
1

Monte-Carlo Planning:

Policy Improvement

Alan Fern

2

Monte-Carlo Planning Outline

Single State Case (multi-armed bandits)

A basic tool for other algorithms

Monte-Carlo Policy Improvement

Policy rollout

Policy Switching

Monte-Carlo Tree Search

Sparse Sampling

UCT and variants

Policy Improvement via Monte-Carlo

 Now consider a very large multi-state MDP.

 Suppose we have a simulator and a non-optimal policy

 E.g. policy could be a standard heuristic or based on intuition

 Can we somehow compute an improved policy?

3

World

Simulator

+

Base Policy
Real

World

action

State + reward

4

Recall: Policy Improvement Theorem

 The Q-value function of a policy gives expected discounted
future reward of starting in state s, taking action a, and then
following policy π thereafter

 Define:

 Theorem [Howard, 1960]: For any non-optimal policy π the
policy π’ a strict improvement over π.

 Computing π’ amounts to finding the action that maximizes
the Q-function of π
 Can we use the bandit idea to solve this?

),(maxarg)(' asQs a  

)'(
'

)',,(β)(),(s
s

VsasTsRasQ   

5

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π) SimQ(s,a2,π) SimQ(s,ak,π)

…

 Idea: define a stochastic function SimQ(s,a,π) that we can
implement and whose expected value is Qπ(s,a)

 Then use Bandit algorithm to select (approx) best action

How to implement SimQ?

6

Q-value Estimation

 SimQ might be implemented by simulating the execution of
action a in state s and then following π thereafter
 But for infinite horizon problems this would never finish

 So we will approximate via finite horizon

 The h-horizon Q-function Qπ(s,a,h) is defined as:
expected total discounted reward of starting in state s, taking
action a, and then following policy π for h-1 steps

 The approximation error decreases exponentially fast in h

max),,(),(VhasQasQ h 



1

max
max

R
V

7

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h)

…

 Refined Idea: define a stochastic function SimQ(s,a,π,h)
that we can implement, whose expected value is Qπ(s,a,h)

 Use Bandit algorithm to select (approx) best action

How to implement SimQ?

8

Policy Improvement via Bandits

 SimQ(s,a,π,h)

 r = R(s,a) simulate a in s

 s = T(s,a)

 for i = 1 to h-1

 r = r + βi R(s, π(s)) simulate h-1 steps

 s = T(s, π(s)) of policy

 Return r

 Simply simulate taking a in s and following policy for h-1
steps, returning discounted sum of rewards

 Expected value of SimQ(s,a,π,h) is Qπ(s,a,h) which can

be made arbitrarily close to Qπ(s,a) by increasing h

9

Policy Improvement via Bandits

 SimQ(s,a,π,h)

 r = R(s,a) simulate a in s

 s = T(s,a)

 for i = 1 to h-1

 r = r + βi R(s, π(s)) simulate h-1 steps

 s = T(s, π(s)) of policy

 Return r

s …

…

…

…

a1

a2

Trajectory under 

Sum discount rewards = SimQ(s,a1,π,h)

ak

Sum discount rewards = SimQ(s,a2,π,h)

Sum discount rewards = SimQ(s,ak,π,h)

10

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h)

…

 Refined Idea: define a stochastic function SimQ(s,a,π,h)
that we can implement, whose expected value is Qπ(s,a,h)

 Use Bandit algorithm to select (approx) best action

Which bandit objective/algorithm to use?

11

Traditional Approach: Policy Rollout

UniformRollout[π,h,w](s)

1. For each ai run SimQ(s,ai,π,h) w times

2. Return action with best average of SimQ results

s

a1 a2
ak

…

q11 q12 … q1w q21 q22 … q2w qk1 qk2 … qkw

…

…

…

…

…

…

…

…

…

SimQ(s,ai,π,h) trajectories

Each simulates taking

action ai then following

π for h-1 steps.

Samples of SimQ(s,ai,π,h)

UniformBandit

for PAC objective

12

Executing Rollout in Real World

… … s

a1 a2
 ak

…

…

…

…

…

…

…

…

…

a1 a2
 ak

…

…

…

…

…

…

…

…

…

a2 ak

run policy rollout run policy rollout

Real world

state/action

sequence

Simulated

experience

13

Uniform Policy Rollout:

of Simulator Calls

• For each action w calls to SimQ, each using h sim calls

• Total of khw calls to the simulator

a1 a2
ak

…

…

…

…

…

…

…

…

…

…

SimQ(s,ai,π,h) trajectories

Each simulates taking

action ai then following

π for h-1 steps.

s

14

Uniform Policy Rollout: PAC Guarantee

 Let a* be the action that maximizes the true Q-funciton
Qπ(s,a).

