still able to completely and correctly reconstruct 41% of
the games!

The rules learned under such high levels of missingness are
not totally correct. Here is an example of one learned rule (for
q = 0.97):

FACT_HOMETEAM(g, t1) A FACT_-TEAMINGAME(g,t1) =
FACT_GAMEWINNER(g, t1).

This rule says that the home team always wins. When appro-
priately weighted in Markov Logic, this is a reasonable rule
even though it is not perfectly correct (nor was it a rule that
we applied during the synthetic data generation process).

In addition to measuring the fraction of entire games cor-
rectly inferred, we can obtain a more fine-grained assessment
by measuring the fraction of individual literals correctly in-
ferred. Table 3 shows this for the ¢ = 0.97 training scenario.
We can see that even when the test articles have ¢ = 0.97
(which means only 42.13% of literals are mentioned), the
learned rules are able to correctly infer 85% of the literals. By
comparison, if the literals had been predicted independently
at random, only 6.25% would be correctly predicted.

Experiments with Real Data: BBN provided the output
of their extractor applied to two corpora of articles describ-
ing NFL games. The first corpus of articles is known as
BBN_training. We will refer to it as D1. The second cor-
pus is known as BBN_robustness. The articles in the sec-
ond corpus were subjected to more thorough analysis, so the
extractions are more complete. However, both D2 and (es-
pecially) D1 contain many errors including games involving
more than two teams or where one team achieved multiple
scores. These errors result primarily from coreference fail-
ures.

To address these problems, we decided to take each ex-
tracted game and apply a set of integrity constraints. The in-
tegrity constraints are learned from 5 complete game records.
Examples of the learned constraints include “Every game has
exactly two teams” and “Every game has exactly one win-
ner.” Each BBN-extracted game is then converted into mul-
tiple games by deleting literals in all possible ways until all
of the integrity constraints are satisfied. Finally, duplicate
records are removed. After this processing, D1 contains 203
games and D2 contains 56 games. Table 4 summarizes the
missingness of these game records.

The data from these repaired games is provided as train-
ing data to our algorithm. To measure the performance of the
learned rules, we constructed a synthetic test set by taking
100 games from the downloaded NFL database and creating
games in which various patterns of missingness were exhib-
ited. Specifically, none of the test games mentioned both the
home and away team or both the winning and losing team. In
20% of the test games, neither the home nor the away team
was mentioned, whereas all test games mentioned exactly one

Table 4: Statistics on BBN-extracted and repaired games.
“miss” means “missing”.

Home/Away Winner/Loser
miss | miss | miss || miss miss | miss
both one | none || both one | none

DI || 85.7 | 11.3 30 | 148 | 492 | 36.0
D2 || 179 | 589 | 232 || 179 | 57.1 | 25.0
Test || 20.0 | 80.0 0.0 0.0 | 100.0 0.0

Table 5: Observed percentage of cases where exactly one lit-
eral is mentioned and the percentage predicted if the literals
were missing at random

Home/Away Winner/Loser
observed | predicted || observed | predicted
DI 11.3 13.2 49.2 471
D2 58.9 499 57.1 49.8

of either the winner or the loser (see Table 4).

It is interesting to ask whether these data are consis-
tent with the explicit mention model versus the missing-at-
random model. Let us suppose that under MAR, the proba-
bility that a fact will be mentioned is p. Then the probability
that both literals in a rule (e.g., home/away or winner/loser)
will be mentioned is p?, the probability that both will be miss-
ing is (1 — p)?, and the probability that exactly one will be
mentioned is 2p(1 — p). We can fit the best value for p to the
observed missingness rates to minimize the KL divergence
between the predicted and observed distributions. If the ex-
plicit mention model is correct, then the MAR fit will un-
derestimate the fraction of cases where exactly one literal is
missing. Table 5 shows the results. For D1, the MAR model
gives a fairly good fit to the observed missingness rates. How-
ever, for D2, it is clear that the MAR model seriously under-
estimates the probability that exactly one literal will be men-
tioned. Qualitatively, we believe that much of the missingness
in D1 is due to extraction failures, whereas the missingness in
D2 corresponds better to the assumptions of our probabilistic
mention model.

We applied both our explicit mention model and the MAR
model to these data sets. We measured performance rela-
tive to the performance that could be attained by a system

Table 6: Test set performance of our explicit mention model
compared to the missing-at-random approach. Performance
is measured as the number of games that are completely and
correctly reconstructed by the learned models as a percentage
of the number of games that can be completely reconstructed
by the correct model.

