
1

Monte-Carlo Planning:

Policy Improvement

Alan Fern

2

Monte-Carlo Planning Outline

Single State Case (multi-armed bandits)

A basic tool for other algorithms

Monte-Carlo Policy Improvement

Policy rollout

Policy Switching

Monte-Carlo Tree Search

Sparse Sampling

UCT and variants

Policy Improvement via Monte-Carlo

 Now consider a very large multi-state MDP.

 Suppose we have a simulator and a non-optimal policy

 E.g. policy could be a standard heuristic or based on intuition

 Can we somehow compute an improved policy?

3

World

Simulator

+

Base Policy
Real

World

action

State + reward

4

Recall: Policy Improvement Theorem

 The Q-value function of a policy gives expected discounted
future reward of starting in state s, taking action a, and then
following policy π thereafter

 Define:

 Theorem [Howard, 1960]: For any non-optimal policy π the
policy π’ a strict improvement over π.

 Computing π’ amounts to finding the action that maximizes
the Q-function of π
 Can we use the bandit idea to solve this?

),(maxarg)(' asQs a

)'(
'

)',,(β)(),(s
s

VsasTsRasQ

5

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π) SimQ(s,a2,π) SimQ(s,ak,π)

…

 Idea: define a stochastic function SimQ(s,a,π) that we can
implement and whose expected value is Qπ(s,a)

 Then use Bandit algorithm to select (approx) best action

How to implement SimQ?

6

Q-value Estimation

 SimQ might be implemented by simulating the execution of
action a in state s and then following π thereafter
 But for infinite horizon problems this would never finish

 So we will approximate via finite horizon

 The h-horizon Q-function Qπ(s,a,h) is defined as:
expected total discounted reward of starting in state s, taking
action a, and then following policy π for h-1 steps

 The approximation error decreases exponentially fast in h

max),,(),(VhasQasQ h

1

max
max

R
V

7

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h)

…

 Refined Idea: define a stochastic function SimQ(s,a,π,h)
that we can implement, whose expected value is Qπ(s,a,h)

 Use Bandit algorithm to select (approx) best action

How to implement SimQ?

8

Policy Improvement via Bandits

 SimQ(s,a,π,h)

 r = R(s,a) simulate a in s

 s = T(s,a)

 for i = 1 to h-1

 r = r + βi R(s, π(s)) simulate h-1 steps

 s = T(s, π(s)) of policy

 Return r

 Simply simulate taking a in s and following policy for h-1
steps, returning discounted sum of rewards

 Expected value of SimQ(s,a,π,h) is Qπ(s,a,h) which can

be made arbitrarily close to Qπ(s,a) by increasing h

9

Policy Improvement via Bandits

 SimQ(s,a,π,h)

 r = R(s,a) simulate a in s

 s = T(s,a)

 for i = 1 to h-1

 r = r + βi R(s, π(s)) simulate h-1 steps

 s = T(s, π(s)) of policy

 Return r

s …

…

…

…

a1

a2

Trajectory under

Sum discount rewards = SimQ(s,a1,π,h)

ak

Sum discount rewards = SimQ(s,a2,π,h)

Sum discount rewards = SimQ(s,ak,π,h)

10

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h)

…

 Refined Idea: define a stochastic function SimQ(s,a,π,h)
that we can implement, whose expected value is Qπ(s,a,h)

 Use Bandit algorithm to select (approx) best action

Which bandit objective/algorithm to use?

11

Traditional Approach: Policy Rollout

UniformRollout[π,h,w](s)

1. For each ai run SimQ(s,ai,π,h) w times

2. Return action with best average of SimQ results

s

a1 a2
ak

…

q11 q12 … q1w q21 q22 … q2w qk1 qk2 … qkw

…

…

…

…

…

…

…

…

…

SimQ(s,ai,π,h) trajectories

Each simulates taking

action ai then following

π for h-1 steps.

Samples of SimQ(s,ai,π,h)

UniformBandit

for PAC objective

12

Executing Rollout in Real World

… … s

a1 a2
 ak

…

…

…

…

…

…

…

…

…

a1 a2
 ak

…

…

…

…

…

…

…

…

…

a2 ak

run policy rollout run policy rollout

Real world

state/action

sequence

Simulated

experience

13

Uniform Policy Rollout:

of Simulator Calls

• For each action w calls to SimQ, each using h sim calls

• Total of khw calls to the simulator

a1 a2
ak

…

…

…

…

…

…

…

…

…

…

SimQ(s,ai,π,h) trajectories

Each simulates taking

action ai then following

π for h-1 steps.

s

14

Uniform Policy Rollout: PAC Guarantee

 Let a* be the action that maximizes the true Q-funciton
Qπ(s,a).

