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Abstract—This paper presents hybrid automaton modeling,
comparative model validation, and formal verification of stability
through reachability analysis of PWM DC-DC converters. Con-
formance degree provides a measure of closeness between the
proposed hybrid automaton models and experimental data. Non-
determinism due to variations in circuit parameters is modeled
using interval matrices. In direct contrast to the unsound and
computationally-intensive Monte Carlo simulation, reachability
analysis are introduced to overapproximate the set of reachable
states and ensure stable operation of PWM DC-DC converters.
Using a 200 W experimental prototype of a buck converter,
hybrid automaton models of open-loop and hysteresis-controlled
converters are first validated against experimental data using
their conformance degrees. Next, converter stability is formally
verified through reachability analysis, and informally validated
using Monte Carlo simulations and experimental results.

Index Terms—DC-DC converter, formal verification, hybrid
automaton, model validation, reachability analysis.

I. INTRODUCTION

MODELING and control of PWM DC-DC converters
require building an abstract model that reasonably

matches the experimental data obtained from a prototype, and
ensuring converter’s proper operation despite parametric un-
certanity. Conventional analysis techniques involve simulation-
based Monte Carlo paradigms [1]–[5]. However, considering
all possible parameter variations and initial conditions is com-
putationally prohibitive. The boundaries of state trajectories
can be found from average-value models [6]–[9]. We use
rigorous model validation paradigms [10] by employing the
conformance degree to quantify the closeness between the
abstract model waveforms and experimental data [11]. Stable
converter operation is formally verified using the reachability
analysis. It overapproximates the set of all possible reachable
states (i.e., the reach sets) from a given set of initial states and
parameter values. One can then confidently ascertain stable
converter operation if the reach sets remain within a desired
region of the state space for a given time span.

General reachability analysis tools include, but are not
limited to, HyTech [12], [13], PHAVer [14], UPPAAL [15],
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HSolver [16], d/dt [17], Flow* [18], and SpaceEx [19]–
[21]. To effectively use such model checking tools, hybrid
automaton models of DC-DC converters are required [22].
Hybrid automaton modeling of DC-DC converters is presented
by the authors in [23]–[25], and others in [26]–[29]. However,
[26]–[28] do not consider component losses/variations and the
discontinuous conduction mode (DCM), and do not perform
the reachability analysis. PHAVer in [30] computes the reach
sets for an open-loop boost converter, but does not include
DCM or component losses. MATLAB/Ellipsoidal Toolbox is
used in [31] for the reachability analysis of DC-DC converters.
However, Ellipsoidal-based set computations suffer from the
curse of dimensionality. SpaceEx (the successor of PHAVer)
scales quite efficiently, and is used as the reachability analysis
tool in this paper. The main contributions of this paper are:

• The hybrid automaton models for DC-DC convert-
ers are automatically generated, validated against
Simulink/Stateflow, PLECS simulations, and hardware
measurements, and verified using reachability analysis in
SpaceEx. These models include component nonidealities
and different operational modes.

• The conformance degree of the hybrid automaton models
validates these against the experimental data, by provid-
ing a proximity measure between executions/behaviors of
these two in both time and space.

• Non-determinism due to parametric variations is modeled
using interval matrices, which results in a set-valued
additive input term in the system dynamics.

• The reachability analysis achieves a fixed point where
there are no other reach sets (i.e., the model output will
remain within reach sets as t → ∞). It is impossible to
get such success through Monte Carlo analysis.

The remainder of this paper is organized as follows: hybrid
automaton modeling is discussed in SECTION II. Application
of conformance degree for model validation is discussed
in SECTION III. SECTION IV uses interval analysis to
model the non-determinism caused by the parameter vari-
ation. SpaceEx-based reachability analysis is discussed in
SECTION V. SECTION VI validates the developed models
against a 200 W buck converter prototype using the confor-
mance degree, formally verifies the model properties using
reachability analysis, and presents comparison with the Monte
Carlo simulation. SECTION VII concludes the paper.
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Fig. 1. Topologies, operational modes, and hybrid automaton modeling of a
DC-DC buck converter.

