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Monte Carlo Artificial Intelligence
Probability I
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Random Variables

• The basic element of probability is the 
random variable

• Think of the random variable as an event 
with some degree of uncertainty as to 
whether that event occurs

• Random variables have a domain of values 
it can take on
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Random Variables

Example:
• ProfLate is a random variable for whether 

your prof will be late to class or not
• The domain of ProfLate is {true, false}

– ProfLate = true: proposition that prof 
will be late to class

– ProfLate = false: proposition that prof 
will not be late to class
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Random Variables

Example:
• ProfLate is a random variable for whether 

your prof will be late to class or not
• The domain of ProfLate is <true, false>

– ProfLate = true: proposition that prof 
will be late to class

– ProfLate = false: proposition that prof 
will not be late to class

You can assign some degree of 
belief to this proposition eg.

P(ProfLate = true) = 0.9
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Random Variables

Example:
• ProfLate is a random variable for whether 

your prof will be late to class or not
• The domain of ProfLate is <true, false>

– ProfLate = true: proposition that prof 
will be late to class

– ProfLate = false: proposition that prof 
will not be late to class

And to this one eg. 
P(ProfLate = false) = 0.1
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Random Variables

• We will refer to random variables with 
capitalized names eg. X, Y, ProfLate

• We will refer to names of values with lower 
case names eg. x, y, proflate

• This means you may see a statement like 
ProfLate = proflate
– This means the random variable ProfLate takes 

the value proflate (which can be true or false)
• Shorthand notation:

ProfLate = true is the same as proflate and 
ProfLate = false is the same as ¬proflate
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Random Variables

Boolean random variables

• Take the values true or false

• Eg. Let A be a Boolean random variable

– P(A = false) = 0.9

– P(A = true) = 0.1

Random Variables

Discrete Random Variables

• Allowed to taken on a finite number of 
values eg. 
– P(DrinkSize=Small) = 0.1

– P(DrinkSize=Medium) = 0.2

– P(DrinkSize=Large) = 0.7

Values must be 1) Mutually 
exhaustive and 2) Exclusive
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Random Variables

Continuous Random Variables

• Can take values from the real numbers

• eg. They can take values from [0, 1]

• Note: We will primarily be dealing with 
discrete random variables

Probability Density Functions
Discrete random variables have probability distributions:

a ¬a

P
(A

)

1.0

Continuous random variables have probability density 
functions eg:

P
(X

)

X

P
(X

)

X
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Probability

• We will write P(A=true) as “the fraction of 
possible worlds in which A is true”

• We will sometimes talk about the 
probabilities distribution of a random 
variable

• Instead of writing
– P(A=false) = 0.25
– P(A=true) = 0.75

• We will write P(A) = (0.25, 0.75)

Note the boldface!
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Probability

Event space of 
all possible 
worlds

Its area is 1
Worlds in which A is false

Worlds in which 
A is true

P(a) = Area of
reddish oval
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Probability

Axioms of Probability

• 0  P(a)  1

• P(true) = 1

• P(false) = 0

• P(a OR b) = P(a) + P(b) - P(a AND b)

This OR is equivalent to set 
union . 

This AND is equivalent to set 
intersection (). I’ll often 
write it as P(a, b)
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Conditional Probability

• We can consider P(A) as the unconditional 
or prior probability 
– eg. P(ProfLate = true) = 1.0

• It is the probability of event A in the 
absence of any other information 

• If we get new information that affects A, we 
can reason with the conditional probability
of A given the new information.
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Conditional Probability

• P(A | B) = Fraction of worlds in which B is 
true that also have A true

• Read this as: “Probability of A conditioned 
on B”

• Prior probability P(A) is a special case of the 
conditional probability P(A | ) conditioned on 
no evidence
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Conditional Probability

H = “Have a headache”
F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40
P(H | F) = 1/2

“Headaches are rare and flu 
is rarer, but if you’re coming 
down with ‘flu there’s a 50-
50 chance you’ll have a 
headache.”