 Let a’ be the action returned by UniformRollout[π,h,w](s).

 Putting the PAC bandit result together with the finite horizon
approximation we can derive the following:

If then with probability at least

1

k
R

w ln

2

max

max)',(*),(VasQasQ h

But does this guarantee that the value of

UniformRollout[π,h,w](s) will be close to the value of π’ ?

15

Policy Rollout: Quality

How good is UniformRollout[π,h,w] compared to π’?

Bad News. In general for a fixed h and w there is
always an MDP such that the quality of the rollout
policy is arbitrarily worse than π’.

The example MDP is somewhat involved, but
shows that even small error in Q-value estimates
can lead to large performance gaps compared to π’
But this result is quite pathological

16

Policy Rollout: Quality

How good is UniformRollout[π,h,w] compared to π’?

Good News. If we make an assumption about the
MDP, then it is possible to select h and w so that the
rollout quality is close to π’.
This is a bit involved.

Assume a lower bound on the difference between the
best Q-value and the second best Q-value

More Good News. It is possible to select h and w
so that Rollout[π,h,w] is (approximately) no worse
than π for any MDP
So at least rollout won’t hurt compared to the base policy

At the same time it has the potential to significantly help

17

Non-Uniform Policy Rollout

s

a1 a2
ak

…

q11 q12 … q1u q21 q22 … q2v qk1

…

…

…

…

…

No! We really only care

about finding an (approx)

best arm.

Should we consider minimizing cumulative

regret?

18

Non-Uniform Policy Rollout

PAC Setting: use MedianElimination

(parameterized by 𝜖 and 𝛿 instead of w)

 Often we are given a
budget on number of
samples (i.e. time per
decision).

 MedianElimination
not applicable.

s

a1 a2
ak

…

q11 q12 … q1u q21 q22 … q2v qk1

…

…

…

…

…

19

Non-Uniform Policy Rollout

 Simple Regret: use 𝝐-Greedy

(parameterized by budget n on # of pulls)

s

a1 a2
ak

…

q11 q12 … q1u q21 q22 … q2v qk1

…

…

…

…

…

• Call this 𝝐-Rollout[π,h,n]

• n is number of samples

per step

• For 𝜖 = 0.5 we might

expect it to be better than

UniformRollout for same

of total samples.

20

Multi-Stage Rollout

 In what follows we will use the notation Rollout[π] to refer to
either UniformRollout[π,h,w] or 𝜖-Rollout[π,h,n].

 A single call to Rollout[π](s) approximates one iteration of
policy iteration inialized at policy π
 But only computes the action for state s rather than all states (as done

by full policy iteration)!

 We can use more computation time to approximate multiple
iterations of policy iteration via nesting calls to Rollout

 Gives a way to use more time in order to improve
performance

21

Multi-Stage Rollout

a1 a2
ak

…

…

…

…

…

…

…

…

…

…

Trajectories of

SimQ(s,ai,Rollout[π],h)

Each step requires

khw simulator calls

for Rollout policy

• Two stage: compute rollout policy of “rollout policy of π”

• Requires (khw)2 calls to the simulator for 2 stages

• In general exponential in the number of stages

s

22

Rollout Summary
We often are able to write simple, mediocre policies

Network routing policy

Policy for card game of Hearts

Policy for game of Backgammon

Solitaire playing policy

Policy rollout is a general and easy way to improve
upon such policies given a simulator

Often observe substantial improvement, e.g.
Compiler instruction scheduling

Backgammon

Network routing

Combinatorial optimization

Game of GO

Solitaire

23

Example: Rollout for Solitaire [Yan et al. NIPS’04]

 Multiple levels of rollout can payoff but is expensive

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

24

Monte-Carlo Planning Outline

Single State Case (multi-armed bandits)

A basic tool for other algorithms

Monte-Carlo Policy Improvement

Policy rollout

Policy Switching

Monte-Carlo Tree Search

Sparse Sampling

UCT and variants

25

Another Useful Technique:

Policy Switching

 Sometimes policy rollout can be too expensive when the
number of actions is large (time scales linearly with
number of actions)

 Sometimes we have multiple base policies and it is hard to
pick just one to use for rollout.