II. HYBRID AUTOMATON MODELING

A. Hybrid Automaton Model Syntax and Semantics

DC-DC converters exhibit both continuous and discrete be-
haviors due to the presence of passive elements and switching
components, respectively. Hybrid automaton modeling [32],
[33] integrates resulting differential equations and finite state
machines in a single formalism. The state of a hybrid automa-
ton model may change in two ways,i.e., through a continuous
flow trajectory within a given topology, and through a discrete
transition between two given topologies. A topology is defined
as the circuit configuration in each switching sub-interval.

Definition 2.1: A hybrid automaton model is defined by a
tuple H = 〈Q,X, init, U, inv,E,G, F, g, h〉, where
• Q = {q1, q2, ...., qN} is a finite set of topologies.
• X ⊆ Rn represents continuous state variables, with x′i

being the value of the ith state at the end of a transition.
• init ⊂ Q0 × X0 is a set of initial conditions, such that
Q0 ⊆ Q and X0 ⊆ X .

• U = {u1, u2, ...uN} forms the input for each topology.
• inv : Q → 2X is a mapping that assigns an invariant
inv (qi) ⊆ X for each topology in Q. 2X denotes the
power set, i.e., the set of all subsets of X . An invariant
inv (qi) ⊆ X is a property of the hybrid automaton
model that must be satisfied by all reach sets for a given
topology qi. Once an invariant is violated, the real time τ
is stopped, forcing the continuous state to stop evolving
within a topology. Here, invariants are defined in the form
of bounds for a continuous state variable (Fig. 2).

• E ⊂ Q×Q is a set of feasible discrete transitions allowed
in the hybrid automaton model. It might not be possible
to visit the entire set of topologies from one particular
topology.
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Fig. 2. Execution of the hybrid automaton model of DC-DC converters.

• G is a set of guard conditions for each element in E.
• The flow function F : Q×X ×U → X ⊆ Rn assigns a

Lipschitz continuous vector space for the time derivative
of x defined by the solution of the differential inclusion
ẋi ∈ F (qi, xi, ui) in the ith topology.

• g : E → G is called the guard function that maps each
element in E to its corresponding guard in G. It ensures
transitions to an appropriate topology, once the guard
condition is reached, as shown in Fig. 2.

• h : E × X → X resets the continuous state, i.e., if
the transition from one topology to another takes place
as defined by the set E with a final state in the set X ,
the continuous state has to be reset with a new value
x′ = h(e, x(t)) in X .

Definition 2.2: An execution of a hybrid automaton modelH
is an alternating sequence of continuous flow trajectories and
discrete transitions, denoted by X0

flow−−−−−−−−−−→
ẋ=f1(q1,x1,u1)

X ′
ρ−−−−→

(q1,q2)

X ′′
flow−−−−−−−−−−→

ẋ=f2(q2,x2,u2)
X ′′′ . . ., as shown in Fig. 2.

Definition 2.3: The continuous flow trajectory for a hybrid
automaton model H is defined as: for a given (qi, xi) ∈ init
and ui ∈ U , there is a flow function ẋi = f(qi, xi, ui)
that results in a final continuous state x′i, whereas qi remains
unchanged, iff inv(xi) is true and the guard gi ∈ G is not
violated, such that xi

flow−−−−−−−−−−→
ẋ=f1(q1,x1,u1)

x′.

Continuous flow trajectories evolve as the real time τ
elapses. At each topology, converter dynamics can be mod-
eled by ordinary differential equations (ODE); e.g., system
matrices Aq and Bq describe the continuous flow trajectories
in topology q ∈ {1, 2, 3} of Fig. 1.

Definition 2.4: The discrete transition for a hybrid automa-
ton model H is defined as: for a given (qi, xi) ∈ init and
ui ∈ U , there is a function ρ = h(eij , xi) that resets the
continuous state to x′i, and the topology to qj , iff inv(xi) and
the guard gi ∈ G are both true, and ∃ eij ∈ E, such that the
transition ρ is denoted by xi

ρ−−−−→
(qi,qj)

x′i.

The switching instance can be determined either externally
(e.g., by a duty cycle command for the MOSFET) or internally
(e.g., by meeting appropriate threshold conditions for the
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diode). The sequence of topologies, observed periodically in
the steady state, defines an operational mode. Example of three
topologies and two operational modes for a buck converter are
shown in Fig. 1.

