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Monte-Carlo Planning Outline 

Single State Case (multi-armed bandits) 

A basic tool for other algorithms 

Monte-Carlo Policy Improvement 

Policy rollout 

Policy Switching 

Monte-Carlo Tree Search 

Sparse Sampling 

UCT and variants 



Policy Improvement via Monte-Carlo 

 Now consider a very large multi-state MDP. 

 Suppose we have a simulator and a non-optimal policy  

 E.g. policy could be a standard heuristic or based on intuition 

 Can we somehow compute an improved policy? 
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Recall: Policy Improvement Theorem 

 The Q-value function of a policy gives expected discounted 
future reward of starting in state s, taking action a, and then 
following policy π thereafter 

 

 Define:  

 

 Theorem [Howard, 1960]: For any non-optimal policy π the 
policy π’ a strict improvement over π.  

 

 Computing π’ amounts to finding the action that maximizes 
the Q-function of π 
 Can we use the bandit idea to solve this? 
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Policy Improvement via Bandits 
s 

a1 a2 ak 

SimQ(s,a1,π) SimQ(s,a2,π) SimQ(s,ak,π) 

… 

 Idea: define a stochastic function SimQ(s,a,π) that we can 
implement and whose expected value is Qπ(s,a) 
 

 Then use Bandit algorithm to select (approx) best action 

How to implement SimQ? 



6 

Q-value Estimation 
 

 SimQ might be implemented by simulating the execution of 
action a in state s and then following π thereafter 
 But for infinite horizon problems this would never finish 

 So we will approximate via finite horizon 

 

 The h-horizon Q-function Qπ(s,a,h) is defined as:  
expected total discounted reward of starting in state s, taking 
action a, and then following policy π for h-1 steps 

 

 The approximation error decreases exponentially fast in h 
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Policy Improvement via Bandits 
s 

a1 a2 ak 

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h) 

… 

 Refined Idea: define a stochastic function SimQ(s,a,π,h) 
that we can implement, whose expected value is Qπ(s,a,h) 

 

 Use Bandit algorithm to select (approx) best action 

How to implement SimQ? 
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Policy Improvement via Bandits 

  SimQ(s,a,π,h)  

            r = R(s,a)            simulate a in s 

         s = T(s,a)                  

            for i = 1 to h-1 

             r = r + βi R(s, π(s))         simulate h-1 steps  

                 s = T(s, π(s))                  of policy 

            Return r 

 

 Simply simulate taking a in s and following policy for h-1 
steps, returning discounted sum of rewards 

 Expected value of SimQ(s,a,π,h) is Qπ(s,a,h) which can  

be made arbitrarily close to Qπ(s,a) by increasing h  
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Policy Improvement via Bandits 

  SimQ(s,a,π,h)  

            r = R(s,a)            simulate a in s 

         s = T(s,a)                  

            for i = 1 to h-1 

             r = r + βi R(s, π(s))         simulate h-1 steps  

                 s = T(s, π(s))                  of policy 

            Return r 

 

s …
 

… 

… 

… 

a1 

a2 

Trajectory under  

Sum discount rewards = SimQ(s,a1,π,h) 

ak 

Sum discount rewards = SimQ(s,a2,π,h) 

Sum discount rewards = SimQ(s,ak,π,h) 
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Policy Improvement via Bandits 
s 

a1 a2 ak 

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h) 

… 

 Refined Idea: define a stochastic function SimQ(s,a,π,h) 
that we can implement, whose expected value is Qπ(s,a,h) 

 

 Use Bandit algorithm to select (approx) best action 

Which bandit objective/algorithm to use? 
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Traditional Approach: Policy Rollout  

UniformRollout[π,h,w](s)  

1. For each ai run SimQ(s,ai,π,h) w times  

2. Return action with best average of SimQ results 

s 

a1 a2 
ak 

… 

q11  q12 … q1w q21  q22 … q2w qk1  qk2 … qkw 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

SimQ(s,ai,π,h) trajectories 

Each simulates taking  

action ai  then following  

π for h-1 steps.  

 

Samples of SimQ(s,ai,π,h)  

UniformBandit 

for PAC objective 
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Executing Rollout in Real World 

… … s 

a1    a2 
    ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

a1    a2 
     ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

a2 ak 

run policy rollout run policy rollout 

Real world 

state/action  

sequence 

Simulated  

experience 



13 

Uniform Policy Rollout:  

# of Simulator Calls 

• For each action w calls to SimQ, each using h sim calls 

• Total of khw calls to the simulator 

a1 a2 
ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

SimQ(s,ai,π,h) trajectories 

Each simulates taking  

action ai  then following  

π for h-1 steps.  

 

s 
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Uniform Policy Rollout: PAC Guarantee 
 

 Let a* be the action that maximizes the true Q-funciton 
Qπ(s,a). 