 Policy switching helps deal with both of these issues.

26

Another Useful Technique:

Policy Switching

 Suppose you have a set of base policies {π1, π2,…, πM}

 Also suppose that the best policy to use can depend on
the specific state of the system and we don’t know how to
select.

 Policy switching is a simple way to select which policy to
use at a given step via a simulator

27

Another Useful Technique:

Policy Switching
s

Sim(s,π1,h) Sim(s,π2,h) Sim(s,πM,h)

…

 The stochastic function Sim(s,π,h) simply samples the
h-horizon value of π starting in state s

 Implement by simply simulating π starting in s for h steps
and returning discounted total reward

 Use Bandit algorithm to select best policy and then select
action chosen by that policy

π 1 π 2

πM

28

Uniform Policy Switching

UniformPolicySwitch[{π1, π2,…, πM},h,w](s)

1. For each πi run Sim(s,πi,h) w times

2. Let i* be index of policy with best average result

3. Return action πi*(s)

s
π 1 π 2

πM

…

v11 v12 … v1w v21 v22 … v2w vM1 vM2 … vMw

…

…

…

…

…

…

…

…

…

Sim(s,πi,h) trajectories

Each simulates following

πi for h steps.

Discounted cumulative

rewards

29

Executing Policy Switching in Real World

… … s

𝜋1 𝜋2
 𝜋k

…

…

…

…

…

…

…

…

…

𝜋1 𝜋2
 𝜋k

…

…

…

…

…

…

…

…

…

𝜋2(s) 𝜋k(s’)

run policy rollout run policy rollout

Real world

state/action

sequence

Simulated

experience

30

Uniform Policy Switching: Simulator Calls

• For each policy use w calls to Sim, each using h simulator calls

• Total of Mhw calls to the simulator

• Does not depend on number of actions!

s
π 1 π 2

πM

…

…

…

…

…

…

…

…

…

…

Sim(s,πi,h) trajectories

Each simulates taking

following πi for h steps.

31

𝝐-Greedy Policy Switching

s
π 1 π 2

πM

…

v11 v12 … v1d v21 vM1 vM2

…

…

Similar to rollout we can have a non-uniform

version that takes a total number of

trajectories n as an argument

𝜖-PolicySwitch[{π1,…,πM},h,n]

Use 𝜖-Greedy as the bandit
algorithm for n pulls and return
best arm/policy.

32

Policy Switching: Quality

Let 𝜋𝑝𝑠 denote the ideal switching policy

Always pick the best policy index at any state

The value of the switching policy is at least as
good as the best single policy in the set
 It will often perform better than any single policy in set.

For non-ideal case, were bandit algorithm only picks
approximately the best arm we can add an error term to
the bound.

Theorem: For any state s, max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 .

33

Proof

We’ll use the following property.

Proposition: For any policy 𝜋 and value function 𝑉,
 if 𝑉 ≤ 𝐵𝜋 𝑉 , then 𝑉 ≤ 𝑉𝜋

Recall 𝐵𝜋 𝑉 (𝑠) = 𝑅 𝑠 + 𝑇 𝑠, 𝜋 𝑠 , 𝑠
′ ⋅ 𝑉(𝑠′)𝑠′

is the restricted Bellman backup.

So all we need to do is prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖

since this will imply that max
𝑖
𝑉𝜋𝑖 ≤ 𝑉𝜋𝑝𝑠 as desired.

Theorem: For any state s, max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 .

34

Proof (to simply notation and without loss of generality,

assume rewards only depend on state and are deterministic)

Prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖

Let 𝑖∗ be the index of the best policy in state s.

𝐵𝜋𝑝𝑠 max𝑖
𝑉𝜋𝑖 (𝑠) = 𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑝𝑠 𝑠 , 𝑠

′ ⋅ max
𝑖
𝑉𝜋𝑖(𝑠

′)𝑠′

 ≥ 𝑅 𝑠 + max
𝑖
 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 = max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 ≥ max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 = max
𝑖
𝑉𝜋𝑖 𝑠

35

Policy Switching Summary

Easy way to produce an improved policy from a
set of existing policies.
Will not do any worse than the best policy in your set.

Complexity does not depend on number of
actions.
So can be practical even when action space is huge,

unlike policy rollout.

Can combine with rollout for further improvement
Just apply rollout to the switching policy.