B. Model Instantiation for DC-DC Converters

We define D as the duty cycle, Tsw as the switching
period, Vin as the DC input voltage, and Vref as the reference
voltage. We can represent the continuous dynamics for a given
topology as a standard set of state-space equations

dx

dt
= Aqx+Bqu (1)

where, x ∈ R
n is a vector of continuous states, Q is a

finite set of topologies, u ⊆ U such that U ⊆ R
m is a

set of input vectors, and Aq ∈ Rn×n and Bq ∈ Rn×m are
system matrices. Such formation can be readily created for
the buck converter in Fig. 1, as given in the APPENDIX. The
instantiation of the hybrid automation model for an open-loop
DC-DC converter, as per Definition 2.1 and Definition 2.2, is:
• Three topologies are denoted by Q = {q1, q2, q3}.
• The continuous state vector is x = [iL vC τ ]′. τ

represents real time such that dτ
dt = 1.

• U = {[Vin, 0, 0]′, [0, 0, 0]′, [0, 0, 0]′} forms the input
vector set.

• E = {(q1, q2) , (q2, q1) , (q2, q3) , (q3, q1)} defines the
feasible discrete transitions, e.g., (q2, q3) means a discrete
transition from topology 2 to 3 is allowed.

• The continuous flow trajectory is computed using (1),
with the corresponding state matrices for each topology.
For topology 1, this can be denoted by X0

flow−−−−−−−−−−→
ẋ=f1(q1,x1,u1)

X ′, as shown in Fig. 2. X0 is the initial and X ′ is the
final set of states as the automaton continuously evolves
with the continuous flow dynamics f1(q1, x1, u1).

• Guard conditions, for elements of E, are defined
by G = {(τ ≥ DTsw) , (τ ≥ (1−D)Tsw) , (iL ≤ 0) ,
(τ ≥ (1−D)Tsw)}.

• The reset function h defines a new continuous state x′′ for
the new topology. For example, if a transition is to take
place from topology 1 to topology 2 with some final state
x′ ∈ X ′ in topology 1, h assigns the new state x′′ ∈ X ′′
in topology 2. For topology 1 to topology 2, a transition
ρ is denoted by X ′

ρ−−−−→
(q1,q2)

X ′′, as shown in Fig. 2.

The evolution of the hybrid automaton model starts with
initial conditions from set init, e.g., (q1, x0) ∈ init for a
given input u1 = [Vin, 0, 0]′ and, subsequently, the continuous
state evolves according to the flow function. The discrete
state (i.e., topology) remains constant; i.e., q (t) = q1, as xi
evolves inside the invariant inv (q1). Once the continuous state
trajectory reaches the guard G (q1, q2) corresponding to the
edge E (q1, q2), the topology may transition from q1 to q2,
and the continuous state is reset with a new value x′′ in the
new invariant set inv (q2) ⊂ X .

This hybrid automaton model can be extended to closed-
loop DC-DC converters, e.g., hysteresis-controlled converters.
The tuple remains the same except that the guards shall
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Fig. 3. Output trajectories of capacitor voltage for the closed-loop controlled
buck converter - local mismatch for interval τc and corresponding ε.

be defined in terms of switching boundaries. The hysteresis
band is formed by defining an upper switching boundary,
Vref + δ, and a lower switching boundary, Vref − δ, where
Vref is the desired output voltage, and δ is the tolerance level.
Thus, G = {(vC ≥ Vref + δ) , (vC ≤ Vref − δ) , (iL ≤ 0) ,
(vC ≤ Vref − δ)}.

It should be noted that time τ does not appear in the
guard expressions. Therefore, we have developed two hybrid
automaton models for the closed-loop buck DC-DC converter,
i.e., one with variable τ (called the time-dependent hybrid
automaton model), and another without variable τ (called
the time-independent hybrid automaton model). For the time-
independent hybrid automaton model, we perform the reacha-
bility analysis for an unbounded time, i.e., compute the reach
sets as t→∞.

