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Monte-Carlo Planning Outline 

Single State Case (multi-armed bandits) 

A basic tool for other algorithms 

Monte-Carlo Policy Improvement 

Policy rollout 

Policy Switching 

Monte-Carlo Tree Search 

Sparse Sampling 

UCT and variants 



Policy Improvement via Monte-Carlo 

 Now consider a very large multi-state MDP. 

 Suppose we have a simulator and a non-optimal policy  

 E.g. policy could be a standard heuristic or based on intuition 

 Can we somehow compute an improved policy? 
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Recall: Policy Improvement Theorem 

 The Q-value function of a policy gives expected discounted 
future reward of starting in state s, taking action a, and then 
following policy π thereafter 

 

 Define:  

 

 Theorem [Howard, 1960]: For any non-optimal policy π the 
policy π’ a strict improvement over π.  

 

 Computing π’ amounts to finding the action that maximizes 
the Q-function of π 
 Can we use the bandit idea to solve this? 
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Policy Improvement via Bandits 
s 

a1 a2 ak 

SimQ(s,a1,π) SimQ(s,a2,π) SimQ(s,ak,π) 

… 

 Idea: define a stochastic function SimQ(s,a,π) that we can 
implement and whose expected value is Qπ(s,a) 
 

 Then use Bandit algorithm to select (approx) best action 

How to implement SimQ? 
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Q-value Estimation 
 

 SimQ might be implemented by simulating the execution of 
action a in state s and then following π thereafter 
 But for infinite horizon problems this would never finish 

 So we will approximate via finite horizon 

 

 The h-horizon Q-function Qπ(s,a,h) is defined as:  
expected total discounted reward of starting in state s, taking 
action a, and then following policy π for h-1 steps 

 

 The approximation error decreases exponentially fast in h 
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Policy Improvement via Bandits 
s 

a1 a2 ak 

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h) 

… 

 Refined Idea: define a stochastic function SimQ(s,a,π,h) 
that we can implement, whose expected value is Qπ(s,a,h) 

 

 Use Bandit algorithm to select (approx) best action 

How to implement SimQ? 
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Policy Improvement via Bandits 

  SimQ(s,a,π,h)  

            r = R(s,a)            simulate a in s 

         s = T(s,a)                  

            for i = 1 to h-1 

             r = r + βi R(s, π(s))         simulate h-1 steps  

                 s = T(s, π(s))                  of policy 

            Return r 

 

 Simply simulate taking a in s and following policy for h-1 
steps, returning discounted sum of rewards 

 Expected value of SimQ(s,a,π,h) is Qπ(s,a,h) which can  

be made arbitrarily close to Qπ(s,a) by increasing h  
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Policy Improvement via Bandits 

  SimQ(s,a,π,h)  

            r = R(s,a)            simulate a in s 

         s = T(s,a)                  

            for i = 1 to h-1 

             r = r + βi R(s, π(s))         simulate h-1 steps  

                 s = T(s, π(s))                  of policy 

            Return r 

 

s …
 

… 

… 

… 

a1 

a2 

Trajectory under  

Sum discount rewards = SimQ(s,a1,π,h) 

ak 

Sum discount rewards = SimQ(s,a2,π,h) 

Sum discount rewards = SimQ(s,ak,π,h) 
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Policy Improvement via Bandits 
s 

a1 a2 ak 

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h) 

… 

 Refined Idea: define a stochastic function SimQ(s,a,π,h) 
that we can implement, whose expected value is Qπ(s,a,h) 

 

 Use Bandit algorithm to select (approx) best action 

Which bandit objective/algorithm to use? 
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Traditional Approach: Policy Rollout  

UniformRollout[π,h,w](s)  

1. For each ai run SimQ(s,ai,π,h) w times  

2. Return action with best average of SimQ results 

s 

a1 a2 
ak 

… 

q11  q12 … q1w q21  q22 … q2w qk1  qk2 … qkw 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

SimQ(s,ai,π,h) trajectories 

Each simulates taking  

action ai  then following  

π for h-1 steps.  

 

Samples of SimQ(s,ai,π,h)  

UniformBandit 

for PAC objective 
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Executing Rollout in Real World 

… … s 

a1    a2 
    ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

a1    a2 
     ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

a2 ak 

run policy rollout run policy rollout 

Real world 

state/action  

sequence 

Simulated  

experience 
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Uniform Policy Rollout:  

# of Simulator Calls 

• For each action w calls to SimQ, each using h sim calls 

• Total of khw calls to the simulator 

a1 a2 
ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

SimQ(s,ai,π,h) trajectories 

Each simulates taking  

action ai  then following  

π for h-1 steps.  

 

s 
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Uniform Policy Rollout: PAC Guarantee 
 

 Let a* be the action that maximizes the true Q-funciton 
Qπ(s,a). 

