Monte-Carlo Planning: Policy Improvement

Alan Fern
Monte-Carlo Planning Outline

• Single State Case (multi-armed bandits)
 ▶ A basic tool for other algorithms

• Monte-Carlo Policy Improvement
 ▶ Policy rollout
 ▶ Policy Switching

• Monte-Carlo Tree Search
 ▶ Sparse Sampling
 ▶ UCT and variants
Policy Improvement via Monte-Carlo

• Now consider a very large multi-state MDP.
• Suppose we have a simulator and a non-optimal policy
 ▲ E.g. policy could be a standard heuristic or based on intuition
• Can we somehow compute an improved policy?

World Simulator + Base Policy

Real World

State + reward

action
Recall: Policy Improvement Theorem

\[Q_\pi(s, a) = R(s) + \beta \sum_{s'} T(s, a, s') \cdot V_\pi(s') \]

- The Q-value function of a policy gives expected discounted future reward of starting in state \(s \), taking action \(a \), and then following policy \(\pi \) thereafter.

- Define: \(\pi'(s) = \arg\max_a Q_\pi(s, a) \)

- Theorem [Howard, 1960]: For any non-optimal policy \(\pi \) the policy \(\pi' \) a strict improvement over \(\pi \).

- Computing \(\pi' \) amounts to finding the action that maximizes the Q-function of \(\pi \)

 Can we use the bandit idea to solve this?
Policy Improvement via Bandits

\[\text{SimQ}(s, a_1, \pi) \quad \text{SimQ}(s, a_2, \pi) \quad \text{SimQ}(s, a_k, \pi) \]

- **Idea:** define a stochastic function \(\text{SimQ}(s, a, \pi) \) that we can implement and whose expected value is \(Q_\pi(s, a) \)

- Then use Bandit algorithm to select (approx) best action

How to implement \(\text{SimQ} \)?
Q-value Estimation

- SimQ might be implemented by simulating the execution of action \(a \) in state \(s \) and then following \(\pi \) thereafter
 - But for infinite horizon problems this would never finish
 - So we will approximate via finite horizon

- The \(h \)-horizon Q-function \(Q_\pi(s, a, h) \) is defined as: expected total discounted reward of starting in state \(s \), taking action \(a \), and then following policy \(\pi \) for \(h-1 \) steps

- The approximation error decreases exponentially fast in \(h \)

\[
|Q_\pi(s, a) - Q_\pi(s, a, h)| \leq \beta^h V_{\text{max}}
\]

\[
V_{\text{max}} = \frac{R_{\text{max}}}{1 - \beta}
\]
Policy Improvement via Bandits

- **Refined Idea:** define a stochastic function $\text{SimQ}(s,a,\pi,h)$ that we can implement, whose expected value is $Q_\pi(s,a,h)$

- Use Bandit algorithm to select (approx) best action

How to implement SimQ?
Policy Improvement via Bandits

SimQ(s, a, π, h)

\[
\begin{align*}
 r &= R(s, a) \quad \text{simulate a in s} \\
 s &= T(s, a) \\
 \text{for } i = 1 \text{ to } h-1 \\
 &\quad r = r + \beta^i R(s, \pi(s)) \quad \text{simulate h-1 steps of policy} \\
 &\quad s = T(s, \pi(s)) \\
\end{align*}
\]

Return \(r \)

- Simply simulate taking \(a \) in \(s \) and following policy for \(h-1 \) steps, returning discounted sum of rewards
- Expected value of SimQ(s, a, π, h) is \(Q_{\pi}(s, a, h) \) which can be made arbitrarily close to \(Q_{\pi}(s, a) \) by increasing \(h \)
Policy Improvement via Bandits

SimQ(s, a, \pi, h)

\begin{align*}
 r &= R(s, a) \\
 s &= T(s, a) \\
 \text{for } i &= 1 \text{ to } h-1 \\
 r &= r + \beta^i R(s, \pi(s)) \\
 s &= T(s, \pi(s))
\end{align*}