III. VALIDATION THROUGH CONFORMANCE DEGREE

Model validation of DC-DC converters requires comparing
output trajectories (or simulation traces) for a given model
referred to asM, and the measured data from an experimental
prototype referred to as I. The goal is to find an appropriate
measure of distance for output trajectories of hybrid automata.

Definition 3.1: The behavior BH of the hybrid automaton
model H with initial state (q0, x0) under the influence of the
input u for the given time horizon T is defined by the output
trajectory yH ((q0, x0), u, T ), where, q0 ∈ Q0, x0 ∈ X0, and
u ∈ U .
One can consider the output trajectories of the capacitor volt-
age (vC) for a closed-loop buck converter shown in Fig. 3. The
experimental data obtained from a prototype and output trajec-
tory of the hybrid automaton model in Simulink/Stateflow are
overlaid. Intuitively, the two output trajectories look similar,
however, the sup norm would give a very large value to the
distance between them. This is, partly, because I and M
might transition among various topologies at slightly different
moments in time. Therefore, our distance measure should
allow some wiggle room in time; Rather than comparing
only the states that are exactly time-aligned, it should allow
comparison of states that are within some τc > 0 time units
of each other.
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Moreover, it is not appropriate to compare outputs when
two systems are in different topologies. Thus, our distance
measure must only compare states after an equal number of
discrete transitions between topologies of the two systems.
Note that within the time window τc in Fig. 3, both the
hardware prototype as well as the Stateflow model exhibit
two discrete transitions between topologies. To this end, we
introduce the parameter j ∈ N, that counts the number of
discrete transitions each system makes. It is reasonable to
require that the transition times of the two systems be close
to consider that the systems themselves are close: the value
τc will also bound the difference in transition times. The
distance measure will account for the distance between output
trajectories, captured by the value ε > 0. Thus, we have a
2-value distance measure, with values τc and ε capturing the
time and space distance between the two output trajectories.
These are illustrated in Fig. 3.

The output trajectories of hybrid automaton models are
parameterized with t and j. t ∈ R+ is the time spent in a given
converter topology, and j ∈ N counts the number of discrete
transitions between different topologies. We write y1(t; j) for
the output trajectory at the hybrid time (t; j) ∈ R+ × N, i.e.,
at time t and after j transitions. Let domy1 ⊂ R+×N denote
the domain of output trajectory y1, i.e., the set of all (t; j), so
that (T, J, τc, ε)-closeness [11] can be formally defined.

Definition 3.2: Take an output trajectory duration T ∈ R+,
a maximum number of discrete transitions J ∈ N, and
parameters τc, ε > 0. Two output trajectories y1 and y2 are
(T, J, τc, ε)-close, shown as y1 ≈(τc,ε) y2, if (a) for all (t, j) ∈
domy1 such that t ≤ T, j ≤ J , there exists (s, j) ∈ domy2
where |t− s| ≤ τc, and ‖y1(t, j)− y2(s, j)‖ ≤ ε, and (b) for
all (s, j) ∈ domy2 such that s ≤ T, j ≤ J , there exists (t, j) ∈
domy1 where |t− s| ≤ τc, and ‖y2(s, j)− y1(t, j)‖ ≤ ε.

(T, J, τc, ε)-closeness gives a proximity measure between the
two output trajectories in both time and space. It shows that
for every point y1(t, j), y2 has a point ε-close to it, which
may occur anywhere in the window [t − τc, t + τc] (and
vice versa). Allowing this wiggle room in time is important
when comparing the output trajectories, because the discrete
transitions could occur at different times. The two values T
and J limit our testing horizon. (T, J, τc, ε)-closeness can be
lifted from output trajectories to systems. One can validate
the model through the conformance degree between its output
trajectory and measured data.

Definition 3.3: Let H1 and H2 be two hybrid automata. The
conformance degree of H1 to H2, given τc, is defined as the
smallest ε such that for every trajectory y1 of H1, there exists
a trajectory y2 of H2, where y1 ≈(τc,ε) y2. We denote this
conformance degree by CDτ (H1,H2).

We will use this definition intuitively for model validation
of DC-DC converters. We compute the conformance degree
CDτ (H1,H2) for some τc > 0 in different case studies of
SECTION VI, and effectively say that some local mismatch
is permissible within a window τc for the output trajectories
of the models and the hardware prototype.

