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New approaches are needed to bound and minimize the risk 
of AVs to reassure the public, determine insurance pricing and 
ensure the long-term growth of the domain. So what type of 
evidence should we require before giving a driver’s license to 
an autonomous vehicle? To answer this question, consider the 
major components which make up an AV. An AV is typically 
equipped with multiple sensors, such as a LIDAR (a laser range 
finder) and several cameras (Figure 1(1)). The readings of these 
sensors are processed by algorithms that extract a model of the 
current scene, like object detectors, in order to understand who’s 
doing what and where. This information is then fused together 
to provide the AV with its state estimate, such as position and 
velocity, and that of the other agents in the scene. The AV must 
then decide where to go next (a discrete decision taken by the 
behavioral planner), what continuous trajectory to follow to get 
there (a computation performed by the trajectory planner) and 
how to actuate steering and acceleration to follow that trajectory 
(performed by the trajectory tracker). Add to this the interaction 
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with other vehicles, changing weather conditions and the respect 
of traffic laws, and it is clear that verifying correctness of AV 
behavior is a gargantuan task.

WHOLE-AV TESTING

Such considerations have led AV researchers to formal meth-
ods to provide a high level of assurance. This term encom-

passes a wide field of theory, techniques and tools for answering 
the following question: Given a mathematical model of a System 
Under Test (SUT), and a formal specification of correct system 
behavior, does the SUT model satisfy the specification? A formal 
tool’s answer is complete and sound 1 . If the SUT model is incor-
rect, the tool will find an example violation, also called a counter-
example. And if the tool returns that “The model is correct”, then 
the model is indeed correct and does not violate the specification. 
Unlike testing, there is no question of ‘Could we have found a 
bug if we had tested more?’

Formal methods applied to the problem of AV verification 

1 Though some provide approximate answers for more complicated models.

A DRIVER’S LICENSE TEST FOR

FIGURE 1  The AVCAD toolchain: (1) A Scenario Description Language allows quick creation of driving scenarios (2) The scenarios are translated 
into formats that can be processed by the testing and verification tools (3) Robust Testing [G. Fainekos] (4) Formal Verification Engine [S. Kong] (5) 
Requirement violations are visualized for an intuitive understanding of the violation.

 A
utonomous vehicles (AVs) have already driven millions of miles on 
public roads, but even the simplest maneuvers such as a lane change 
or vehicle overtake have not been certified for safety. Current meth-
odologies for testing of Advanced Driver Assistance Systems, such 
as Adaptive Cruise Control, cannot be directly applied to determine 
AV safety as the AV actively makes decisions using its perception, 

planning and control systems for both longitudinal and lateral motion. These 
systems increasingly use machine learning components whose safety is hard to 
guarantee across a range of driving scenarios and environmental conditions. 

DRIVERLESS VEHICLES
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include theorem proving [1, 2], reachability analysis [3], syn-
thesis [4, 5, 6], and maneuver design [7]. Theorem proving is an 
interactive technique in which the computer is largely responsible 
for demonstrating that the model satisfies the specification, with 
occasional help from the user. The latter provides lemmas and 
axioms that the tool leverages to advance the proof towards its 
conclusion. While this interactivity allows us to tackle more com-
plex models, it also limits the scalability of the approach.Addi-
tionally, existing work such as [1] utilizes unrealistically conserva-
tive lemmas (such as, vehicle spacing of at least 291 feet) [8]. 

Reachability analysis is a popular formal technique where 
the reachable state space of the model is over-approximated and 
tested for intersection with a set of unsafe states. Reachability 
analysis is used in [9] to verify the operation of the AV during 
navigation. This provides an extension of on-board diagnostics 
to whole-AV operation, where the diagnosis does not concern one 
component’s requirements, but the safety of the entire AV.

Another approach is to design correct-by-construction con-
trollers from pre-verified maneuvers. The basic idea is that one 
builds a library of maneuvers, like Left-Turn and Right-Turn, and 
verifies (by Lyapunov analysis, say) that the car can perform these 
maneuvers from any initial state. Online, we restrict the AV’s 
motion to be a composition of such maneuvers. This technique 
is closely related to motion planning algorithms and is limited to 
specific types of correctness criteria, like dynamical feasibility. 
Along these lines, a vigorous area of research concerns control-
ler synthesis from formal specifications [4, 5], where formal 
verification techniques are adapted to create controllers that are 
correct relative to specifications in some temporal logic. Most of 
this work requires a discretization of the AV model’s state-space 
and faces computational complexity barriers. Nonetheless, it 
forms the basis of a promising approach that divides the verifica-
tion challenge into a design phase where correct-by-construction 
controllers are synthesized, and a post-design phase where these 
are used in a whole-AV verification effort.

