
Fo c u s o n D y n a m i c S y s t e m s & C o n t r o l

 DECEMBER 2017 13

New approaches are needed to bound and minimize the risk
of AVs to reassure the public, determine insurance pricing and
ensure the long-term growth of the domain. So what type of
evidence should we require before giving a driver’s license to
an autonomous vehicle? To answer this question, consider the
major components which make up an AV. An AV is typically
equipped with multiple sensors, such as a LIDAR (a laser range
finder) and several cameras (Figure 1(1)). The readings of these
sensors are processed by algorithms that extract a model of the
current scene, like object detectors, in order to understand who’s
doing what and where. This information is then fused together
to provide the AV with its state estimate, such as position and
velocity, and that of the other agents in the scene. The AV must
then decide where to go next (a discrete decision taken by the
behavioral planner), what continuous trajectory to follow to get
there (a computation performed by the trajectory planner) and
how to actuate steering and acceleration to follow that trajectory
(performed by the trajectory tracker). Add to this the interaction

BY HOUSSAM ABBAS
MATTHEW E. O’KELLY
ALENA RODIONOVA
RAHUL MANGHARAM

DEPARTMENT OF
ELECTRICAL AND
SYSTEMS ENGINEERING
UNIVERSITY OF
PENNSYLVANIA

with other vehicles, changing weather conditions and the respect
of traffic laws, and it is clear that verifying correctness of AV
behavior is a gargantuan task.

WHOLE-AV TESTING

Such considerations have led AV researchers to formal meth-
ods to provide a high level of assurance. This term encom-

passes a wide field of theory, techniques and tools for answering
the following question: Given a mathematical model of a System
Under Test (SUT), and a formal specification of correct system
behavior, does the SUT model satisfy the specification? A formal
tool’s answer is complete and sound 1 . If the SUT model is incor-
rect, the tool will find an example violation, also called a counter-
example. And if the tool returns that “The model is correct”, then
the model is indeed correct and does not violate the specification.
Unlike testing, there is no question of ‘Could we have found a
bug if we had tested more?’

Formal methods applied to the problem of AV verification

1 Though some provide approximate answers for more complicated models.

A DRIVER’S LICENSE TEST FOR

FIGURE 1 The AVCAD toolchain: (1) A Scenario Description Language allows quick creation of driving scenarios (2) The scenarios are translated
into formats that can be processed by the testing and verification tools (3) Robust Testing [G. Fainekos] (4) Formal Verification Engine [S. Kong] (5)
Requirement violations are visualized for an intuitive understanding of the violation.

 A
utonomous vehicles (AVs) have already driven millions of miles on
public roads, but even the simplest maneuvers such as a lane change
or vehicle overtake have not been certified for safety. Current meth-
odologies for testing of Advanced Driver Assistance Systems, such
as Adaptive Cruise Control, cannot be directly applied to determine
AV safety as the AV actively makes decisions using its perception,

planning and control systems for both longitudinal and lateral motion. These
systems increasingly use machine learning components whose safety is hard to
guarantee across a range of driving scenarios and environmental conditions.

DRIVERLESS VEHICLES

14 DECEMBER 2017

include theorem proving [1, 2], reachability analysis [3], syn-
thesis [4, 5, 6], and maneuver design [7]. Theorem proving is an
interactive technique in which the computer is largely responsible
for demonstrating that the model satisfies the specification, with
occasional help from the user. The latter provides lemmas and
axioms that the tool leverages to advance the proof towards its
conclusion. While this interactivity allows us to tackle more com-
plex models, it also limits the scalability of the approach.Addi-
tionally, existing work such as [1] utilizes unrealistically conserva-
tive lemmas (such as, vehicle spacing of at least 291 feet) [8].

Reachability analysis is a popular formal technique where
the reachable state space of the model is over-approximated and
tested for intersection with a set of unsafe states. Reachability
analysis is used in [9] to verify the operation of the AV during
navigation. This provides an extension of on-board diagnostics
to whole-AV operation, where the diagnosis does not concern one
component’s requirements, but the safety of the entire AV.