IV. MODELING NON-DETERMINISM USING INTERVAL
ANALYSIS

The system matrices in the hybrid automaton models of DC-
DC converters depend on component values. The variations
due to manufacturing tolerance, aging, and temperature result
in non-determinism of component values. We use the interval
arithmetic [34] to incorporate the parameter variations within
the reachability analysis framework. The range of component
values are represented in terms of intervals. A real interval v
is a set of real numbers given by

[v, v] = {v ∈ R : v ≤ v ≤ v}, (2)

where v is the infimum and v is the supremum. These inter-
vals may also be defined by the midpoint-radius representation

mid(v) =
1

2
(v + v), (3)

rad(v) =
1

2
(v − v). (4)

The interval matrix for the system matrix is A = [A,A].
System stability can be deferred by examining matrix extrema,
i.e., A and A [35]. Therefore, it is sufficient to consider every
combination of matrix extrema to overapproximate the reach
set. The overapproximation of an interval matrix A is given by
splitting it into two parts, i.e., a nominal part and a symmetric
part [36]. For the ith state variable, one has

ẋi = ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn. (5)

To incorporate parameter variation, one can replace the
above coefficients with intervals

ẋi ∈ [mid(ai1)± rad(ai1)]x1 + ...[mid(aij)± rad(aij)]xj

+ ...+ [mid(ain)± rad(ain)]xn. (6)

The mid-points are constant terms, which can be separated

ẋi ∈ ai1x1 + ri1 + ...aijxj + rij ...+ ainxin + rin. (7)

The radii ri1, ri2, ..., rij , ..., rin are given by

rij ∈ [−rad(aij), rad(aij)]xj , (8)

which are used to define the invariants for the hybrid
automaton model, i.e.,

− [−rad(aij), rad(aij)]xj ≤ rij ≤ [−rad(aij), rad(aij)]xj .
(9)

These invariants are defined for each topology of the DC-
DC converter. As seen in (9), the state variable xj is also
included in the invariants.

V. REACHABILITY ANALYSIS FOR HYBRID AUTOMATA

Reachability analysis can be used for the formal verification
of converter properties, e.g., stability in the sense of Lyapunov,
i.e., ẋ = f(x(t)) is stable if ∀ θ > 0 ,∃ β > 0 such that
if ‖x(0)‖ ≤ β ⇒ ‖x(t)‖ ≤ θ ∀ t ≥ 0. We may define
a bounded region and verify that the output of the hybrid
automaton model eventually reaches, and always remains, in
this stable region, as seen in Fig. 4. We define the stability
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specification such that from the settling time ts, the output
voltage VC(t) should remain bounded within a tolerance γ
of the reference voltage Vref (t), i.e., for t ≥ ts ⇒ VC(t) =
Vref (t)± γ.

Definition 5.1: State x is reachable iff ∃ an execution α
such that x ∈ α.
The set of reachable states contains all the states that can be
reached from a given set of initial conditions for a given time.
Consider an example of an autonomous system ẋ = Ax. The
set of states from initial time t0 to final time tf , reached from
a given initial set X0, is the union of the reachable states

Rtft0 (X0) =
⋃

t∈[t0,tf ]

eAtX0. (10)

However, (10) does not cater to the discrete transitions
associated with the hybrid dynamical systems. Additionally,
the exact set of all reachable states is undecidable. In practice,
overapproximations of the reachable states are computed using
geometrical data structures (e.g, boxes, polytopes, ellipsoids,
or zonotopes [37]), called the overapproximated reach sets
and denoted by R. For simplicity, we call these as the reach
sets in this paper. This framework can be extended to hybrid
dynamical systems by including invariants and guard sets (Fig.

5), and implemented in various reachability analysis tools by
software research community as mentioned in SECTION I.
The reach sets for continuous dynamics can be computed using
continuous post-operators so long as the continuous dynamics
of DC-DC converter are contained within the invariant set
defined for the corresponding topology or do not enter the
guard set. Once the guard condition is satisfied within an
invariant, a transition takes place from topology 1 to topology
2 such that the next reach set is computed using discrete post-
operator. This process goes on until either the final time in a
local time horizon, or a fixed point, is reached. A fixed point
signifies that the reachability algorithm cannot find any new
reach set during the current iteration other than those computed
in the previous iteration.

