Monte-Carlo Planning:
Policy Improvement

Alan Fern

Monte-Carlo Planning Outline

* Single State Case (multi-armed bandits)
~ A basic tool for other algorithms

* Monte-Carlo Policy Improvement
~ Policy rollout
~ Policy Switching

* Monte-Carlo Tree Search
- Sparse Sampling
-~ UCT and variants

Policy Improvement via Monte-Carlo

* Now consider a very large multi-state MDP.

° Suppose we have a simulator and a non-optimal policy
~ E.g. policy could be a standard heuristic or based on intuition

* Can we somehow compute an improved policy?

World

Simulator action - N
i +P I_ T Real
ase Policy = 168 -

World

State + reward

Recall: Policy Improvement Theorem
Q_(s,a) =R(s) +BZS.T(S, a,s')-V_(s')

The Q-value function of a policy gives expected discounted
future reward of starting in state s, taking action a, and then
following policy T thereafter

Define: 7'(S) =argmax, Q_(s,a)

Theorem [Howard, 1960]: For any non-optimal policy 1T the
policy 11’ a strict improvement over Tr.

Computing T amounts to finding the action that maximizes
the Q-function of 1

~ Can we use the bandit idea to solve this?

Policy Improvement via Bandits

SimQ(s,a,,m) SimQ(s,a,,m) SimQ(s,a,,m)

° ldea: define a stochastic function SimQ(s,a,r) that we can
Implement and whose expected value Is Q(s,a)

* Then use Bandit algorithm to select (approx) best action

How to implement SImQ?

Q-value Estimation

SimQ might be implemented by simulating the execution of
action a in state s and then following 1 thereafter

~ But for infinite horizon problems this would never finish

~ So we will approximate via finite horizon

The h-horizon Q-function Q,(s,a,h) is defined as:
expected total discounted reward of starting in state s, taking
action a, and then following policy T for h-1 steps

The approximation error decreases exponentially fast in h

‘Qﬂ' (s,a)—Q,(s,a, h)‘ < ,Bh\/max V=

Policy Improvement via Bandits

FRAT TO wiwi

SimQ(s,a,,m,h) SimQ(s,éz,n,h) Sim.Q(s,ak,Tr,h)

* Refined Idea: define a stochastic function SimQ(s,a,tr,h)
that we can implement, whose expected value is Qx(s,a,h)

* Use Bandit algorithm to select (approx) best action

How to implement SImQ?

Policy Improvement via Bandits

SimQ(s,a,,h)
r = R(s,a) } simulate ain s
s=T(s,a)
fori=1to h-1
r=r+ B R(s, 1(s)) simulate h-1 steps
s =T(s, 11(S)) } of policy
Return r

* Simply simulate taking a in s and following policy for h-1
steps, returning discounted sum of rewards

* Expected value of SimQ(s,a,,h) is Qx(s,a,h) which can
be made arbitrarily close to Qx(s,a) by increasing h

Policy Improvement via Bandits

SimQ(s,a,,h)
r = R(s,a) } simulate ain s
s=T(s,a)
fori=1to h-1
r=r+ B R(s, 1(s)) simulate h-1 steps
s =T(s, 11(S)) } of policy
Return r

Trajectory under

f\'f\'f\'o/\' /\'o Sum discount rewards = SimQ(s,a,,,h)
/ﬂm{\' /\. Sum discount rewards = SIimQ(s,a.,,,h)

r\/\f\f\/\

Sum discount rewards = SImQ(s,a,,1,h)

9

Policy Improvement via Bandits

SimQ(s,a,,m,h) SimQ(s,a,,m,h) SimQ(s,a,,,h)

* Refined Idea: define a stochastic function SimQ(s,a,tr,h)
that we can implement, whose expected value is Qx(s,a,h)

* Use Bandit algorithm to select (approx) best action

Which bandit objective/algorithm to use?

10

Traditional Approach: Policy Rollout
UniformRollout[tT,h,w](s) UniformBandit

1. For each g run SimQ(s,a;,m,h) w times " for PAC objective

2. Return action with best average of SImQ results

SimQ(s,a;,,h) trajectories

Each simulates taking
action a; then following
1T for h-1 steps.

