Monte Carlo Artificial Intelligence
Probability |

Random Variables

» The basic element of probability is the
random variable

e Think of the random variable as an event
with some degree of uncertainty as to
whether that event occurs

 Random variables have a domain of values
it can take on




Random Variables

Example:

* ProfLate is a random variable for whether
your prof will be late to class or not

e The domain of ProfLate is {true, false}

— ProfLate = true: proposition that prof
will be late to class

— ProfLate = false: proposition that prof
will not be late to class

Random Variables

Example:

* ProfLate is a random variable for whether
your prof will be late to class or not

* The domain of ProfLate is <true, false>

— ProfLate = true: proposition that prof
will be late to class

\_ You can assign some degree of
- P(ofLate - belief to this proposition eg.
will not be P(ProfLate = true) = 0.9




Random Variables

Example:

* ProfLate is a random variable for whether
your prof will be late to class or not

* The domain of ProfLate is <true, false>

— ProfLate = true: proposition that prof
will be late to class

— ProfLate = false: proposition that prof
will not be late to class

And to this one eg.
P(ProfLate = false) = 0.1

Random Variables

» We will refer to random variables with
capitalized names eg. X, Y, ProfLate

o We will refer to names of values with lower
case names eg. X, y, proflate

» This means you may see a statement like
ProfLate = proflate

— This means the random variable ProfLate takes
the value proflate (which can be true or false)

» Shorthand notation:

ProfLate = true is the same as proflate and
ProfLate = false is the same as —proflate




Random Variables

Boolean random variables

» Take the values true or false

» Eg. Let A be a Boolean random variable
- P(A =false) =0.9
- P(A=true)=0.1

Random Variables

Discrete Random Variables

» Allowed to taken on a finite number of
values eg.
— P(DrinkSize=Small) = 0.1
— P(DrinkSize=Medium) = 0.2
— P(DrinkSize=Large) = 0.7

AN

Values must be 1) Mutually
exhaustive and 2) Exclusive




Random Variables

Continuous Random Variables
» Can take values from the real numbers
 eg. They can take values from [0, 1]

» Note: We will primarily be dealing with
discrete random variables

Probability Density Functions

Discrete random variables have probability distributions:

1.0
a -a

Continuous random variables have probability density
functions eg:

P(A)

P(X)
P(X)




Probability

We will write P(A=true) as “the fraction of
possible worlds in which A is true”

We will sometimes talk about the
probabilities distribution of a random
variable

Instead of writing

— P(A=false) = 0.25

— P(A=true) = 0.75

We will write P(A) = (0.25, 0.75)

Note the boldface!
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Probability

Event space of
all possible

Worlds in which P(a) = Area of
worlds . .
~~ Als true reddish oval

Its areais 1~

Worlds in which A is false
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Probability

Axioms of Probability

e 0<P(a)<1

o P(true) =1

o P(false) =0

 P(@ORb)=P(a) +P(b) - P(@aAND b)

T I

This OR is equivalenttoset s AND is equivalent to set
union . intersection (). I’ll often
write it as P(a, b)
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Conditional Probability

» We can consider P(A) as the unconditional
or prior probability
— eg. P(ProfLate =true) = 1.0

o It is the probability of event A in the
absence of any other information

* If we get new information that affects A, we
can reason with the conditional probability
of A given the new information.
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Conditional Probability

* P(A | B) = Fraction of worlds in which B is
true that also have A true

» Read this as: “Probability of A conditioned
on B”

* Prior probability P(A) is a special case of the
conditional probability P(A | ) conditioned on
no evidence
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Conditional Probability

H = “Have a headache”

F=“Coming down with
Flu”

P(H) = 1/10
P(A) = 1/40
P(H| A = 1/2

“Headaches are rare and flu
is rarer, but if you're coming

down with ‘flu there’s a 50-
50 chance you'll have a
headache.”
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Conditional Probability

P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache

F

_ #worlds with flu and headache
- #worlds with flu

_ Areaof "Hand F"region

~ Areaof "F"region

_P(H,F)

H = “Have a headache” P(F)
F = “Coming down with
Flu”

P(H) = 1/10
P(A = 1/40

P(H| A = 1/2 Y

Conditional Probability

P(A,B)

P(A|B) = P(B)

Corollary: The Chain Rule (aka The Product Rule)

P(A,B)=P(A|B)P(B)
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Joint Probability Distribution

* P(A, B) is called the joint probability
distribution of A and B

o It captures the probabilities of all
combinations of the values of a set of
random variables
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Joint Probability Distribution