SpaceEx reachability tool computes the reach sets of a
hybrid dynamical system. It is a classical fixed point algorithm
based on computation of symbolic states [19], [20]. A symbolic
state is defined as a pair (l,Ω), where l is a topological
instance, and Ω is the corresponding convex continuous set.
The reach set R is obtained by computing the set of symbolic
states. This reach set is the fixed point of the sequence
Ro = postc (Init), and the successors are computed using

Rk+1 := Rk
⋃
postc

(
postd

(
Rk
))

(11)

where, postd is the discrete post-operator that defines the
reach sets by a discrete transition from R. This corresponds
to the h function defined in Definition 2.1. postc is the
continuous post-operator that defines the reach sets from R
after an arbitrary amount of time is elapsed. This corresponds
to the flow function in Definition 2.1.

Computation of the reachability post-operators for Ω is
challenging, so each Ω is represented by its corresponding
support function to facilitate various set operations such as
linear mapping, Minkowski sum, and convex hull. A support
function is an exact representation of a given Ω. An approxi-
mated computation of Ωk is given in [20] for the kth time step.
Hence, a sequence of convex continuous sets Ω0,Ω1, ....ΩN−1
is computed to form a flowpipe that covers the reach sets
up to a pre-defined time such that N represents the number
of time steps. This flowpipe is then used to compute the
transition successors. Only those states can take the transition
that satisfy the guard associated with the present topology and
the invariant of the target topology. This process is continued
until a fixed point is reached, i.e., if all the reach sets that
are computed in the present iteration, are contained in reach
sets computed in the previous iteration, i.e., Rk+1 ⊆ Rk.
This signifies that no new reach sets could be found and
the computation process may be terminated. Interested readers
may see [20] for further implementation detail.

SpaceEx is a development platform with various verification
algorithms (called scenarios). Three scenarios are available in
SpaceEx v0.9.8d; i.e., PHAVer (Polyhedral Hybrid Automaton
Verifyer), LGG (Le Guernic-Girard) algorithm wherein the
reach set is overapproximated by a set of polyhyedra, and STC
algorithm (an enhancement of LGG with automatic clustering).
The version of LGG implemented in SpaceEx uses outer
polyhedral approximations to compute the image of discrete
transitions, making it scalable. STC algorithm produces fewer
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Fig. 6. Buck converter prototype controlled with a dSPACE DS1103 system.

convex continuous sets for a given accuracy, and computes
more precise images of discrete transitions. Based on the LGG
scenario, the flowpipes (i.e., the reach sets over time) are
bounded with piecewise linear approximations of the support
function over time. A comparison of both scenarios is given
in [21].

VI. CASE STUDIES

An experimental setup of a buck converter, controlled with a
dSpace DS1103 unit, has been prototyped, as shown in Fig. 6.
The experimental results are used for benchmarking purposes
against MATLAB/PLECS [38], Simulink/Stateflow [39], and
SpaceEx reachability analysis. Circuit parameters L = 2.65
mH, C = 2.2 mF, and R = 10 Ω are used throughout this
study. We have used the Hybrid Source Transformer (HyST)
which is a source-to-source conversion tool for hybrid automa-
ton models [40]. The hybrid automaton model is developed
using the java interface in MATLAB, and transformed into a
SpaceEx compatible model using HyST data structures. We
have used the STC support function of SpaceEx v0.9.8d using
an Intel Core i7 processor on a Windows 7 platform. We
use the conformance degree to validate the hybrid automaton
model against the experimental data. Then, the reachability
analysis results are provided for an open-loop and a hysteresis-
controlled buck converter.

