Monte-Carlo Planning: Policy Improvement

Alan Fern

Monte-Carlo Planning Outline

- Single State Case (multi-armed bandits)
 - A basic tool for other algorithms
- Monte-Carlo Policy Improvement
 - Policy rollout
 - Policy Switching
- Monte-Carlo Tree Search
 - Sparse Sampling
 - UCT and variants

Policy Improvement via Monte-Carlo

- Now consider a very large multi-state MDP.
- Suppose we have a simulator and a non-optimal policy
 - E.g. policy could be a standard heuristic or based on intuition
- Can we somehow compute an improved policy?

Recall: Policy Improvement Theorem

$$Q_{\pi}(s,a) = R(s) + \beta \sum_{s'} T(s,a,s') \cdot V_{\pi}(s')$$

- The Q-value function of a policy gives expected discounted future reward of starting in state s, taking action a, and then following policy π thereafter
- Define: $\pi'(s) = \arg \max_a Q_{\pi}(s, a)$
- Theorem [Howard, 1960]: For any non-optimal policy π the policy π ' a strict improvement over π .
- Computing π amounts to finding the action that maximizes the Q-function of π
 - Can we use the bandit idea to solve this?

- Idea: define a stochastic function SimQ(s,a,π) that we can implement and whose expected value is Q_π(s,a)
- Then use Bandit algorithm to select (approx) best action

How to implement SimQ?

Q-value Estimation

- SimQ might be implemented by simulating the execution of action a in state s and then following π thereafter
 - But for infinite horizon problems this would never finish
 - So we will approximate via finite horizon
- The *h*-horizon Q-function Q_π(s,a,h) is defined as: expected total discounted reward of starting in state s, taking action a, and then following policy π for h-1 steps
- The approximation error decreases exponentially fast in *h*

$$Q_{\pi}(s,a) - Q_{\pi}(s,a,h) \Big| \le \beta^h V_{\max}$$

- Refined Idea: define a stochastic function SimQ(s,a,π,h) that we can implement, whose expected value is Q_π(s,a,h)
- Use Bandit algorithm to select (approx) best action

How to implement SimQ?

- Simply simulate taking a in s and following policy for h-1 steps, returning discounted sum of rewards
- Expected value of SimQ(s,a, π ,h) is $Q_{\pi}(s,a,h)$ which can be made arbitrarily close to $Q_{\pi}(s,a)$ by increasing h

- Refined Idea: define a stochastic function SimQ(s,a,π,h) that we can implement, whose expected value is Q_π(s,a,h)
- Use Bandit algorithm to select (approx) best action

Which bandit objective/algorithm to use?

Traditional Approach: Policy Rollout

Executing Rollout in Real World

- For each action w calls to SimQ, each using h sim calls
- Total of khw calls to the simulator

Uniform Policy Rollout: PAC Guarantee

- Let a* be the action that maximizes the true Q-funciton $Q_{\pi}(s,a)$.
- Let a' be the action returned by UniformRollout[π ,h,w](s).
- Putting the PAC bandit result together with the finite horizon approximation we can derive the following:

If
$$w \ge \left(\frac{R_{\max}}{\varepsilon}\right)^2 \ln \frac{k}{\delta}$$
 then with probability at least $1 - \delta$
 $|Q_{\pi}(s, a^*) - Q_{\pi}(s, a')| \le \varepsilon + \beta^h V_{\max}$

But does this guarantee that the value of UniformRollout[π ,h,w](s) will be close to the value of π '?

14

Policy Rollout: Quality

• How good is UniformRollout[π ,h,w] compared to π '?

 Bad News. In general for a fixed h and w there is always an MDP such that the quality of the rollout policy is arbitrarily worse than π'.

- The example MDP is somewhat involved, but shows that even small error in Q-value estimates can lead to large performance gaps compared to π'
 But this result is guite pethological
 - But this result is quite pathological

Policy Rollout: Quality

- How good is UniformRollout[π ,h,w] compared to π '?
- Good News. If we make an assumption about the MDP, then it is possible to select h and w so that the rollout quality is close to π '.
 - This is a bit involved.
 - Assume a lower bound on the difference between the best Q-value and the second best Q-value
- More Good News. It is possible to select h and w so that Rollout[π,h,w] is (approximately) no worse than π for any MDP
 - So at least rollout won't hurt compared to the base policy
 - At the same time it has the potential to significantly help

Non-Uniform Policy Rollout

Should we consider minimizing cumulative regret?

No! We really only care about finding an (approx) best arm.

Non-Uniform Policy Rollout

PAC Setting: use MedianElimination

(parameterized by ϵ and δ instead of w)

- Often we are given a budget on number of samples (i.e. time per decision).
- MedianElimination not applicable.

Non-Uniform Policy Rollout

Simple Regret: use *c*-Greedy

(parameterized by budget n on # of pulls)

- Call this *ε*-Rollout[π,h,n]
- n is number of samples per step
- For
 e = 0.5 we might
 expect it to be better than
 UniformRollout for same
 # of total samples.

Multi-Stage Rollout

- In what follows we will use the notation Rollout[π] to refer to either UniformRollout[π,h,w] or ε-Rollout[π,h,n].
- A single call to Rollout[π](s) approximates one iteration of policy iteration inialized at policy π
 - But only computes the action for state s rather than all states (as done by full policy iteration)!