 Let a’ be the action returned by UniformRollout[π,h,w](s).   

 Putting the PAC bandit result together with the finite horizon 
approximation we can derive the following: 

If                                then with probability at least  
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But does this guarantee that the value of  

UniformRollout[π,h,w](s) will be close to the value of π’ ?  
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Policy Rollout: Quality 

How good is UniformRollout[π,h,w] compared to π’? 

 

Bad News. In general for a fixed h and w there is 
always an MDP such that the quality of the rollout 
policy is arbitrarily worse than π’. 

 

The example MDP is somewhat involved, but 
shows that even small error in Q-value estimates 
can lead to large performance gaps compared to π’ 
But this result is quite pathological 
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Policy Rollout: Quality 

How good is UniformRollout[π,h,w] compared to π’? 

Good News. If we make an assumption about the 
MDP, then it is possible to select h and w so that the 
rollout quality is close to π’.  
This is a bit involved. 

Assume a lower bound on the difference between the 
best Q-value and the second best Q-value  

More Good News. It is possible to select h and w 
so that Rollout[π,h,w] is (approximately) no worse 
than π for any MDP 
So at least rollout won’t hurt compared to the base policy 

At the same time it has the potential to significantly help 
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Non-Uniform Policy Rollout 

s 

a1 a2 
ak 

… 

q11  q12 … q1u q21  q22 … q2v qk1 

…
 

…
 

…
 

…
 

…
 

No! We really only care  

about finding an (approx) 

best arm.  

Should we consider minimizing cumulative 

regret? 
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Non-Uniform Policy Rollout 

PAC Setting: use MedianElimination   
 
(parameterized by 𝜖 and 𝛿 instead of w) 

 

 Often we are given a  
budget on number of  
samples (i.e. time per 
decision).  

 MedianElimination  
not applicable. 

    

s 

a1 a2 
ak 

… 

q11  q12 … q1u q21  q22 … q2v qk1 

…
 

…
 

…
 

…
 

…
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Non-Uniform Policy Rollout 

   Simple Regret: use 𝝐-Greedy  
 
(parameterized by budget n on # of pulls) 

s 

a1 a2 
ak 

… 

q11  q12 … q1u q21  q22 … q2v qk1 

…
 

…
 

…
 

…
 

…
 

• Call this 𝝐-Rollout[π,h,n] 

• n is number of samples 

per step 

• For 𝜖 = 0.5 we might  

expect it to be better than  

UniformRollout for same 

# of total samples. 
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Multi-Stage Rollout 
 

 In what follows we will use the notation Rollout[π] to refer to 
either UniformRollout[π,h,w] or 𝜖-Rollout[π,h,n]. 

 

 A single call to Rollout[π](s) approximates one iteration of 
policy iteration inialized at policy π 
 But only computes the action for state s rather than all states (as done 

by full policy iteration)! 

 

 We can use more computation time to approximate multiple 
iterations of policy iteration via nesting calls to Rollout 

 

 Gives a way to use more time in order to improve 
performance 
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Multi-Stage Rollout 

a1 a2 
ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Trajectories of  

SimQ(s,ai,Rollout[π],h)  

 

Each step requires  

khw simulator calls 

for Rollout policy 

• Two stage: compute rollout policy of “rollout policy of π” 

• Requires (khw)2 calls to the simulator for 2 stages 

• In general exponential in the number of stages 

s 
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Rollout Summary 
We often are able to write simple, mediocre policies 

Network routing policy 

Policy for card game of Hearts 

Policy for game of Backgammon 

Solitaire playing policy 

Policy rollout is a general and easy way to improve 
upon such policies given a simulator 

Often observe substantial improvement, e.g. 
Compiler instruction scheduling 

Backgammon 

Network routing 

Combinatorial optimization 

Game of GO 

Solitaire 
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Example: Rollout for Solitaire [Yan et al. NIPS’04] 

 Multiple levels of rollout can payoff but is expensive 

     

Player Success Rate Time/Game 

Human Expert 36.6% 20 min 

(naïve) Base 

Policy 

13.05% 0.021 sec 

1 rollout 31.20% 0.67 sec 

2 rollout 47.6% 7.13 sec 

3 rollout 56.83% 1.5 min 

4 rollout 60.51% 18 min 

5 rollout 70.20% 1 hour 45 min 
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Monte-Carlo Planning Outline 

Single State Case (multi-armed bandits) 

A basic tool for other algorithms 

Monte-Carlo Policy Improvement 

Policy rollout 

Policy Switching 

Monte-Carlo Tree Search 

Sparse Sampling 

UCT and variants 
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Another Useful Technique:  

Policy Switching 

 Sometimes policy rollout can be too expensive when the 
number of actions is large (time scales linearly with 
number of actions) 

 

 Sometimes we have multiple base policies and it is hard to 
pick just one to use for rollout.  