A. Model Validation Using Conformance Degree Testing

We use notations IO and IC for hardware prototypes
in open-loop and closed-loop configurations, respectively.
PLECS and Stateflow models are denoted by MOP , MCP

and MOS , MCS , respectively, where subscript O denotes
an open-loop and C denotes a closed-loop configuration. The
computed ε values against τc (as defined in SECTION III) are
tabulated in Table I for the corresponding output trajectories.
It is evident from Table I that the ε values ofMOP andMOS

as well as MCP and MCS are close enough (also, as seen
in Figs. 7, 9, and 10). We have also computed conformance
degrees for the prototype buck converters, i.e., IO and IC ,
in comparison with other models, i.e., MOP , MOS and
MCP , MCS . The values depicted in Table I provide enough
wiggle room to validate that MOP and MOS are reasonable

TABLE I
CONFORMANCE DEGREE ANALYSIS

Configuration Type of Output Trajectories τc Value ε Value

Current (iL) - PLECS vs Experiment 2× 10−3 1.9117

Current (iL) - Stateflow vs Experiment 2× 10−3 1.9125

Open loop
Current (iL) - Stateflow vs PLECS 2× 10−3 0.1785

Voltage (vC ) - PLECS vs Experiment 8× 10−3 1.1231

Voltage (vC ) - Stateflow vs Experiment 8× 10−3 1.1033

Voltage (vC ) - Stateflow vs PLECS 8× 10−3 0.6666

Current (iL) - PLECS vs Experiment 5× 10−5 3.0590

Current (iL) - Stateflow vs Experiment 5× 10−5 3.0590

Closed loop
Current (iL) - Stateflow vs PLECS 5× 10−5 0.0878

Voltage (vC ) - PLECS vs Experiment 8× 10−4 1.3105

Voltage (vC ) - Stateflow vs Experiment 8× 10−4 1.3105

Voltage (vC ) - Stateflow vs PLECS 8× 10−4 0.0584

abstractions forMO, whereasMCP andMCS are reasonable
abstractions for IC . Therefore, we have validated the hybrid
automaton models against both the open-loop and the closed-
loop converter prototypes.

B. Formal Verification of the Open-loop Buck Converter

We consider the voltage stability specification to perform
formal verification. For example, for ts = 0.025 sec, and
Vref = 48 V, we define γ = 7 V. This results in an upper
voltage bound of 55 V, and lower voltage bound of 41 V, as
shown in Fig. 8(b) by dotted lines. The input parameters are
Vin = 100 V, and fs = 60 kHz. The output trajectories and
phase-plane responses are considered for the startup transients
of the open-loop buck converter. The converter models in
PLECS, Simulink/Stateflow, and SpaceEx are verified, and
an acceptable match is reported in Fig. 7. The parameters’
variations have been modeled using interval analysis, and
also included in the Monte Carlo simulation. The reachabil-
ity analysis results, obtained using SpaceEx, are plotted in
Fig. 8. It can be seen that the steady-state inductor current
and capacitor voltage waveforms lie within the reachability
analysis results, i.e., the simulations and measurement data
are contained within the reach sets. Moreover, we verify that
vC(t) ∈ [41, 55] for t ≥ ts for Stateflow, PLECS, measure-
ment data, Monte Carlo analysis, and SpaceEx analysis results.

C. Formal Verification of the Hysteresis-controlled Converter

We define the voltage stability specification for the closed-
loop buck converter to perform formal verification. For ts =
0.012 sec, and Vref = 12 V, we define γ = 3 V. This leads to
upper and lower voltage bounds of 15 and 9 V, respectively, as
shown by dotted lines in Fig. 11(b). In this case study, the time-
dependent and the time-independent models (as mentioned
in SECTION II) are considered. First, SpaceEx reachability
analysis is performed using both LGG and STC for the time-
dependent model. The new parameters are Vin = 24 V,
Vref = 12 V, and fs = 50 kHz. The trajectories are shown for
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Fig. 7. Startup transients for an open-loop buck converter including Stateflow, PLECS, experiment, and SpaceEx; (a) current vs. time, (b) voltage vs. time,
and (c) phase portrait.
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Fig. 8. Startup transients for an open-loop buck converter using interval matrices and the Monte Carlo simulation including Stateflow, PLECS, experiment,
and SpaceEx; (a) current vs. time, (b) voltage vs. time, and (c) phase portrait.
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Fig. 9. Time-dependent hysteresis-controlled buck converter: Stateflow, PLECS, experiment, and SpaceEx LGG results using deterministic models; (a) current
vs. time, (b) voltage vs. time, and (c) phase portrait.