 Let a’ be the action returned by UniformRollout[π,h,w](s).   

 Putting the PAC bandit result together with the finite horizon 
approximation we can derive the following: 

If                                then with probability at least  
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But does this guarantee that the value of  

UniformRollout[π,h,w](s) will be close to the value of π’ ?  
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Policy Rollout: Quality 

How good is UniformRollout[π,h,w] compared to π’? 

 

Bad News. In general for a fixed h and w there is 
always an MDP such that the quality of the rollout 
policy is arbitrarily worse than π’. 

 

The example MDP is somewhat involved, but 
shows that even small error in Q-value estimates 
can lead to large performance gaps compared to π’ 
But this result is quite pathological 
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Policy Rollout: Quality 

How good is UniformRollout[π,h,w] compared to π’? 

Good News. If we make an assumption about the 
MDP, then it is possible to select h and w so that the 
rollout quality is close to π’.  
This is a bit involved. 

Assume a lower bound on the difference between the 
best Q-value and the second best Q-value  

More Good News. It is possible to select h and w 
so that Rollout[π,h,w] is (approximately) no worse 
than π for any MDP 
So at least rollout won’t hurt compared to the base policy 

At the same time it has the potential to significantly help 
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Non-Uniform Policy Rollout 

s 

a1 a2 
ak 

… 

q11  q12 … q1u q21  q22 … q2v qk1 

…
 

…
 

…
 

…
 

…
 

No! We really only care  

about finding an (approx) 

best arm.  

Should we consider minimizing cumulative 

regret? 
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Non-Uniform Policy Rollout 

PAC Setting: use MedianElimination   
 
(parameterized by 𝜖 and 𝛿 instead of w) 

 

 Often we are given a  
budget on number of  
samples (i.e. time per 
decision).  

 MedianElimination  
not applicable. 

    

s 

a1 a2 
ak 

… 

q11  q12 … q1u q21  q22 … q2v qk1 

…
 

…
 

…
 

…
 

…
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Non-Uniform Policy Rollout 

   Simple Regret: use 𝝐-Greedy  
 
(parameterized by budget n on # of pulls) 

s 

a1 a2 
ak 

… 

q11  q12 … q1u q21  q22 … q2v qk1 

…
 

…
 

…
 

…
 

…
 

• Call this 𝝐-Rollout[π,h,n] 

• n is number of samples 

per step 

• For 𝜖 = 0.5 we might  

expect it to be better than  

UniformRollout for same 

# of total samples. 
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Multi-Stage Rollout 
 

 In what follows we will use the notation Rollout[π] to refer to 
either UniformRollout[π,h,w] or 𝜖-Rollout[π,h,n]. 

 

 A single call to Rollout[π](s) approximates one iteration of 
policy iteration inialized at policy π 
 But only computes the action for state s rather than all states (as done 

by full policy iteration)! 

 

 We can use more computation time to approximate multiple 
iterations of policy iteration via nesting calls to Rollout 

 

 Gives a way to use more time in order to improve 
performance 
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Multi-Stage Rollout 

a1 a2 
ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Trajectories of  

SimQ(s,ai,Rollout[π],h)  

 

Each step requires  

khw simulator calls 

for Rollout policy 

• Two stage: compute rollout policy of “rollout policy of π” 

• Requires (khw)2 calls to the simulator for 2 stages 

• In general exponential in the number of stages 

s 
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Rollout Summary 
We often are able to write simple, mediocre policies 

Network routing policy 

Policy for card game of Hearts 

Policy for game of Backgammon 

Solitaire playing policy 

Policy rollout is a general and easy way to improve 
upon such policies given a simulator 

Often observe substantial improvement, e.g. 
Compiler instruction scheduling 

Backgammon 

Network routing 

Combinatorial optimization 

Game of GO 

Solitaire 
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Example: Rollout for Solitaire [Yan et al. NIPS’04] 

 Multiple levels of rollout can payoff but is expensive 

     

Player Success Rate Time/Game 

Human Expert 36.6% 20 min 

(naïve) Base 

Policy 

13.05% 0.021 sec 

1 rollout 31.20% 0.67 sec 

2 rollout 47.6% 7.13 sec 

3 rollout 56.83% 1.5 min 

4 rollout 60.51% 18 min 

5 rollout 70.20% 1 hour 45 min 
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Monte-Carlo Planning Outline 

Single State Case (multi-armed bandits) 

A basic tool for other algorithms 

Monte-Carlo Policy Improvement 

Policy rollout 

Policy Switching 

Monte-Carlo Tree Search 

Sparse Sampling 

UCT and variants 
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Another Useful Technique:  

Policy Switching 

 Sometimes policy rollout can be too expensive when the 
number of actions is large (time scales linearly with 
number of actions) 

 

 Sometimes we have multiple base policies and it is hard to 
pick just one to use for rollout.  