Another approach is to design correct-by-construction con-
trollers from pre-verified maneuvers. The basic idea is that one
builds a library of maneuvers, like Left-Turn and Right-Turn, and
verifies (by Lyapunov analysis, say) that the car can perform these
maneuvers from any initial state. Online, we restrict the AV’s
motion to be a composition of such maneuvers. This technique
is closely related to motion planning algorithms and is limited to
specific types of correctness criteria, like dynamical feasibility.
Along these lines, a vigorous area of research concerns control-
ler synthesis from formal specifications [4, 5], where formal
verification techniques are adapted to create controllers that are
correct relative to specifications in some temporal logic. Most of
this work requires a discretization of the AV model’s state-space
and faces computational complexity barriers. Nonetheless, it
forms the basis of a promising approach that divides the verifica-
tion challenge into a design phase where correct-by-construction
controllers are synthesized, and a post-design phase where these
are used in a whole-AV verification effort.

COMBINING TESTING AND FORMAL VERIFICATION FOR
WHOLE-CAR TESTING IN IDEALIZED ENVIRONMENTS

The guidance issued by NHTSA on the elements of a safety
assurance case for AVs [10] is a starting point for standard-

izing the type of safety and correctness evidence needed for
deployment of AVs. However, it does not prescribe how such
evidence should be obtained. AV correctness, including safety,
is a continuous spectrum: we should be able to rank vehicles by
their relative safety, and compare one AV’s performance across
different scenarios. This is routinely done for human-driven
cars, which receive safety ratings based, for example, on their
crash performance and the technology they carry, like collision
sensors. For AVs, such a continuous measure of correctness can

and should be obtained at design time, and measured through-
out the design cycle.

To illustrate the sorts of requirements that need to be formal-
ized and measured, consider a Highway On-ramp scenario (Fig-
ure 2). The ego-vehicle, which is the AV under test, must merge
while satisfying the following requirements:

1. At all times, stay at least 2 m from any fixed obstacle.
2. If the ego-vehicle is already in the merge point and an

approaching vehicle on the highway is closer than 6 m, reach a
speed of 45 mph within 6 sec.

3. Either reach the green rectangle within 20 secs or stay at the
starting position until the road is clear.

These requirements increase in complexity: the first is a static
no-collision requirement, the second adds a reactive element,
and the third adds a pure temporal element. What are meaning-
ful continuous measures of correctness for these requirements?
For Req. 1, a meaningful measure ρ would be the minimum dis-
tance between the vehicle and any fixed obstacle over the course
of the simulation. Req. 2 is more complicated since it involves
different possibilities. It is reasonable to say that the correct-
ness measure ρ in this case equals either the minimum distance

between the two cars if it is above 7 m (so the minimum speed
requirement is irrelevant), otherwise it equals the difference
between the maximum car speed and 45 mph over the 6 sec win-
dow. What about the third requirement? Things are even more
complicated because of the temporal ‘until’ component: should
the correctness measure reward entering the intersection earlier?
Should it differentiate between two different behaviors after the
road clears? And what if all three requirements are part of the
vehicle specification? How do we balance between all of them?

It becomes clear that we need a systematic way of calculating
this correctness measure for arbitrary specifications involv-
ing reactive, spatio-temporal requirements. Such a measure of
correctness is provided by the robustness function of Metric Tem-
poral Logic (MTL) requirements [11]. Specifically, it is possible
to express the AV requirements as a formula ϕ in MTL, which is
a formal mathematical language for writing temporal specifica-

FIGURE 3 Hybrid Adaptive Cruise Controller. In Region 1 Speed
Control, the AV tries to maintain a desired speed. It switches to
Headway Control if a minimum time to collision constraint is violated. In
Headway Control, the AV tries to maintain a given separation from the
leading vehicle. R is the spacing to lead vehicle. In Region 3, the vehicle
brakes to avoid collision.