 

 Policy switching helps deal with both of these issues. 
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Another Useful Technique:  

Policy Switching 

 

 Suppose you have a set of base policies {π1, π2,…, πM} 

 

 Also suppose that the best policy to use can depend on 
the specific state of the system and we don’t know how to 
select. 

 

 Policy switching is a simple way to select which policy to 
use at a given step via a simulator 
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Another Useful Technique:  

Policy Switching 
s 

Sim(s,π1,h) Sim(s,π2,h) Sim(s,πM,h) 

… 

 The stochastic function Sim(s,π,h) simply samples the  
h-horizon value of π starting in state s 

 Implement by simply simulating π starting in s for h steps 
and returning discounted total reward 

 Use Bandit algorithm to select best policy and then select 
action chosen by that policy 

π 1 π 2 

πM 
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Uniform Policy Switching 

UniformPolicySwitch[{π1, π2,…, πM},h,w](s)  

1. For each πi  run Sim(s,πi,h) w times  

2. Let i* be index of policy with best average result 

3. Return action πi*(s) 

s 
π 1 π 2 

πM 

… 

v11  v12 … v1w v21  v22 … v2w vM1  vM2 … vMw 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Sim(s,πi,h) trajectories 

Each simulates following  

πi for h steps.  

 

Discounted cumulative  

rewards 
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Executing Policy Switching in Real World 

… … s 

𝜋1    𝜋2 
    𝜋k 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

𝜋1    𝜋2 
      𝜋k 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

𝜋2(s) 𝜋k(s’) 

run policy rollout run policy rollout 

Real world 

state/action  

sequence 

Simulated  

experience 
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Uniform Policy Switching: Simulator Calls 

• For each policy use w calls to Sim, each using h simulator calls 

• Total of Mhw calls to the simulator 

• Does not depend on number of actions! 

s 
π 1 π 2 

πM 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Sim(s,πi,h) trajectories 

Each simulates taking  

following πi for h steps.  
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𝝐-Greedy Policy Switching 

s 
π 1 π 2 

πM 

… 

v11  v12 … v1d v21   vM1  vM2 

…
 

…
 

Similar to rollout we can have a non-uniform 

version that takes a total number of 

trajectories n as an argument 

𝜖-PolicySwitch[{π1,…,πM},h,n] 
 
Use 𝜖-Greedy as the bandit 
algorithm for n pulls and return 
best arm/policy.  
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Policy Switching: Quality 

Let  𝜋𝑝𝑠 denote the ideal switching policy  

Always pick the best policy index at any state  

 

 

 

The value of the switching policy is at least as 
good as the best single policy in the set 
 It will often perform better than any single policy in set. 

For non-ideal case, were bandit algorithm only picks 
approximately the best arm we can add an error term to 
the bound. 

 

Theorem: For any state s,  max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 . 
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Proof 

 

 

 
We’ll use the following property. 
 

Proposition: For any policy 𝜋 and value function 𝑉,  
                            if 𝑉 ≤ 𝐵𝜋 𝑉 , then 𝑉 ≤ 𝑉𝜋 

 

Recall  𝐵𝜋 𝑉 (𝑠) = 𝑅 𝑠 +  𝑇 𝑠, 𝜋 𝑠 , 𝑠
′ ⋅ 𝑉(𝑠′)𝑠′   

is the restricted Bellman backup. 
 

So all we need to do is prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖  

since this will imply that max
𝑖
𝑉𝜋𝑖 ≤ 𝑉𝜋𝑝𝑠 as desired. 

 

 

Theorem: For any state s, max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 . 
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Proof (to simply notation and without loss of generality, 

assume rewards only depend on state and are deterministic) 

  

 

 

Prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖   

Let 𝑖∗ be the index of the best policy in state s.  

 

𝐵𝜋𝑝𝑠 max𝑖
𝑉𝜋𝑖 (𝑠) = 𝑅 𝑠 +  𝑇 𝑠, 𝜋𝑝𝑠 𝑠 , 𝑠

′ ⋅ max
𝑖
𝑉𝜋𝑖(𝑠

′)𝑠′   

                             ≥  𝑅 𝑠 + max
𝑖
 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 

                            = max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 

                            ≥ max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 

                            = max
𝑖
𝑉𝜋𝑖 𝑠  

                          

                        



35 

Policy Switching Summary 

Easy way to produce an improved policy from a 
set of existing policies.  
Will not do any worse than the best policy in your set. 

 

Complexity does not depend on number of 
actions.  
So can be practical even when action space is huge, 

unlike policy rollout.  

 

Can combine with rollout for further improvement 
Just apply rollout to the switching policy. 

 

 