 

 Policy switching helps deal with both of these issues. 
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Another Useful Technique:  

Policy Switching 

 

 Suppose you have a set of base policies {π1, π2,…, πM} 

 

 Also suppose that the best policy to use can depend on 
the specific state of the system and we don’t know how to 
select. 

 

 Policy switching is a simple way to select which policy to 
use at a given step via a simulator 
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Another Useful Technique:  

Policy Switching 
s 

Sim(s,π1,h) Sim(s,π2,h) Sim(s,πM,h) 

… 

 The stochastic function Sim(s,π,h) simply samples the  
h-horizon value of π starting in state s 

 Implement by simply simulating π starting in s for h steps 
and returning discounted total reward 

 Use Bandit algorithm to select best policy and then select 
action chosen by that policy 

π 1 π 2 

πM 
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Uniform Policy Switching 

UniformPolicySwitch[{π1, π2,…, πM},h,w](s)  

1. For each πi  run Sim(s,πi,h) w times  

2. Let i* be index of policy with best average result 

3. Return action πi*(s) 

s 
π 1 π 2 

πM 

… 

v11  v12 … v1w v21  v22 … v2w vM1  vM2 … vMw 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Sim(s,πi,h) trajectories 

Each simulates following  

πi for h steps.  

 

Discounted cumulative  

rewards 
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Executing Policy Switching in Real World 

… … s 

𝜋1    𝜋2 
    𝜋k 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

𝜋1    𝜋2 
      𝜋k 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

𝜋2(s) 𝜋k(s’) 

run policy rollout run policy rollout 

Real world 

state/action  

sequence 

Simulated  

experience 
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Uniform Policy Switching: Simulator Calls 

• For each policy use w calls to Sim, each using h simulator calls 

• Total of Mhw calls to the simulator 

• Does not depend on number of actions! 

s 
π 1 π 2 

πM 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Sim(s,πi,h) trajectories 

Each simulates taking  

following πi for h steps.  
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𝝐-Greedy Policy Switching 

s 
π 1 π 2 

πM 

… 

v11  v12 … v1d v21   vM1  vM2 

…
 

…
 

Similar to rollout we can have a non-uniform 

version that takes a total number of 

trajectories n as an argument 

𝜖-PolicySwitch[{π1,…,πM},h,n] 
 
Use 𝜖-Greedy as the bandit 
algorithm for n pulls and return 
best arm/policy.  
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Policy Switching: Quality 

Let  𝜋𝑝𝑠 denote the ideal switching policy  

Always pick the best policy index at any state  

 

 

 

The value of the switching policy is at least as 
good as the best single policy in the set 
 It will often perform better than any single policy in set. 

For non-ideal case, were bandit algorithm only picks 
approximately the best arm we can add an error term to 
the bound. 

 

Theorem: For any state s,  max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 . 
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Proof 

 

 

 
We’ll use the following property. 
 

Proposition: For any policy 𝜋 and value function 𝑉,  
                            if 𝑉 ≤ 𝐵𝜋 𝑉 , then 𝑉 ≤ 𝑉𝜋 

 

Recall  𝐵𝜋 𝑉 (𝑠) = 𝑅 𝑠 +  𝑇 𝑠, 𝜋 𝑠 , 𝑠
′ ⋅ 𝑉(𝑠′)𝑠′   

is the restricted Bellman backup. 
 

So all we need to do is prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖  

since this will imply that max
𝑖
𝑉𝜋𝑖 ≤ 𝑉𝜋𝑝𝑠 as desired. 

 

 

Theorem: For any state s, max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 . 
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Proof (to simply notation and without loss of generality, 

assume rewards only depend on state and are deterministic) 

  

 

 

Prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖   

Let 𝑖∗ be the index of the best policy in state s.  

 

𝐵𝜋𝑝𝑠 max𝑖
𝑉𝜋𝑖 (𝑠) = 𝑅 𝑠 +  𝑇 𝑠, 𝜋𝑝𝑠 𝑠 , 𝑠

′ ⋅ max
𝑖
𝑉𝜋𝑖(𝑠

′)𝑠′   

                             ≥  𝑅 𝑠 + max
𝑖
 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 

                            = max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 

                            ≥ max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 

                            = max
𝑖
𝑉𝜋𝑖 𝑠  
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Policy Switching Summary 

Easy way to produce an improved policy from a 
set of existing policies.  
Will not do any worse than the best policy in your set. 

 

Complexity does not depend on number of 
actions.  
So can be practical even when action space is huge, 

unlike policy rollout.  

 

Can combine with rollout for further improvement 
Just apply rollout to the switching policy. 

 

 