\text{Return } r

\text{simulate a in } s

\text{simulate } h-1 \text{ steps of policy}

\text{Trajectory under } \pi

\begin{align*}
 \text{Sum discount rewards } &= \text{SimQ}(s, a_1, \pi, h) \\
 \text{Sum discount rewards } &= \text{SimQ}(s, a_2, \pi, h) \\
 \vdots \\
 \text{Sum discount rewards } &= \text{SimQ}(s, a_k, \pi, h)
\end{align*}
Policy Improvement via Bandits

- **Refined Idea:** define a stochastic function $\text{SimQ}(s, a_i, \pi, h)$ that we can implement, whose expected value is $Q_{\pi}(s, a, h)$

- Use Bandit algorithm to select (approx) best action

Which bandit objective/algorithm to use?
Traditional Approach: Policy Rollout

UniformRollout[π,h,w](s)
1. For each a_i run SimQ(s,a_i,$π,h)$ w times
2. Return action with best average of SimQ results

SimQ(s,a_i,$π,h$) trajectories
Each simulates taking action a_i then following $π$ for $h-1$ steps.

Samples of SimQ(s,a_i,$π,h$) q_{11} q_{12} ... q_{1w} q_{21} q_{22} ... q_{2w} q_{k1} q_{k2} ... q_{kw}
Executing Rollout in Real World

Real world state/action sequence

run policy rollout

Simulated experience
Uniform Policy Rollout:
of Simulator Calls

- For each action \(w \) calls to SimQ, each using \(h \) sim calls
- Total of \(khw \) calls to the simulator

SimQ(s,a_i,\pi,h) trajectories
Each simulates taking action \(a_i \) then following \(\pi \) for \(h-1 \) steps.
Uniform Policy Rollout: PAC Guarantee

- Let a^* be the action that maximizes the true Q-function $Q_\pi(s,a)$.
- Let a' be the action returned by UniformRollout[π,h,w](s).
- Putting the PAC bandit result together with the finite horizon approximation we can derive the following:

$$w \geq \left(\frac{R_{\text{max}}}{\epsilon} \right)^2 \ln \frac{k}{\delta}$$

then with probability at least $1 - \delta$

$$|Q_\pi(s,a^*) - Q_\pi(s,a')| \leq \epsilon + \beta^h V_{\text{max}}$$

But does this guarantee that the value of UniformRollout[π,h,w](s) will be close to the value of π'?
Policy Rollout: Quality

- How good is UniformRollout[π, h, w] compared to π’?

- **Bad News.** In general for a fixed h and w there is always an MDP such that the quality of the rollout policy is arbitrarily worse than π’.

- The example MDP is somewhat involved, but shows that even small error in Q-value estimates can lead to large performance gaps compared to π’

 ▲ But this result is quite pathological
Policy Rollout: Quality

• How good is UniformRollout[π, h, w] compared to π’?

• Good News. If we make an assumption about the MDP, then it is possible to select h and w so that the rollout quality is close to π’.
 ▲ This is a bit involved.
 ▲ Assume a lower bound on the difference between the best Q-value and the second best Q-value.

• More Good News. It is possible to select h and w so that Rollout[π, h, w] is (approximately) no worse than π for any MDP.
 ▲ So at least rollout won’t hurt compared to the base policy.
 ▲ At the same time it has the potential to significantly help.
Non-Uniform Policy Rollout

• Should we consider minimizing cumulative regret?