 Let a’ be the action returned by UniformRollout[π,h,w](s).

 Putting the PAC bandit result together with the finite horizon
approximation we can derive the following:

If then with probability at least

1


k
R

w ln

2

max










max)',(*),(VasQasQ h 

But does this guarantee that the value of

UniformRollout[π,h,w](s) will be close to the value of π’ ?

15

Policy Rollout: Quality

How good is UniformRollout[π,h,w] compared to π’?

Bad News. In general for a fixed h and w there is
always an MDP such that the quality of the rollout
policy is arbitrarily worse than π’.

The example MDP is somewhat involved, but
shows that even small error in Q-value estimates
can lead to large performance gaps compared to π’
But this result is quite pathological

16

Policy Rollout: Quality

How good is UniformRollout[π,h,w] compared to π’?

Good News. If we make an assumption about the
MDP, then it is possible to select h and w so that the
rollout quality is close to π’.
This is a bit involved.

Assume a lower bound on the difference between the
best Q-value and the second best Q-value

More Good News. It is possible to select h and w
so that Rollout[π,h,w] is (approximately) no worse
than π for any MDP
So at least rollout won’t hurt compared to the base policy

At the same time it has the potential to significantly help

17

Non-Uniform Policy Rollout

s

a1 a2
ak

…

q11 q12 … q1u q21 q22 … q2v qk1

…

…

…

…

…

No! We really only care

about finding an (approx)

best arm.

Should we consider minimizing cumulative

regret?

18

Non-Uniform Policy Rollout

PAC Setting: use MedianElimination

(parameterized by 𝜖 and 𝛿 instead of w)

 Often we are given a
budget on number of
samples (i.e. time per
decision).

 MedianElimination
not applicable.

s

a1 a2
ak

…

q11 q12 … q1u q21 q22 … q2v qk1

…

…

…

…

…

19

Non-Uniform Policy Rollout

 Simple Regret: use 𝝐-Greedy

(parameterized by budget n on # of pulls)

s

a1 a2
ak

…

q11 q12 … q1u q21 q22 … q2v qk1

…

…

…

…

…

• Call this 𝝐-Rollout[π,h,n]

• n is number of samples

per step

• For 𝜖 = 0.5 we might

expect it to be better than

UniformRollout for same

of total samples.

20

Multi-Stage Rollout

 In what follows we will use the notation Rollout[π] to refer to
either UniformRollout[π,h,w] or 𝜖-Rollout[π,h,n].

 A single call to Rollout[π](s) approximates one iteration of
policy iteration inialized at policy π
 But only computes the action for state s rather than all states (as done

by full policy iteration)!

 We can use more computation time to approximate multiple
iterations of policy iteration via nesting calls to Rollout

 Gives a way to use more time in order to improve
performance

21

Multi-Stage Rollout

a1 a2
ak

…

…

…

…

…

…

…

…

…

…

Trajectories of

SimQ(s,ai,Rollout[π],h)

Each step requires

khw simulator calls

for Rollout policy

• Two stage: compute rollout policy of “rollout policy of π”

• Requires (khw)2 calls to the simulator for 2 stages

• In general exponential in the number of stages

s

22

Rollout Summary
We often are able to write simple, mediocre policies

Network routing policy

Policy for card game of Hearts

Policy for game of Backgammon

Solitaire playing policy

Policy rollout is a general and easy way to improve
upon such policies given a simulator

Often observe substantial improvement, e.g.
Compiler instruction scheduling

Backgammon

Network routing

Combinatorial optimization

Game of GO

Solitaire

23

Example: Rollout for Solitaire [Yan et al. NIPS’04]

 Multiple levels of rollout can payoff but is expensive

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

24

Monte-Carlo Planning Outline

Single State Case (multi-armed bandits)

A basic tool for other algorithms

Monte-Carlo Policy Improvement

Policy rollout

Policy Switching

Monte-Carlo Tree Search

Sparse Sampling

UCT and variants

25

Another Useful Technique:

Policy Switching

 Sometimes policy rollout can be too expensive when the
number of actions is large (time scales linearly with
number of actions)

 Sometimes we have multiple base policies and it is hard to
pick just one to use for rollout.

 Policy switching helps deal with both of these issues.

26

Another Useful Technique:

Policy Switching

 Suppose you have a set of base policies {π1, π2,…, πM}

 Also suppose that the best policy to use can depend on
the specific state of the system and we don’t know how to
select.