- We can use more computation time to approximate multiple iterations of policy iteration via nesting calls to Rollout
- Gives a way to use more time in order to improve performance

Multi-Stage Rollout

- Two stage: compute rollout policy of "rollout policy of π "
- Requires (khw)² calls to the simulator for 2 stages
- In general exponential in the number of stages

Rollout Summary

- We often are able to write simple, mediocre policies
 - Network routing policy
 - Policy for card game of Hearts
 - Policy for game of Backgammon
 - Solitaire playing policy
- Policy rollout is a general and easy way to improve upon such policies given a simulator
- Often observe substantial improvement, e.g.
 - Compiler instruction scheduling
 - Backgammon
 - Network routing
 - Combinatorial optimization
 - Game of GO
 - Solitaire

Example: Rollout for Solitaire [Yan et al. NIPS'04]

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec
2 rollout	47.6%	7.13 sec
3 rollout	56.83%	1.5 min
4 rollout	60.51%	18 min
5 rollout	70.20%	1 hour 45 min

• Multiple levels of rollout can payoff but is expensive

Monte-Carlo Planning Outline

- Single State Case (multi-armed bandits)
 - A basic tool for other algorithms
- Monte-Carlo Policy Improvement
 - Policy rollout
 - Policy Switching
- Monte-Carlo Tree Search
 - Sparse Sampling
 - UCT and variants

Another Useful Technique: Policy Switching

- Sometimes policy rollout can be too expensive when the number of actions is large (time scales linearly with number of actions)
- Sometimes we have multiple base policies and it is hard to pick just one to use for rollout.

Policy switching helps deal with both of these issues.

Another Useful Technique: Policy Switching

- Suppose you have a set of base policies { π_1 , π_2 ,..., π_M }
- Also suppose that the best policy to use can depend on the specific state of the system and we don't know how to select.

 Policy switching is a simple way to select which policy to use at a given step via a simulator

Another Useful Technique: Policy Switching

- The stochastic function Sim(s,π,h) simply samples the h-horizon value of π starting in state s
- Implement by simply simulating π starting in s for h steps and returning discounted total reward
- Use Bandit algorithm to select best policy and then select action chosen by that policy

Uniform Policy Switching

UniformPolicySwitch[{ $\pi_1, \pi_2, ..., \pi_M$ },h,w](s)

- **1.** For each π_i run Sim(s, π_i ,h) **w** times
- 2. Let i* be index of policy with best average result
- 3. Return action $\pi_{i^*}(s)$

Executing Policy Switching in Real World

Uniform Policy Switching: Simulator Calls

- For each policy use w calls to Sim, each using h simulator calls
- Total of Mhw calls to the simulator
- Does not depend on number of actions!

ϵ-Greedy Policy Switching

 Similar to rollout we can have a non-uniform version that takes a total number of trajectories n as an argument

 ϵ -PolicySwitch[{ π_1, \ldots, π_M },h,n]

Use ϵ -Greedy as the bandit algorithm for n pulls and return best arm/policy.

Policy Switching: Quality

Let π_{ps} denote the ideal switching policy
 Always pick the best policy index at any state

Theorem: For any state s, $\max_{i} V_{\pi_i}(s) \leq V_{\pi_{ps}}(s)$.

- The value of the switching policy is at least as good as the best single policy in the set
 - It will often perform better than any single policy in set.
 - For non-ideal case, were bandit algorithm only picks approximately the best arm we can add an error term to the bound.

Proof

Theorem: For any state s, $\max_{i} V_{\pi_i}(s) \leq V_{\pi_{ps}}(s)$.

We'll use the following property.

Proposition: For any policy π and value function V, if $V \leq B_{\pi}[V]$, then $V \leq V_{\pi}$

Recall $B_{\pi}[V](s) = R(s) + \sum_{s'} T(s, \pi(s), s') \cdot V(s')$ is the restricted Bellman backup.

So all we need to do is prove that $\max_{i} V_{\pi_i} \leq B_{\pi_{ps}} \left[\max_{i} V_{\pi_i} \right]$ since this will imply that $\max_{i} V_{\pi_i} \leq V_{\pi_{ps}}$ as desired. **Proof** (to simply notation and without loss of generality, assume rewards only depend on state and are deterministic)

Prove that $\max_{i} V_{\pi_i} \leq B_{\pi_{ps}} \left[\max_{i} V_{\pi_i} \right]$ Let i^* be the index of the best policy in state s.

$$B_{\pi_{ps}}\left[\max_{i} V_{\pi_{i}}\right](s) = R(s) + \sum_{s'} T(s, \pi_{ps}(s), s') \cdot \max_{i} V_{\pi_{i}}(s')$$

$$\geq R(s) + \max_{i} \sum_{s'} T(s, \pi_{i^{*}}(s), s') \cdot V_{\pi_{i}}(s')$$

$$= \max_{i} \left[R(s) + \sum_{s'} T(s, \pi_{i^{*}}(s), s') \cdot V_{\pi_{i}}(s') \right]$$

$$\geq \max_{i} \left[R(s) + \sum_{s'} T(s, \pi_{i}(s), s') \cdot V_{\pi_{i}}(s') \right]$$

$$= \max_{i} V_{\pi_{i}}(s)$$

Policy Switching Summary

- Easy way to produce an improved policy from a set of existing policies.
 - Will not do any worse than the best policy in your set.
- Complexity does not depend on number of actions.
 - So can be practical even when action space is huge, unlike policy rollout.

- Can combine with rollout for further improvement
 - Just apply rollout to the switching policy.