_fw\j -'.-'-'. 4

é%

Samples of SimQ(s,a;,1,h) CI11 Q12 --

11

Executing Rollout in Real World

Real world

state/action SN\[\' W\ /\0
sequence \
\
\' run policy rollout \. run policy rollout
Simulated -

experience

12

Uniform Policy Rollout:
of Simulator Calls

SimQ(s,a;,m,h) trajectories

Each simulates taking
action a; then following
1 for h-1 steps.

 For each action w calls to SImQ, each using h sim calls

» Total of khw calls to the simulator

13

Uniform Policy Rollout: PAC Guarantee

° Let a* be the action that maximizes the true Q-funciton

Qr(s,a).
° Let a’ be the action returned by UniformRollout[tT,h,w](S).

* Putting the PAC bandit result together with the finite horizon
approximation we can derive the following:

2
R . .
If WZ(max j In X then with probability at least 1— ¢
E

Q.(s,@%)—Q,(s,a)|< e+ BV,

But does this guarantee that the value of
UniformRollout[tT,h,w](s) will be close to the value of 1" ? 14

Policy Rollout: Quality

* How good is UniformRollout[tr,h,w] compared to 11’7

° Bad News. In general for a fixed h and w there is
always an MDP such that the quality of the rollout
policy Is arbitrarily worse than 1r'.

* The example MDP is somewhat involved, but
shows that even small error in Q-value estimates
can lead to large performance gaps compared to 1

~ But this result is quite pathological

15

Policy Rollout: Quality
* How good is UniformRollout[tr,h,w] compared to 1'?

°* Good News. If we make an assumption about the
MDP, then it is possible to select h and w so that the
rollout quality Is close to 1r'.
~ This is a bit involved.

~ Assume a lower bound on the difference between the
best Q-value and the second best Q-value

* More Good News. It is possible to select h and w
so that Rollout[tT,h,w] Is (approximately) no worse
than 1 for any MDP

~ So at least rollout won’t hurt compared to the base policy
~ At the same time it has the potential to significantly help

16

Non-Uniform Policy Rollout

* Should we consider minimizing cumulative
regret?

No! We really only care
about finding an (approx)
best arm.

17

Non-Uniform Policy Rollout

PAC Setting: use MedianElimination

(parameterized by € and é instead of w)

° Often we are given a
budget on number of
samples (i.e. time per
decision).

° MedianElimination
not applicable.

18

Non-Uniform Policy Rollout

Simple Regret: use e-Greedy

(parameterized by budget n on # of pulls)

« Call this e-Rollout[Tr,h,n]

* nis number of samples
per step

* For e = 0.5 we might .D
expect it to be better than
UniformRollout for same 5
of total samples. 5

Ji1 Q12 --- Guy

19

Multi-Stage Rollout

In what follows we will use the notation Rollout[Tr] to refer to
either UniformRollout[tr,h,w] or e-Rollout[tT,h,n].

A single call to Rollout[1T](s) approximates one iteration of
policy iteration inialized at policy 1
~ But only computes the action for state s rather than all states (as done
by full policy iteration)!

We can use more computation time to approximate multiple
iterations of policy iteration via nesting calls to Rollout

Gives a way to use more time in order to improve
performance

20

Multi-Stage Rollout

Each step requires a
. 1

khw simulator calls

for Rollout policy

Trajectories of

SimQ(s,a;,Rollout[tr],h)

« Two stage: compute rollout policy of “rollout policy of 1"
» Requires (khw)? calls to the simulator for 2 stages

* In general exponential in the number of stages
21

Rollout Summary

* We often are able to write simple, mediocre policies
~ Network routing policy
~ Policy for card game of Hearts
~ Policy for game of Backgammon
~ Solitaire playing policy

° Policy rollout is a general and easy way to improve
upon such policies given a simulator

* Often observe substantial improvement, e.g.
~ Compiler instruction scheduling
-~ Backgammon
~ Network routing
~ Combinatorial optimization
-~ Game of GO
~ Solitaire

22

Example: Rollout for Solitaire [Yan et al. NIPS’04]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

2 rollout 47.6% /.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

* Multiple levels of rollout can payoff but is expensive

23

Monte-Carlo Planning Outline

* Single State Case (multi-armed bandits)
~ A basic tool for other algorithms

* Monte-Carlo Policy Improvement
~ Policy rollout
~ Policy Switching

* Monte-Carlo Tree Search
- Sparse Sampling
-~ UCT and variants

24

Another Useful Technique:
Policy Switching

* Sometimes policy rollout can be too expensive when the
number of actions is large (time scales linearly with
number of actions)

° Sometimes we have multiple base policies and it is hard to
pick just one to use for rollout.