 Policy switching is a simple way to select which policy to
use at a given step via a simulator

27

Another Useful Technique:

Policy Switching
s

Sim(s,π1,h) Sim(s,π2,h) Sim(s,πM,h)

…

 The stochastic function Sim(s,π,h) simply samples the
h-horizon value of π starting in state s

 Implement by simply simulating π starting in s for h steps
and returning discounted total reward

 Use Bandit algorithm to select best policy and then select
action chosen by that policy

π 1 π 2

πM

28

Uniform Policy Switching

UniformPolicySwitch[{π1, π2,…, πM},h,w](s)

1. For each πi run Sim(s,πi,h) w times

2. Let i* be index of policy with best average result

3. Return action πi*(s)

s
π 1 π 2

πM

…

v11 v12 … v1w v21 v22 … v2w vM1 vM2 … vMw

…

…

…

…

…

…

…

…

…

Sim(s,πi,h) trajectories

Each simulates following

πi for h steps.

Discounted cumulative

rewards

29

Executing Policy Switching in Real World

… … s

𝜋1 𝜋2
 𝜋k

…

…

…

…

…

…

…

…

…

𝜋1 𝜋2
 𝜋k

…

…

…

…

…

…

…

…

…

𝜋2(s) 𝜋k(s’)

run policy rollout run policy rollout

Real world

state/action

sequence

Simulated

experience

30

Uniform Policy Switching: Simulator Calls

• For each policy use w calls to Sim, each using h simulator calls

• Total of Mhw calls to the simulator

• Does not depend on number of actions!

s
π 1 π 2

πM

…

…

…

…

…

…

…

…

…

…

Sim(s,πi,h) trajectories

Each simulates taking

following πi for h steps.

31

𝝐-Greedy Policy Switching

s
π 1 π 2

πM

…

v11 v12 … v1d v21 vM1 vM2

…

…

Similar to rollout we can have a non-uniform

version that takes a total number of

trajectories n as an argument

𝜖-PolicySwitch[{π1,…,πM},h,n]

Use 𝜖-Greedy as the bandit
algorithm for n pulls and return
best arm/policy.

32

Policy Switching: Quality

Let 𝜋𝑝𝑠 denote the ideal switching policy

Always pick the best policy index at any state

The value of the switching policy is at least as
good as the best single policy in the set
 It will often perform better than any single policy in set.

For non-ideal case, were bandit algorithm only picks
approximately the best arm we can add an error term to
the bound.

Theorem: For any state s, max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 .

33

Proof

We’ll use the following property.

Proposition: For any policy 𝜋 and value function 𝑉,
 if 𝑉 ≤ 𝐵𝜋 𝑉 , then 𝑉 ≤ 𝑉𝜋

Recall 𝐵𝜋 𝑉 (𝑠) = 𝑅 𝑠 + 𝑇 𝑠, 𝜋 𝑠 , 𝑠
′ ⋅ 𝑉(𝑠′)𝑠′

is the restricted Bellman backup.

So all we need to do is prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖

since this will imply that max
𝑖
𝑉𝜋𝑖 ≤ 𝑉𝜋𝑝𝑠 as desired.

Theorem: For any state s, max
𝑖
𝑉𝜋𝑖 𝑠 ≤ 𝑉𝜋𝑝𝑠 𝑠 .

34

Proof (to simply notation and without loss of generality,

assume rewards only depend on state and are deterministic)

Prove that max
𝑖
𝑉𝜋𝑖 ≤ 𝐵𝜋𝑝𝑠 max𝑖

𝑉𝜋𝑖

Let 𝑖∗ be the index of the best policy in state s.

𝐵𝜋𝑝𝑠 max𝑖
𝑉𝜋𝑖 (𝑠) = 𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑝𝑠 𝑠 , 𝑠

′ ⋅ max
𝑖
𝑉𝜋𝑖(𝑠

′)𝑠′

 ≥ 𝑅 𝑠 + max
𝑖
 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 = max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖∗ 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 ≥ max
𝑖
𝑅 𝑠 + 𝑇 𝑠, 𝜋𝑖 𝑠 , 𝑠

′ ⋅ 𝑉𝜋𝑖 𝑠
′

𝑠′

 = max
𝑖
𝑉𝜋𝑖 𝑠

35

Policy Switching Summary

Easy way to produce an improved policy from a
set of existing policies.
Will not do any worse than the best policy in your set.

Complexity does not depend on number of
actions.
So can be practical even when action space is huge,

unlike policy rollout.

Can combine with rollout for further improvement
Just apply rollout to the switching policy.