F

H
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Conditional Probability

H = “Have a headache”
F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40
P(H | F) = 1/2

P(H|F) = Fraction of flu-inflicted 
worlds in which you have a 
headache

fluwith worlds#

headache andflu  with  worlds#


region F"" of Area

region F" and H" of Area


P(F)

F)P(H,


F

H
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Conditional Probability

)(

),(
)|(

BP

BAP
BAP 

Corollary: The Chain Rule (aka The Product Rule)

)()|(),( BPBAPBAP 
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Joint Probability Distribution

• P(A, B ) is called the joint probability 
distribution of A and B

• It captures the probabilities of all 
combinations of the values of a set of 
random variables
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Joint Probability Distribution

• For example, if A and B are Boolean 
random variables, then P(A,B) could be 
specified as: 

P(A=false, B=false) 0.25

P(A=false, B=true) 0.25

P(A=true, B=false) 0.25

P(A=true, B=true) 0.25



11

21

Joint Probability Distribution

• Now suppose we have the random variables:
– Drink = {Coke, Sprite}
– Size = {Small, Medium, Large}

• The joint probability distribution for P(Drink,Size) 
could look like:

P(Drink=Coke, Size=Small) 0.1

P(Drink=Coke, Size=Medium) 0.1

P(Drink=Coke, Size=Large) 0.3

P(Drink=Sprite, Size=Small) 0.1

P(Drink=Sprite, Size=Medium) 0.2

P(Drink=Sprite, Size=Large) 0.2
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Joint Probability Distribution

• Suppose you have the complete set of 
random variables used to describe the world

• A joint probability distribution that covers 
this complete set is called the full joint 
probability distribution

• Is a complete specification of one’s 
uncertainty about the world in question

• Very powerful: Can be used to answer any 
probabilistic query
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Joint Probability Distribution

Toothache Cavity Catch P(Toothache, Cavity, Catch)

false false false 0.576

false false true 0.144

false true false 0.008

false true true 0.072

true false false 0.064

true false true 0.016

true true false 0.012

true true true 0.108

This cell means P(Toothache = true, Cavity = true, Catch = true) = 0.108

“Catch” 
means the 
dentist’s 
probe 
catches in 
my teeth
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Joint Probability Distribution

Toothache Cavity Catch P(Toothache, Cavity, Catch)

false false false 0.576

false false true 0.144

false true false 0.008

false true true 0.072

true false false 0.064

true false true 0.016

true true false 0.012

true true true 0.108

The probabilities in the last column sum to 1
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Joint Probability Distribution
From the full joint probability distribution, we can calculate any 
probability involving the three random variables in this world 
eg.

P(Toothache = true OR Cavity = true) =

P( Toothache=true, Cavity=false, Catch=false ) +
P( Toothache=true, Cavity=false, Catch=true ) +
P( Toothache=false, Cavity=true, Catch=false ) +
P( Toothache=false, Cavity=true, Catch=true ) +
P( Toothache=true, Cavity=true, Catch=false ) +
P( Toothache=true, Cavity = true, Catch=true ) +

= 0.064 + 0.016 + 0.008 + 0.072 + 0.012 + 0.108 = 0.28
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Marginalization

We can even calculate marginal probabilities
(the probability distribution over a subset of the 
variables) eg: 

P(Toothache=true, Cavity=true ) = 

P(Toothache=true, Cavity=true, Catch=true) + 

P(Toothache=true, Cavity=true, Catch=false ) 

= 0.108 + 0.012 = 0.12
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Marginalization

Or even:

P( Cavity=true ) = 
P( Toothache=true, Cavity=true, Catch=true) + 
P( Toothache=true, Cavity=true, Catch=false ) 
P( Toothache=false, Cavity=true, Catch=true) + 
P(Toothache=false, Cavity=true, Catch=false ) 

= 0.108 + 0.012 + 0.072 + 0.008 = 0.2
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Marginalization

The general marginalization rule for any sets
of variables Y and Z: 


z

z),()( YPYP


z

zz )()|()( PYPYP

or

z is over all possible 
combinations of values of Z
(remember Z is a set)
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Normalization
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Note that 1/P(Toothache=true) 
remains constant in the two 
equations.
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Normalization

• In fact, 1/P(Toothache=true) can be viewed as a 
normalization constant for P(Cavity =true| 
Toothache=true), ensuring it adds up to 1

• We will refer to normalization constants with the 
symbol 

),(

)|(

trueToothachetrueCavity

trueToothachetrueCavity




P

P


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Inference 

• Suppose you get a query such as 

P(Cavity = true | Toothache = true)

Cavity is called the query variable (we’ll 
assume it’s a single variable for now)

Toothache is called the evidence 
variable because we observe it.  More 
generally, it’s a set of variables.