FIGURE 2 On-ramp scenario.

 DECEMBER 2017 15

tions. Using a formal logic, like MTL, removes ambiguity from
the requirements, and enables the use of automatic correctness
checking tools that go a long way toward flushing out difficult
bugs that could not be found by manually-created test cases.

Given a (reachability) MTL formula ϕ, the highest level of
assurance is provided by reachability analysis, described
earlier. To run such a powerful tool requires the development
of an appropriate mathematical model of the whole AV, which
is very challenging. Moreover, reachability tools can have very
long runtimes.

To counter the second issue, the robustness ρϕ of ϕ can be lev-
eraged [12]. The robustness ρϕ (x) of system execution x is a real
number that measures two things about x: its sign tells whether x
satisfies the spec (ρϕ (x) > 0) or violates it (ρϕ (x) < 0). Moreover,
the trajectory x can be disturbed by an amount |ρϕ (x)| with-
out changing its truth value (e.g., if it is correct, the disturbed
trajectory is also correct). Thus, robustness is a continuous mea-
sure of correctness of the AV relative to the desired properties: if
ρϕ (x1) > ρϕ (x2) > 0, this means x1 is more robustly correct
than x2 since it can sustain a greater disturbance without violat-
ing the correctness specification.

The idea behind robustness-guided verification [13] is that we
can first search the set of behaviors to find those executions with
low robustness. Assuming continuity of behavior, low-robustness
executions are surrounded by other low-robustness executions,
and possibly by executions with negative robustness (Figure 4).
The latter, then, are violations of ϕ. The reachability tool is run on
a neighborhood of these low-robustness executions: rather than
waste time on robustly-correct behavior, we focus on behavior
that may reveal bugs. Formal verification and robustness, and
the tools that implement them, are illustrated in the following
example from the AV testing tool AVCAD [14].

Scenario 1 (On-Ramp, Figure 2) There are two cars, the AV
a1 and an environment vehicle a2. The AV is getting on the high-
way via an on-ramp, which is a cubic spline. The shape of the
on-ramp matters because the tracking performance of the AV
is altered by sharp curvatures. The AV uses a hybrid Adaptive
Cruise Controller (ACC) shown in Figure 3. This ACC design
has been utilized extensively on real vehicles, but is designed
for operating conditions involving highway driving tasks with
straight roads.

AVCAD, Figure 1, supports two tools: S-TaLiRo [12] and
dReach [15]. S-TaLiRo is a specification-guided automatic test
generator for cyber-physical systems. By minimizing ρϕ over
the space of AV behaviors x, S-TaLiRo can find many different

ways in which the AV violates the specification, thus promoting
good coverage of the test space. dReach is a formal reachability
tool that can exhaustively determine whether a dynamical sys-
tem violates its specification.

Robust testing in S-TaLiRo was able to identify a design flaw
within 8 seconds. In contrast, dReach also returned UNSAFE, but
ran for 5+ hours. This raises the general point that when analyz-
ing new controller designs, robust testing produces interpretable
results more quickly than reachability. Once major design issues
have been addressed in testing, then reachability can be used to
certify the scenario as error-free, or find to corner case errors.

Additionally, robust testing can quickly identify potential safe
sub-regions. Figure 4 shows the robustness of system trajec-

tories as a function of the initial velocity of the environment
vehicle, its x-coordinate, and the goal region of the AV. Green
points denote safe executions. Figure 4 suggests that the system
is robust on longer ramps (AV goal between 39 and 50 meters).
dReach is able to prove that this region is safe in about 3 min-
utes, which should be contrasted with the 5+ hours it took to pro-
cess the entire set of behaviors. This approach is useful because it
can precisely answer regulatory questions such as: under what
conditions is the system safe to operate?