» For example, if A and B are Boolean
random variables, then P(A,B) could be
specified as:

P(A=false, B=false) [0.25
P(A=false, B=true) |0.25
P(A=true, B=false) |0.25
P(A=true, B=true) 0.25

20

10



Joint Probability Distribution

* Now suppose we have the random variables:
— Drink = {Coke, Sprite}
— Size = {Small, Medium, Large}

 The joint probability distribution for P(Drink,Size)
could look like:

P(Drink=Coke, Size=Small) 0.1
P(Drink=Coke, Size=Medium) 0.1
P(Drink=Coke, Size=Large) 0.3

P(Drink=Sprite, Size=Small) 0.1
P(Drink=Sprite, Size=Medium) |0.2
P(Drink=Sprite, Size=Large) 0.2
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Joint Probability Distribution

Suppose you have the complete set of
random variables used to describe the world

A joint probability distribution that covers
this complete set is called the full joint
probability distribution

Is a complete specification of one’s
uncertainty about the world in question

Very powerful: Can be used to answer any
probabilistic query
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Joint Probability Distribution

Toothache | Cavity | Catch | P(Toothache, Cavity, Catch)
false false |false |0.576
false false |true [0.144
false true false |0.008
false true true [0.072
true false |false |0.064
true false |true |0.016
true true false |0.012
true true true |0.108

“Catch”
means the
dentist’s
probe
catches in
my teeth

-

This cell means P(Toothache = true, Cavity = true, Catch = true) = 0.108 ‘ 2

Joint Probability Distribution

Toothache | Cavity | Catch | P(Toothache, Cavity, Catch)
false false |false |0.576
false false |true [0.144
false true false |0.008
false true true [0.072
true false |false |0.064
true false |true |0.016
true true false |0.012
true true true |0.108

T

The probabilities in the last column sum to 1
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Joint Probability Distribution

From the full joint probability distribution, we can calculate any
probability involving the three random variables in this world

eg.
P(Toothache = true OR Cavity = true) =

P( Toothache=true, Cavity=false, Catch=false ) +
P( Toothache=true, Cavity=false, Catch=true ) +
P( Toothache=false, Cavity=true, Catch=false ) +
P( Toothache=false, Cavity=true, Catch=true ) +
P( Toothache=true, Cavity=true, Catch=false ) +
P( Toothache=true, Cavity = true, Catch=true ) +

=0.064 + 0.016 + 0.008 + 0.072 + 0.012 + 0.108 = 0.28

Marginalization

We can even calculate marginal probabilities
(the probability distribution over a subset of the
variables) eg:

P(Toothache=true, Cavity=true ) =
P(Toothache=true, Cavity=true, Catch=true) +
P(Toothache=true, Cavity=true, Catch=false )
=0.108 + 0.012 =0.12
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Marginalization

Or even:

P( Cavity=true ) =

P( Toothache=true, Cavity=true, Catch=true) +
P( Toothache=true, Cavity=true, Catch=false )
P( Toothache=false, Cavity=true, Catch=true) +
P(Toothache=false, Cavity=true, Catch=false )

=0.108 + 0.012 + 0.072 + 0.008 = 0.2
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Marginalization

The general marginalization rule for any sets
of variables Y and Z:

PY)=DP(Y.2) |
z —_ z is over all possible

combinations of values of Z
(remember Z is a set)

or

P(Y)=2 P(Y[2)P(2)

28
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Normalization

P(Cavity = true | Toothache = true)

_ P(Cavity =true, Toothache = true)

- P(Toothache =true)
0.108+0.012

= = .6
0.108+0.012+0.016+0.064 Note that 1/P(Toothache=true)

remains constant in the two
P(Cavity = false | Toothache =true) | equations.

_ P(Cavity = false, Toothache = true)
- P(Toothache = true)

~ 0.016 +0.064 ~

© 0.108+0.012+0.016+0.064

Normalization

* In fact, 1/P(Toothache=true) can be viewed as a
normalization constant for P(Cavity =true|
Toothache=true), ensuring it adds up to 1

* We will refer to normalization constants with the
symbol a

P (Cavity =true | Toothache = true)
= aP (Cavity = true, Toothache = true)

30
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Inference

» Suppose you get a query such as
P(Cavity = true | Toothache = true)

Toothache is called the evidence
variable because we observe it. More
generally, it’s a set of variables.