There are also unobserved (aka hidden) variables like Catch

32

Inference

• We will write the query as P(X | e)

This is a probability distribution 
hence the boldface

X = Query variable (a single variable for now)

E = Set of evidence variables

e = the set of observed values for the evidence variables

Y = Unobserved variables
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Inference

We will write the query as P(X | e)


y

yePePeP ),,(),()|( XXX 

X = Query variable (a single variable for now)

E = Set of evidence variables

e = the set of observed values for the evidence variables

Y = Unobserved variables

Summation is over all possible 
combinations of values of the 
unobserved variables Y
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Inference


y

yePePeP ),,(),()|( XXX 

Computing P(X | e) involves going through all 
possible entries of the full joint probability 
distribution and adding up probabilities with X=xi, 
E=e,  and Y=y

Suppose you have a domain with n Boolean 
variables.  What is the space and time complexity of 
computing P(X | e)?
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Independence

• How do you avoid the exponential space 
and time complexity of inference?

• Use independence (aka factoring)
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Independence

Suppose the full joint distribution now 
consists of four variables:

Toothache = {true, false}

Catch = {true, false}

Cavity = {true, false}

Weather = {sunny, rain, cloudy, snow}

There are now 32 entries in the full joint 
distribution table
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Independence

Does the weather influence one’s dental problems?

Is P(Weather=cloudy | Toothache = toothache, Catch
= catch, Cavity = cavity) = P(Weather=cloudy)?

In other words, is Weather independent of 
Toothache, Catch and Cavity?
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Independence

We say that variables X and Y are 
independent if any of the following hold: 
(note that they are all equivalent)

)()|( XYX PP 
)()|( YXY PP 

)()(),( YXYX PPP 

or

or



20

39

Why is independence useful?

Assume that Weather is independent of toothache, catch, 
cavity ie.
P(Weather=cloudy | Toothache = toothache, Catch = catch, 
Cavity = cavity) = P(Weather=cloudy)

Now we can calculate:
P(Weather=cloudy, Toothache = toothache, Catch = catch, 
Cavity = cavity) 
= P(Weather=cloudy | Toothache = toothache, Catch = catch, 
Cavity = cavity) * P(toothache, catch, cavity)

= P(Weather=cloudy) * P(Toothache = toothache, Catch = 
catch, Cavity = cavity)

40

Why is independence useful?
P(Weather=cloudy, Toothache = toothache, Catch = catch, Cavity = 
cavity) 
= P(Weather=cloudy) * P(Toothache = toothache, Catch = catch, Cavity

= cavity)

This table has 4 values This table has 8 values

• You now need to store 12 values to calculate P(Weather, 
Toothache, Catch, Cavity)

• If Weather was not independent of Toothache, Catch, and 
Cavity then you would have needed 32 values
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Independence

Another example:

• Suppose you have n coin flips and you want to 
calculate the joint distribution P(C1, …, Cn)

• If the coin flips are not independent, you need 2n

values in the table

• If the coin flips are independent, then





n

i
in CPCCP

1
1 )(),...,( Each P(Ci) table has 2 

entries and there are n of 
them for a total of 2n values 
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Independence

• Independence is powerful!

• It required extra domain knowledge. A 
different kind of knowledge than numerical 
probabilities.  It needed an understanding of 
causation.
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Conditional Independence

Are Toothache and Catch independent?
No – if probe catches in the tooth, it likely has a cavity which 
causes the toothache.

But given the presence or absence of the cavity, they are 
independent (since they are directly caused by the cavity but 
don’t have a direct effect on each other)

Conditional independence:
P( Toothache = true, Catch = catch | Cavity ) =
P( Toothache = true | Cavity ) * P( Catch = true | Cavity )
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Conditional Independence

General form:

)|()|()|,( CBCACBA PPP 

)|(),|( CACBA PP 
Or equivalently:

)|(),|( CBCAB PP 

and

How to think about conditional independence:

In P(A | B, C) = P(A | C): if knowing C tells me everything 
about A, I don’t gain anything by knowing B
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Conditional Independence

P(Toothache, Catch, Cavity)

= P(Toothache, Catch | Cavity) P(Cavity)

= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

7 independent values in table 
(have to sum to 1)

2 independent 
values in table

2 independent 
values in table

1 independent 
value in table

Conditional independence permits probabilistic systems to scale up!