INCORPORATING A WORLD SIMULATOR INTO
WHOLE-AV TESTING

An idealized mathematical model of the environment and
other cars is not required for a testing tool like S-TaLiRo.

The latter only requires the ability to execute the system under
test (SUT). The SUT, in fact, could be the actual AV software
that will execute on the physical hardware. Therefore, we can
leverage advanced simulators that provide the AV perception
pipeline with realistic input, such as video and depth data. The

ABOUT THE AUTHORS
Houssam Abbas is a Postdoctoral Fellow
in the Department of Electrical and Systems
Engineering at the University of Pennsylvania.
His research interests include formal verification
and testing of cyber-physical systems.

Matthew E. O’Kelly is a doctoral candidate
in the Department of Electrical and Systems
Engineering at the University of Pennsylvania,
with research interests that include design of
safe autonomous systems.

Fo c u s o n D y n a m i c S y s t e m s & C o n t r o l

FIGURE 4
Robustness
of On-Ramp
scenario as
a function of
3 initial state
variables
(1000 runs).

Alena Rodionova is a doctoral candidate in the
Department of Electrical and Systems Engineering at
the University of Pennsylvania with research interests in
design of safe autonomous systems.

Rahul Mangharam is an Associate Professor in the De-
partment of Electrical and Systems Engineering at the
University of Pennsylvania whose interests are at the inter-
section of machine learning, control systems and formal
methods for life-critical systems. He received the 2016 US

Presidential Early Career Award for Scientists and Engineers (PECASE).

perception code then processes this input and extracts from it
information for the AV’s controllers, such as position and speed
of obstacles in the environment.

In [16], a test harness is presented that allows an AV to drive
in a simulated world in real-time, as illustrated in Figure 5. A
notable aspect of this harness is that it allows weather condi-
tions to vary, thus stressing the perception pipeline. This is very
important: the 2016 fatal accident in Florida involving a Tesla
Auto-Pilot was partially due to a failure of the car’s visual sensors
to detect the truck blocking the AV’s path against the bright sky.
Issues like validity of simulated data are also addressed in [16].

Scenario 2 The game Grand Theft Auto V (GTA) is used as
a world simulator. At a T-junction in the GTA city map, the ob-
jective of the AV is to make a safe right turn, and obey the Stop
Sign. Robust testing automatically found a non-trivial accident
between the AV and another car in under 100 simulations. This
was due to the right combination of poor lighting (robust test-
ing automatically chose twilight conditions) and similar speeds
for the AV and another car.

MOVING FORWARD: TOWARD RISK ANALYSIS FOR
AUTONOMOUS VEHICLES

Ultimately, after all the testing and verification, non-
technical issues like insurance and liability must be settled

for autonomous vehicles to become a commercial reality.
Insurance speaks the language of risk: what is the probability
of a terrible accident in this city? How often is this car model
involved in minor collisions? With autonomous vehicles, we
have a chance to answer these questions before the AV hits
the road: by a careful choice of simulations, and with large
amounts of traffic data, we can build a risk profile of an AV
to guide the insurance pricing. The above techniques, from
formal verification to testing, further this goal by giving
complementary ways of quantifying the likelihood of an
accident and its severity. An autonomous vehicle thus brings
together disparate fields of inquiry, and may well be the first
autonomous robot that deals directly with social questions like
“What level of risk are we prepared to explicitly accept, and for
what benefit and to whom?” n

REFERENCES
1 Sarah M. Loos, André Platzer, and Ligia
Nistor. Adaptive cruise control: Hybrid,
distributed, and now formally verified. In
International Symposium on Formal Meth-
ods, Springer, 2011, pp. 42–56.

2 Albert Rizaldi and Matthias Althoff.
Formalising traffic rules for accountability
of autonomous vehicles. In 2015 IEEE 18th
International Conference on Intelligent
Transportation Systems, IEEE, 2015,
pp. 1658–1665.
3 Matthias Althoff and John M. Dolan. On-
line verification of automated road vehicles
using reachability analysis. IEEE Transactions
on Robotics, 30(4), 2014, pp. 903–918.