No! We really only care about finding an (approx) best arm.
Non-Uniform Policy Rollout

PAC Setting: use **MedianElimination**

(parameterized by ϵ and δ instead of w)

- Often we are given a budget on number of samples (i.e. time per decision).
- **MedianElimination** not applicable.
Non-Uniform Policy Rollout

Simple Regret: use ε-Greedy
(parameterized by budget n on # of pulls)

- Call this ε-Rollout[π, h, n]
- n is number of samples per step
- For $\varepsilon = 0.5$ we might expect it to be better than UniformRollout for same # of total samples.
Multi-Stage Rollout

• In what follows we will use the notation Rollout[\pi] to refer to either UniformRollout[\pi,h,w] or \epsilon-Rollout[\pi,h,n].

• A single call to Rollout[\pi](s) approximates one iteration of policy iteration initialized at policy \pi

 - But only computes the action for state s rather than all states (as done by full policy iteration)!

• We can use more computation time to approximate multiple iterations of policy iteration via nesting calls to Rollout

• Gives a way to use more time in order to improve performance
Multi-Stage Rollout

Each step requires khw simulator calls for Rollout policy

Trajectories of $\text{SimQ}(s,a_i,\text{Rollout}[\pi],h)$

- Two stage: compute rollout policy of “rollout policy of π”
- Requires $(khw)^2$ calls to the simulator for 2 stages
- In general exponential in the number of stages
Rollout Summary

• We often are able to write simple, mediocre policies
 ▲ Network routing policy
 ▲ Policy for card game of Hearts
 ▲ Policy for game of Backgammon
 ▲ Solitaire playing policy

• Policy rollout is a general and easy way to improve upon such policies given a simulator

• Often observe substantial improvement, e.g.
 ▲ Compiler instruction scheduling
 ▲ Backgammon
 ▲ Network routing
 ▲ Combinatorial optimization
 ▲ Game of GO
 ▲ Solitaire
Example: Rollout for Solitaire [Yan et al. NIPS’04]

<table>
<thead>
<tr>
<th>Player</th>
<th>Success Rate</th>
<th>Time/Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Expert</td>
<td>36.6%</td>
<td>20 min</td>
</tr>
<tr>
<td>(naïve) Base Policy</td>
<td>13.05%</td>
<td>0.021 sec</td>
</tr>
<tr>
<td>1 rollout</td>
<td>31.20%</td>
<td>0.67 sec</td>
</tr>
<tr>
<td>2 rollout</td>
<td>47.6%</td>
<td>7.13 sec</td>
</tr>
<tr>
<td>3 rollout</td>
<td>56.83%</td>
<td>1.5 min</td>
</tr>
<tr>
<td>4 rollout</td>
<td>60.51%</td>
<td>18 min</td>
</tr>
<tr>
<td>5 rollout</td>
<td>70.20%</td>
<td>1 hour 45 min</td>
</tr>
</tbody>
</table>

- Multiple levels of rollout can payoff but is expensive
Monte-Carlo Planning Outline

• Single State Case (multi-armed bandits)
 ▶ A basic tool for other algorithms

• Monte-Carlo Policy Improvement
 ▶ Policy rollout
 ▶ Policy Switching

• Monte-Carlo Tree Search
 ▶ Sparse Sampling
 ▶ UCT and variants
Another Useful Technique: Policy Switching

- Sometimes policy rollout can be too expensive when the number of actions is large (time scales linearly with number of actions)

- Sometimes we have multiple base policies and it is hard to pick just one to use for rollout.

- Policy switching helps deal with both of these issues.
Another Useful Technique: Policy Switching

- Suppose you have a set of base policies \(\{\pi_1, \pi_2, \ldots, \pi_M\} \)

- Also suppose that the best policy to use can depend on the specific state of the system and we don’t know how to select.

- Policy switching is a simple way to select which policy to use at a given step via a simulator
Another Useful Technique: Policy Switching

The stochastic function $\text{Sim}(s, \pi, h)$ simply samples the h-horizon value of π starting in state s

- Implement by simply simulating π starting in s for h steps and returning discounted total reward
- Use Bandit algorithm to select best policy and then select action chosen by that policy
Uniform Policy Switching

UniformPolicySwitch[\{\pi_1, \pi_2, \ldots, \pi_M\},h,w](s)

1. For each \(\pi_i\) run Sim(s,\pi_i,h) \(w\) times
2. Let \(i^*\) be index of policy with best average result
3. Return action \(\pi_{i^*}(s)\)

Sim(s,\pi_i,h) trajectories
Each simulates following \(\pi_i\) for \(h\) steps.