COMBINING TESTING AND FORMAL VERIFICATION FOR 
WHOLE-CAR TESTING IN IDEALIZED ENVIRONMENTS

The guidance issued by NHTSA on the elements of a safety 
assurance case for AVs [10] is a starting point for standard-

izing the type of safety and correctness evidence needed for 
deployment of AVs. However, it does not prescribe how such 
evidence should be obtained. AV correctness, including safety, 
is a continuous spectrum: we should be able to rank vehicles by 
their relative safety, and compare one AV’s performance across 
different scenarios. This is routinely done for human-driven 
cars, which receive safety ratings based, for example, on their 
crash performance and the technology they carry, like collision 
sensors. For AVs, such a continuous measure of correctness can 

and should be obtained at design time, and measured through-
out the design cycle.

To illustrate the sorts of requirements that need to be formal-
ized and measured, consider a Highway On-ramp scenario (Fig-
ure 2). The ego-vehicle, which is the AV under test, must merge 
while satisfying the following requirements:

1. At all times, stay at least 2 m from any fixed obstacle.
2. If the ego-vehicle is already in the merge point and an 

approaching vehicle on the highway is closer than 6 m, reach a 
speed of 45 mph within 6 sec.

3. Either reach the green rectangle within 20 secs or stay at the 
starting position until the road is clear.

These requirements increase in complexity: the first is a static 
no-collision requirement, the second adds a reactive element, 
and the third adds a pure temporal element. What are meaning-
ful continuous measures of correctness for these requirements? 
For Req. 1, a meaningful measure ρ would be the minimum dis-
tance between the vehicle and any fixed obstacle over the course 
of the simulation. Req. 2 is more complicated since it involves 
different possibilities. It is reasonable to say that the correct-
ness measure ρ in this case equals either the minimum distance 

between the two cars if it is above 7 m (so the minimum speed 
requirement is irrelevant), otherwise it equals the difference 
between the maximum car speed and 45 mph over the 6 sec win-
dow. What about the third requirement? Things are even more 
complicated because of the temporal ‘until’ component: should 
the correctness measure reward entering the intersection earlier? 
Should it differentiate between two different behaviors after the 
road clears? And what if all three requirements are part of the 
vehicle specification? How do we balance between all of them?

It becomes clear that we need a systematic way of calculating 
this correctness measure for arbitrary specifications involv-
ing reactive, spatio-temporal requirements. Such a measure of 
correctness is provided by the robustness function of Metric Tem-
poral Logic (MTL) requirements [11]. Specifically, it is possible 
to express the AV requirements as a formula ϕ in MTL, which is 
a formal mathematical language for writing temporal specifica-

FIGURE 3  Hybrid Adaptive Cruise Controller. In Region 1 Speed 
Control, the AV tries to maintain a desired speed. It switches to 
Headway Control if a minimum time to collision constraint is violated. In 
Headway Control, the AV tries to maintain a given separation from the 
leading vehicle. R is the spacing to lead vehicle. In Region 3, the vehicle 
brakes to avoid collision.

FIGURE 2  On-ramp scenario.
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tions. Using a formal logic, like MTL, removes ambiguity from 
the requirements, and enables the use of automatic correctness 
checking tools that go a long way toward flushing out difficult 
bugs that could not be found by manually-created test cases.

Given a (reachability) MTL formula ϕ, the highest level of 
assurance is provided by reachability analysis, described 
earlier. To run such a powerful tool requires the development 
of an appropriate mathematical model of the whole AV, which 
is very challenging. Moreover, reachability tools can have very 
long runtimes.

To counter the second issue, the robustness ρϕ of ϕ can be lev-
eraged [12]. The robustness ρϕ (x) of system execution x is a real 
number that measures two things about x: its sign tells whether x 
satisfies the spec (ρϕ (x) > 0) or violates it (ρϕ (x) < 0). Moreover, 
the trajectory x can be disturbed by an amount |ρϕ (x)| with-
out changing its truth value (e.g., if it is correct, the disturbed 
trajectory is also correct). Thus, robustness is a continuous mea-
sure of correctness of the AV relative to the desired properties: if  
ρϕ (x1) > ρϕ (x2) > 0, this means x1 is more robustly correct 
than x2 since it can sustain a greater disturbance without violat-
ing the correctness specification.

The idea behind robustness-guided verification [13] is that we 
can first search the set of behaviors to find those executions with 
low robustness. Assuming continuity of behavior, low-robustness 
executions are surrounded by other low-robustness executions, 
and possibly by executions with negative robustness (Figure 4). 
The latter, then, are violations of ϕ. The reachability tool is run on 
a neighborhood of these low-robustness executions: rather than 
waste time on robustly-correct behavior, we focus on behavior 
that may reveal bugs. Formal verification and robustness, and 
the tools that implement them, are illustrated in the following 
example from the AV testing tool AVCAD [14].

Scenario 1 (On-Ramp, Figure 2) There are two cars, the AV 
a1 and an environment vehicle a2. The AV is getting on the high-
way via an on-ramp, which is a cubic spline. The shape of the 
on-ramp matters because the tracking performance of the AV 
is altered by sharp curvatures. The AV uses a hybrid Adaptive 
Cruise Controller (ACC) shown in Figure 3. This ACC design 
has been utilized extensively on real vehicles, but is designed 
for operating conditions involving highway driving tasks with 
straight roads.