Stateflow, PLECS, and experimental data along with reach sets
computed using SpaceEx LGG and STC scenarios in Fig. 9
and Fig. 10, respectively. The Stateflow, PLECS, and SpaceEx
results match right from the start until the steady state is
reached. Experimental results match that of Stateflow, PLECS,
and SpaceEx in the steady state. Next, the non-determinism
due to the parameter variations is modeled using the interval
matrices. It can be observed in Fig. 11 that Stateflow, PLECS,
and measured results remain within the reach sets computed
using SpaceEx, vC(t) ∈ [9, 15] for t ≥ ts.

We can formally verify the time-independent SpaceEx
model for an unbounded time, i.e., t → ∞, by excluding

τ . This would not be possible through Monte Carlo analysis
as, even for a limited time span, one has to take into account
infinite number of possible combinations. We have success-
fully achieved a fixed point using SpaceEx LGG scenario, with
unbounded time, and with all possible parameter variations.
The phase-plane plots are given for the start-up transients in
Fig. 12. As seen, all results remain within the computed reach
sets as t→∞, verifying vC(t) ∈ [9, 15] as t→∞.

A comparison of Monte Carlo analysis and SpaceEx reach-
ability analysis, in term of computation times, is shown
in Table II. Both are run on a Windows 7 SP1 (64 bit)
platform, with Intel (R) core i7-2600 CPU with 3.40 GHz,
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Fig. 10. Time-dependent hysteresis-controlled buck converter: Stateflow, PLECS, experiment, and SpaceEx STC results using deterministic models; (a) current
vs. time, (b) voltage vs. time, and (c) phase portrait.
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Fig. 11. Time-dependent hysteresis-controlled converter analysis using interval matrices including Stateflow, PLECS, experiment, Monte Carlo, and SpaceEx;
(a) current vs. time, (b) voltage vs. time, and (c) phase portrait.
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Fig. 12. Time-independent hysteresis-controlled converter analysis using
interval matrices including stateflow, PLECS, experiment, Monte Carlo, and
SpaceEx.

16.0 GB RAM processor, MATLAB version 8.5.0.197613
(R2015a), PLECS version 3.7.3, and SpaceEx version 0.9.8d.
While infinite iterations are required to have full confidence
in model validation through Monte Carlo analysis, we have
only used finite (i.e., 2000) iterations as would be done in
practice. Even then, it is evident that the SpaceEx reachability
outperforms the Monte Carlo analysis in computation time, as
seen in Table II.

VII. CONCLUSION

A hybrid automaton modeling approach for PWM DC-
DC converters is developed. We have used the conformance
testing for model validation when compared with a hardware
prototype of DC-DC converters. The interval matrices analysis
accommodates the model non-determinism caused by varia-
tions in component values. Reachability analysis frameworks
are developed for formal verification of the resulting hybrid
automaton models. It is shown that the proposed reachability
analysis outperforms the brute force Monte Carlo analysis in
computation time and confidence level.
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APPENDIX

The state-space matrices for circuit topology 1, 2, and 3 are:

A1 =


−(rL + rS)

L

−1

L
0

1

C

−1

RC
0

0 0
1

τ

 , B1 =


1

L
0

0

 , (12)
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TABLE II
COMPARISON OF MONTE CARLO AND SPACEEX ANALYSIS

System Configuration Monte Carlo Iterations Monte Carlo Time (sec) SpaceEx Time (sec) Times SpaceEx is Faster

Open Loop 2000 1.0151× 104 1701.43 5.9662

Hysteresis control (time-dependent) 1000 315.43 137.65 2.2915

Hysteresis control (time-independent) 1000 315.43 230.57 1.3680

Hysteresis control, steady state (time-independent) 2000 1327 229.03 5.794

A2 =


−rL
L

−1

L
0

1

C

−1

RC
0

0 0
1

τ

 , B2 =

 0

0

0

 , (13)

and

A3 =


0 0 0

0
−1

RC
0

0 0
1

τ

 , B3 =

 0

0

0

 , (14)

respectively.
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