Discounted cumulative rewards

\[v_{11} \ \ v_{12} \ \ldots \ v_{1w} \ \ v_{21} \ \ v_{22} \ \ldots \ v_{2w} \ \ v_{M1} \ \ v_{M2} \ \ldots \ v_{Mw} \]
Executing Policy Switching in Real World

Real world state/action sequence

Simulated experience

\[\pi_2(s) \quad \ldots \quad \pi_k(s') \]

run policy rollout

\[\pi_1 \quad \pi_2 \quad \pi_k \]

\[\ldots \]

Real world

Simulated experience
Uniform Policy Switching: Simulator Calls

- For each policy use w calls to Sim, each using h simulator calls
- Total of Mhw calls to the simulator
- Does not depend on number of actions!
ϵ-Greedy Policy Switching

- Similar to rollout we can have a non-uniform version that takes a total number of trajectories n as an argument.

ϵ-PolicySwitch[$\{\pi_1, \ldots, \pi_M\}, h, n$]

Use ϵ-Greedy as the bandit algorithm for n pulls and return best arm/policy.
Policy Switching: Quality

• Let π_{ps} denote the ideal switching policy
 ▲ Always pick the best policy index at any state

Theorem: For any state s, $\max_i V_{\pi_i}(s) \leq V_{\pi_{ps}}(s)$.

• The value of the switching policy is at least as good as the best single policy in the set
 ▲ It will often perform better than any single policy in set.
 ▲ For non-ideal case, were bandit algorithm only picks approximately the best arm we can add an error term to the bound.
Proof

Theorem: For any state s, $\max_i V_{\pi_i}(s) \leq V_{\pi ps}(s)$.

We’ll use the following property.

Proposition: For any policy π and value function V, if $V \leq B_\pi[V]$, then $V \leq V_\pi$

Recall $B_\pi[V](s) = R(s) + \sum_s T(s, \pi(s), s') \cdot V(s')$ is the restricted Bellman backup.

So all we need to do is prove that $\max_i V_{\pi_i} \leq B_{\pi ps} \left[\max_i V_{\pi_i} \right]$ since this will imply that $\max_i V_{\pi_i} \leq V_{\pi ps}$ as desired.
Proof (to simply notation and without loss of generality, assume rewards only depend on state and are deterministic)

Prove that \(\max_i V_{\pi_i} \leq B_{\pi_{ps}} \left[\max_i V_{\pi_i} \right] \)

Let \(i^* \) be the index of the best policy in state \(s \).

\[
B_{\pi_{ps}} \left[\max_i V_{\pi_i} \right](s) = R(s) + \sum_{s'} T(s, \pi_{ps}(s), s') \cdot \max_i V_{\pi_i}(s') \\
\geq R(s) + \max_i \sum_{s'} T(s, \pi_i^*(s), s') \cdot V_{\pi_i}(s') \\
= \max_i \left[R(s) + \sum_{s'} T(s, \pi_i^*(s), s') \cdot V_{\pi_i}(s') \right] \\
\geq \max_i \left[R(s) + \sum_{s'} T(s, \pi_i(s), s') \cdot V_{\pi_i}(s') \right] \\
= \max_i V_{\pi_i}(s)
\]
Policy Switching Summary

- Easy way to produce an improved policy from a set of existing policies.
 - Will not do any worse than the best policy in your set.

- Complexity does not depend on number of actions.
 - So can be practical even when action space is huge, unlike policy rollout.

- Can combine with rollout for further improvement
 - Just apply rollout to the switching policy.