AVCAD, Figure 1, supports two tools: S-TaLiRo [12] and 
dReach [15]. S-TaLiRo is a specification-guided automatic test 
generator for cyber-physical systems. By minimizing ρϕ over 
the space of AV behaviors x, S-TaLiRo can find many different 

ways in which the AV violates the specification, thus promoting 
good coverage of the test space. dReach is a formal reachability 
tool that can exhaustively determine whether a dynamical sys-
tem violates its specification.

Robust testing in S-TaLiRo was able to identify a design flaw 
within 8 seconds. In contrast, dReach also returned UNSAFE, but 
ran for 5+ hours. This raises the general point that when analyz-
ing new controller designs, robust testing produces interpretable 
results more quickly than reachability. Once major design issues 
have been addressed in testing, then reachability can be used to 
certify the scenario as error-free, or find to corner case errors.

Additionally, robust testing can quickly identify potential safe 
sub-regions. Figure 4 shows the robustness of system trajec-

tories as a function of the initial velocity of the environment 
vehicle, its x-coordinate, and the goal region of the AV. Green 
points denote safe executions. Figure 4 suggests that the system 
is robust on longer ramps (AV goal between 39 and 50 meters). 
dReach is able to prove that this region is safe in about 3 min-
utes, which should be contrasted with the 5+ hours it took to pro-
cess the entire set of behaviors. This approach is useful because it 
can precisely answer regulatory questions such as: under what 
conditions is the system safe to operate?

INCORPORATING A WORLD SIMULATOR INTO   
WHOLE-AV TESTING

An idealized mathematical model of the environment and 
other cars is not required for a testing tool like S-TaLiRo. 

The latter only requires the ability to execute the system under 
test (SUT). The SUT, in fact, could be the actual AV software 
that will execute on the physical hardware. Therefore, we can 
leverage advanced simulators that provide the AV perception 
pipeline with realistic input, such as video and depth data. The 
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FIGURE 4  
Robustness 
of On-Ramp 
scenario as 
a function of 
3 initial state 
variables 
(1000 runs).
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perception code then processes this input and extracts from it 
information for the AV’s controllers, such as position and speed 
of obstacles in the environment.

In [16], a test harness is presented that allows an AV to drive 
in a simulated world in real-time, as illustrated in Figure 5. A 
notable aspect of this harness is that it allows weather condi-
tions to vary, thus stressing the perception pipeline. This is very 
important: the 2016 fatal accident in Florida involving a Tesla 
Auto-Pilot was partially due to a failure of the car’s visual sensors 
to detect the truck blocking the AV’s path against the bright sky. 
Issues like validity of simulated data are also addressed in [16].

Scenario 2 The game Grand Theft Auto V (GTA) is used as 
a world simulator. At a T-junction in the GTA city map, the ob-
jective of the AV is to make a safe right turn, and obey the Stop 
Sign. Robust testing automatically found a non-trivial accident 
between the AV and another car in under 100 simulations. This 
was due to the right combination of poor lighting (robust test-
ing automatically chose twilight conditions) and similar speeds 
for the AV and another car.

MOVING FORWARD: TOWARD RISK ANALYSIS FOR 
AUTONOMOUS VEHICLES

Ultimately, after all the testing and verification, non-
technical issues like insurance and liability must be settled 

for autonomous vehicles to become a commercial reality. 
Insurance speaks the language of risk: what is the probability 
of a terrible accident in this city? How often is this car model 
involved in minor collisions? With autonomous vehicles, we 
have a chance to answer these questions before the AV hits 
the road: by a careful choice of simulations, and with large 
amounts of traffic data, we can build a risk profile of an AV 
to guide the insurance pricing. The above techniques, from 
formal verification to testing, further this goal by giving 
complementary ways of quantifying the likelihood of an 
accident and its severity. An autonomous vehicle thus brings 
together disparate fields of inquiry, and may well be the first 
autonomous robot that deals directly with social questions like 
“What level of risk are we prepared to explicitly accept, and for 
what benefit and to whom?” n
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FIGURE 5  The test harness. (Left) Robustness-guided search for unsafe behavior. The harness selects the initial position and velocity of the 
AV. It also selects initial environment conditions: positions and velocities of other cars, and time of day, which allows control of the illumination 
conditions. This initialization is sent to the world simulator (here, GTA), which simulates the scenario in lock-step with the AV code. Every frame 
produced by the game is sent to the AV to be processed by its perception pipeline. The AV controllers then compute the next actuation that is sent 
to the game to move the AV. (Middle) To validate simulation results, the perception code is run on simulated frames (from the world simulator) 
and on real datasets, and the performances are compared. (Right) The visual complexity of simulated and real datasets are compared to further 
assess whether simulated data can act as proxy for real data.
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