4 Tichakorn Wongpiromsarn, Ufuk Topcu,
and Richard M. Murray. Receding horizon
control for temporal logic specifications. In
Proceedings of the 13th ACM international
conference on Hybrid systems: computation

and control, ACM, 2010, pp. 101–110.
5 Aakar Mehra, Wen-Loong Ma, Forrest
Berg, Paulo Tabuada, Jessy W. Grizzle, and
Aaron D. Ames. Adaptive cruise control: Ex-
perimental validation of advanced control-
lers on scale-model cars. In 2015 American
Control Conference (ACC), IEEE, 2015,
pp. 1411–1418.
6 Werner Damm, Hans-Jörg Peter, Jan
Rakow, and Bernd Westphal. Can we build
it: formal synthesis of control strategies
for cooperative driver assistance systems.
Mathematical Structures in Computer Sci-
ence, 23(04), 2013, pp. 676–725.
7 Anirudha Majumdar, Mark Tobenkin,
and Russ Tedrake. Algebraic verification for
parameterized motion planning libraries.
In 2012 American Control Conference (ACC),
IEEE, 2012, pp. 250–257.
8 Theodore P. Pavlic, Paolo A.G. Sivilotti,

Alan D. Weide, and Bruce W. Weide. Com-
ments on adaptive cruise control: hybrid,
distributed, and now formally verified. OSU
CSE Dept TR22, 2011.
9 Matthias Althoff and John M. Dolan.
Reachability computation of low-order
models for the safety verification of high-
order road vehicle models. In American
Control Conference (ACC), 2012, IEEE, 2012,
pp. 3559–3566.
10 NHTSA. Federal automated vehicles
policy, September 2016.
11 Ron Koymans. Specifying real-time
properties with metric temporal logic. Real-
Time Systems, 2(4), 1990, pp. 255–299.
12 Yashwanth S. R. Annapureddy and
Georgios E. Fainekos. Ant colonies for tem-
poral logic falsification of hybrid systems. In
Proc. of the 36th Annual Conference of IEEE
Industrial Electronics, 2010, pp. 91–96.

13 Houssam Abbas, Matthew O’Kelly, and
Rahul Mangharam. Relaxed decidability and
the robust semantics of metric temporal
logic: Technical report. University of Penn-
sylvania Scholarly Commons, 2017.

14 Matthew O’Kelly, Houssam Abbas, and
Rahul Mangharam. Computer-aided design
for safe autonomous vehicles. In Resilience
Week, 2017.

15 Soonho Kong, Sicun Gao, Wei Chen, and
Edmund M. Clarke. dreach: Delta-reachabil-
ity analysis for hybrid systems. In Tools and
Algorithms for the Construction and Analysis
of Systems-21st International Conference,
TACAS 2015, 2015, pp. 200–205.

16 Houssam Abbas, Matthew O’Kelly,
Alena Rodionova, and Rahul Mangharam.
Safe at any speed: A simulation-based test
harness for autonomous vehicles. 2018.
Submitted.

FIGURE 5 The test harness. (Left) Robustness-guided search for unsafe behavior. The harness selects the initial position and velocity of the
AV. It also selects initial environment conditions: positions and velocities of other cars, and time of day, which allows control of the illumination
conditions. This initialization is sent to the world simulator (here, GTA), which simulates the scenario in lock-step with the AV code. Every frame
produced by the game is sent to the AV to be processed by its perception pipeline. The AV controllers then compute the next actuation that is sent
to the game to move the AV. (Middle) To validate simulation results, the perception code is run on simulated frames (from the world simulator)
and on real datasets, and the performances are compared. (Right) The visual complexity of simulated and real datasets are compared to further
assess whether simulated data can act as proxy for real data.

16 DECEMBER 2017