Training Explicit Missing at
Dataset Mention Model | Random Model
Dl 10.0 25.6
D2 100.0 6.0

that knows the correct rules. The results are summarized in
Table 6. When trained on D1, the MAR method performs
much better than our method, although both methods perform
poorly. The challenge for both methods is that there are very
few articles that provide complete training examples of the
rules. When trained on D2, our method achieves perfect per-
formance, whereas the MAR method only reconstructs 6% of
the reconstructable games. This reflects the extreme difficulty
of the test set, where none of the articles mentions all literals
involved in any rule.

4 Conclusion

This paper has shown how to apply Markov Logic to repre-
sent a probabilistic model of the relationship between the true
facts of a situation (such as an NFL game) and the proposi-
tions that are mentioned in an article about the situation. Ex-
periments on synthetic data showed that the method is able to
correctly reconstruct complete records even when neither the
training data nor the test data contain complete records. On
real data, the method achieves excellent performance when
trained on the D2 dataset, whereas a method that treats facts
as mentioned-at-random gives very poor performance. On
dataset D1, performance was poor for both methods. This
may reflect a fundamental lack of information sufficient to
permit rule discovery, or it may reflect a weakness in our rule
learning algorithm. It would be interesting to explore a mod-
ification of our algorithm in which candidate rules are scored
within the Markov Logic mention model rather than relying
on a separate rule-learning phase. This might permit the dis-
covery of rules without observing any cases where both the
head and the body are mentioned in a single document.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. FA8750-09-C-0179. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the DARPA, the Air Force Research Laboratory
(AFRL), or the US government.

References

[Carlson er al., 2010a] A. Carlson, J. Betteridge, B. Kisiel,
B. Settles, E.R. Hruschka Jr., and T.M. Mitchell. To-
ward an architecture for never-ending language learning.
In Proceedings of the Conference on Artificial Intelligence
(AAAI), pages 1306-1313. AAAI Press, 2010.

[Carlson et al., 2010b] Andrew Carlson, Justin Betteridge,
Richard C. Wang, Estevam R. Hruschka, Jr., and Tom M.
Mitchell. Coupled semi-supervised learning for informa-
tion extraction. In Proceedings of the Third ACM In-
ternational Conference on Web Search and Data Mining,
WSDM °10, pages 101-110, New York, NY, USA, 2010.
ACM.

[Cohen, 2000] William W. Cohen. WHIRL: A word-based
information representation language. Artificial Intelli-
gence, 118(1-2):163-196, 2000.

[Doppa et al., 2010] Janardhan Rao Doppa, Mohammad
NasrEsfahani, Mohammad S. Sorower, Thomas G. Diet-
terich, Xiaoli Fern, and Prasad Tadepalli. Towards learn-
ing rules from natural texts. In Proceedings of the NAACL
HLT 2010 First International Workshop on Formalisms
and Methodology for Learning by Reading, FAM-LbR
’10, pages 70-77, Stroudsburg, PA, USA, 2010. Associ-
ation for Computational Linguistics.

[Etzioni ef al., 2008] Oren Etzioni, Michele Banko, Stephen
Soderland, and Daniel S. Weld. Open information extrac-
tion from the web. Commun. ACM, 51(12):68-74, 2008.

[Kok et al., 2007] S. Kok, M. Sumner, M. Richardson,
P. Singla, H. Poon, D. Lowd, and P. Domingos. The
Alchemy system for statistical relational Al. Technical re-

port, Department of Computer Science and Engineering,
University of Washington, Seattle, WA, 2007.

[Nahm and Mooney, 2000] Un Yong Nahm and Raymond J.
Mooney. A mutually beneficial integration of data mining
and information extraction. In Proceedings of the Seven-
teenth National Conference on Artificial Intelligence and
the Twelfth Conference on Innovative Applications of Ar-
tificial Intelligence, pages 627-632. AAAI Press, 2000.

[Schoenmackers et al., 2010] Stefan Schoenmackers, Oren
Etzioni, Daniel S. Weld, and Jesse Davis. Learning first-
order Horn clauses from web text. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP 10, pages 1088-1098,
Stroudsburg, PA, USA, 2010. Association for Computa-
tional Linguistics.