Cavity is called the query variable (we’ll
assume it’s a single variable for now)

There are also unobserved (aka hidden) variables like Catch

31

Inference

» We will write the query as P(X | e)

This is a probability distribution
hence the boldface

X = Query variable (a single variable for now)
E = Set of evidence variables
e = the set of observed values for the evidence variables

Y = Unobserved variables

32
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Inference

We will write the query as P(X | e)
P(X|e)=aP(X,e)=a) P(X,ey)
y

Summation is over all possible /'
combinations of values of the
unobserved variables Y

X = Query variable (a single variable for now)
E = Set of evidence variables
e = the set of observed values for the evidence variables

Y = Unobserved variables

Inference
P(X|e)=aP(X,e)=a) P(X,e,y)

Computing P(X | e) involves going through all
possible entries of the full joint probability
distribution and adding up probabilities with X=x;,
E=e, and Y=y

Suppose you have a domain with n Boolean
variables. What is the space and time complexity of
computing P(X | e)?

34
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Independence

» How do you avoid the exponential space
and time complexity of inference?

» Use independence (aka factoring)
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Independence

Suppose the full joint distribution now
consists of four variables:

Toothache = {true, false}

Catch = {true, false}

Cavity = {true, false}

Weather = {sunny, rain, cloudy, snow}
There are now 32 entries in the full joint
distribution table

36
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Independence

Does the weather influence one’s dental problems?

Is P(Weather=cloudy | Toothache = toothache, Catch
= catch, Cavity = cavity) = P(Weather=cloudy)?

In other words, is Weather independent of
Toothache, Catch and Cavity?
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Independence

We say that variables X and Y are
independent if any of the following hold:
(note that they are all equivalent)

P(X|Y)=P(X) or
PY|X)=P(Y) or
P(X,Y)=P(X)P(Y)

38
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Why is independence useful?

Assume that Weather is independent of toothache, catch,
cavity ie.

P(Weather=cloudy | Toothache = toothache, Catch = catch,
Cavity = cavity) = P(Weather=cloudy)

Now we can calculate:

P(Weather=cloudy, Toothache = toothache, Catch = catch,
Cavity = cavity)

= P(Weather=cloudy | Toothache = toothache, Catch = catch,
Cavity = cavity) * P(toothache, catch, cavity)

= P(Weather=cloudy) * P(Toothache = toothache, Catch =
catch, Cavity = cavity)
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Why is independence useful?

P(Weather=cloudy, Toothache = toothache, Catch = catch, Cavity =
cavity)

= P(Weather=cloudy) * P(Toothache = toothache, Catch = catch, Cavity

= cavit
\ , y) »
x N
This table has 4 values This table has 8 values

* You now need to store 12 values to calculate P(Weather,
Toothache, Catch, Cavity)

« If Weather was not independent of Toothache, Catch, and
Cavity then you would have needed 32 values
40
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Independence

Another example:

» Suppose you have n coin flips and you want to
calculate the joint distribution P(C,, ..., C,)

* If the coin flips are not independent, you need 2"
values in the table

« If the coin flips are independent, then

entries and there are n of
them for a total of 2n values

P(C,,...C,) = 11[ P(Ci)ﬁ Each P(C;) table has 2
i-1

41

Independence

 Independence is powerful!

o It required extra domain knowledge. A
different kind of knowledge than numerical
probabilities. It needed an understanding of
causation.

42
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Conditional Independence

Are Toothache and Catch independent?

No - if probe catches in the tooth, it likely has a cavity which
causes the toothache.

But given the presence or absence of the cavity, they are
independent (since they are directly caused by the cavity but
don’t have a direct effect on each other)

Conditional independence:

P( Toothache = true, Catch = catch | Cavity ) =
P( Toothache = true | Cavity ) * P( Catch = true | Cavity )
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Conditional Independence

General form:
P(A,B|C)=P(A|C)P(B|C)
Or equivalently:
P(A|B,C)=P(A|C) and
P(B|AC)=P(B|C)

How to think about conditional independence:
In P(A|B, C) =P(A | C): if knowing C tells me everything

about A, I don’t gain anything by knowing B

44
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Conditional Independence

7 independent values in table

__— |(havetosumto 1)

N
s N
P(Toothache, Catch, Cavity)
= P(Toothache, Catch | Cavity) P(Cavity)
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)
_ N\

J\ Y,
' Y
2 independent 2 independent | | 1 independent
values in table values in table | | value in table

Conditional independence permits probabilistic systems to scale up!

45
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