* Policy switching helps deal with both of these issues.

25

Another Useful Technique:
Policy Switching

* Suppose you have a set of base policies {m,, 1,,..., Ty}

°* Also suppose that the best policy to use can depend on
the specific state of the system and we don’t know how to
select.

* Policy switching is a simple way to select which policy to
use at a given step via a simulator

26

Another Useful Technique:
Policy Switching
S

Sim(s,,h) Sim(s,1r,,h) Sim(s,m,,,h)
* The stochastic function Sim(s,1r,h) simply samples the
h-horizon value of 11 starting in state s

* Implement by simply simulating 1T starting in s for h steps
and returning discounted total reward

* Use Bandit algorithm to select best policy and then select
action chosen by that policy

27

Uniform Policy Switching

UniformPolicySwitch[{tT,, TT,,..., T\},h,w](S)

1. For each 11 run Sim(s,t;,h) w times

2. Leti* be index of policy with best average result
3. Return action 1r,(S)

Sim(s,;,h) trajectories

Each simulates following

m, for h steps.)

o Vit

Discounted cumulative
rewards
28

Executing Policy Switching in Real World

Real world [72(S)

state/action SN\'-/\' W\' /\'.

sequence \
\' run policy rollout \\ run policy rollout

Simulated 4
experience

29

Uniform Policy Switching: Simulator Calls
S

T T
/N

Sim(s,;,h) trajectories

Each simulates taking
following T, for h steps.

« For each policy use w calls to Sim, each using h simulator calls
* Total of Mhw calls to the simulator

* Does not depend on number of actions!
30

e-Greedy Policy Switching

* Similar to rollout we can have a non-uniform
version that takes a total number of
trajectories n as an argument

e-PolicySwitch[{tT,,...,m,},h,n]

Use e-Greedy as the bandit
algorithm for n pulls and return
best arm/policy.

Policy Switching: Quality

° Let m,s denote the ideal switching policy
~ Always pick the best policy index at any state

Theorem: For any state s, max V. (s) < Vs (s).
l

* The value of the switching policy is at least as
good as the best single policy in the set
~ It will often perform better than any single policy in set.

~ For non-ideal case, were bandit algorithm only picks
approximately the best arm we can add an error term to
the bound.

32

Proof

Theorem: For any state s, max V. (s) < Vs (s).
l

We'll use the following property.

Proposition: For any policy m and value function V,
if V < B_.|V],thenV <V,

Recall B;|[V](s) = R(s) + 2 T(s,m(s),s")-V(s")
IS the restricted Bellman backup.

So all we need to do is prove that max V;, < Br [m_ax Vni]
l l
since this will imply that max 1, < Vi, @S desired.
l

33

Proof (to simply notation and without loss of generality,
assume rewards only depend on state and are deterministic)

Prove that max I, < Bnps [m_ax Vni]
l l
Let i* be the index of the best policy in state s.

B [miax Vni] () = R(s) + Xy T(S, nps(s),s’) - max Ve, (s7)

> R(s) + miaxz T(s,mi=(s),s") - Vg, (s")

l

— max |R(s) + Z T(s,m(5), ") - Vi (s)

l

> max |R(s) + Z T(s,mi(s),s") - Vy (")

= max V., (s)
l

34

Policy Switching Summary

° Easy way to produce an improved policy from a
set of existing policies.

~ Will not do any worse than the best policy in your set.

* Complexity does not depend on number of
actions.

~ S0 can be practical even when action space is huge,
unlike policy rollout.

° Can combine with rollout for further improvement
~ Just apply rollout to the switching policy.

35

