
Formal property verification in a conformance
testing framework

Houssam Abbas
School of Electrical, Energy and

Computer Engineering
Arizona State University

Tempe, AZ, U.S.A.
Email: hyabbas@asu.edu

Hans Mittelmann
School of Mathematical and

Statistical Sciences
Arizona State University

Tempe, AZ, U.S.A.
Email: mittelmann@asu.edu

Georgios Fainekos
School of Computing, Informatics and

Decision Systems
Arizona State University

Tempe, AZ, U.S.A.
Email: fainekos@asu.edu

Abstract—In model-based design of cyber-physical systems,
such as switched mixed-signal circuits or software-controlled
physical systems, it is common to develop a sequence of system
models of different fidelity and complexity, each appropriate for
a particular design or verification task. In such a sequence,
one model is often derived from the other by a process of
simplification or implementation. E.g. a Simulink model might
be implemented on an embedded processor via automatic code
generation. Three questions naturally present themselves: how
do we quantify closeness between the two systems? How can
we measure such closeness? If the original system satisfies some
formal property, can we automatically infer what properties are
then satisfied by the derived model? This paper addresses all
three questions: we quantify the closeness between original and
derived model via a distance measure between their outputs. We
then propose two computational methods for approximating this
closeness measure. Finally, we derive syntactical re-writing rules
which, when applied to a Metric Temporal Logic specification
satisfied by the original model, produce a formula satisfied by
the derived model. We demonstrate the soundness of the theory
with several experiments.

I. INTRODUCTION

In the last decade, systems which use embedded software to
control continuously changing physical phenomena have come
to be seen as ‘Cyber-Physical Systems’ (CPS), a category of
systems whose main characteristic is the interaction of con-
tinuous and discrete dynamics, possibly with communication
between remote components. This comes as a recognition that
verifying hardware separately from software, or the physical
separately from the cyber, is becoming less satisfactory as
the interactions between the two become richer and more
complicated, and as the design process needs to guarantee
extra-functional requirements [7], [31]. For example, the 2014
Toyota recall of 700,000 Prius vehicles was partly blamed
on the interaction between the controller software and the
transistors of the control board [36]. In a typical Model-Based
Design (MBD) process of CPS (see Fig. 1), a series of models
and implementations are iteratively developed such that the end
product satisfies a set of formal functional requirements Φ [11].
Ideally, the initial (simpler) model MS developed should be
amenable to formal synthesis and verification methods (cycle
1 in Fig. 1) through tools like [17], [34]. Then, the fidelity of
the models is increased by modeling more complex physical
phenomena ignored initially, by taking into account non-
functional requirements like power consumption, and by mod-

eling inaccuracies introduced by the real-time computational
platforms such as look-up-tables, time delays, clock drift, a
different computation precision, etc. This yields successively
more complex models MC (cycle 2 in Fig. 1). Afterwards,
the model MC is implemented on a computational platform
to yield the prototype Si; Si is then manually modified and
calibrated into a final deployment system Sd. Finally, if the
system is deployed over a communication network, the net-
work will introduce a whole range of issues related to random
transmission quality and delayed actuation and sensing. A
similar process in the Model-Based Design of Systems-on-a-
Chip (SoCs) is outlined in [40].

Each of these transformations and calibrations introduces
discrepancies between the behavior of the original system,
which we generically refer to as the nominal system M,
and the behavior of the derived system that is produced,
which we generically refer to as the derived system I. These
discrepancies are spatial (e.g. slightly different signal values
in response to same stimulus, dropped samples, out-of-order
samples) and temporal (e.g. different timing characteristics
of the outputs, delayed responses due to unmodeled physical
phenomena like transport delay), and their magnitude can
vary as time progresses. The same situation arises when I
is derived from M by a process of simplification: e.g. in
Model Order Reduction (MOR), modeling from first physics
principles yields a high-dimensional dynamical system M,
which takes a long time to simulate. This is then reduced to
a lower-dimensional (‘lower order’) system I, which is used
to perform fast simulations where appropriate. Along the V
process in Fig. 1, a simplifying derivation process can be seen
as traversing the left branch of the V in the reverse direction
from bottom to top. This raises two questions:

• First, what is the relationship between the behaviors
of the “nominal” model M and “derived” model I
(e.g. cycles 2 and 3 in Fig. 1)? Can it be quantified?

• Second, if the simpler of the two systems M and
I has been formally verified to satisfy some speci-
fication, can anything be said automatically about the
specifications satisfied by the more complicated one?

If the simpler model, say M, was nondeterministic and
the structure of I was fully known, then the answer to
both questions could be established through behavioral in-
clusions, i.e., is it true that every behavior of I can be
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Fig. 1: Typical V process in MBD. (1) Verifying that the simple
model satisfies the functional requirements; (2) Establishing
a relationship between the simple and complex model; (3)
Verifying conformance of implementation to the model; (4)
Checking that the end product satisfies the functional require-
ments. Most of these steps are iterative.

exhibited by M, in response to the same stimulus? However,
in practice, non-deterministic models are rarely utilized and
supported by industry tools for MBD such as LabViewTM ,
Simulink/StateflowTM , or SpiceTM . Moroever, irrespective of
whether the derivation process has formal guarantees (such as
automatic code generation in [5]), rarely do the models capture
accurately all physical phenomena, so that inclusion is unlikely
to hold in a realistic scenario. Similar difficulties with formal
methods arising from having multiple models were outlined
by [8]. Thus, in lieu of behavioral inclusion, an appropriate
quantifiable notion of closeness between the systems behaviors
is required, and this is introduced in Section II-B. If system
I lent itself to formal methods, then the second question
could also be answered by formal verification. For example in
[30], a method for checking formal equivalence of a Simulink
model to its generated C code is presented. However, it is not
always possible to verify formally that I satisfies the formal
specification: for example, a component purchased from a third
party might allow only limited observability and not lend itself
to formal methods. Or, system I might be too large to handle
by today’s formal tools. By evaluating closeness between the
systems’ behaviors, on the other hand, it is possible to draw
conclusions about one from studying the behavior of the other:
this is presented in Section III.

In previous work [2], [3], closeness between two output
signals of two systems was mathematically formalized via
the notion of (T, J, (τ, ε))-closeness (Def. 2.2). This closeness
measure quantitatively captures distances between two signals
in both space and time, while allowing for samples from
either signal to be dropped, and for signal values to be locally
re-ordered. The conformance degree between two systems
M and I was then defined via the closeness between their
output signals, and conformance testing is then the process of
calculating the conformance degree between the two systems,
which was done by Simulated Annealing. In this paper, using
the formalism of hybrid dynamical systems, we extend that
work in four directions:

1) We refine the definition of conformance degree in Section
II-B to reflect the two broad categories of derivation
processes: simplification and implementation.

2) We give an automatic procedure in Section III for deriving
a formal specification (over hybrid time) satisfied by the

derived I, given the formal specification satisfied by the
nominal M.

3) We argue that conformance testing can significantly al-
leviate the verification burden by allowing us to re-use
previous testing results when the specification changes.

4) We explore the use of alternative algorithms for approx-
imating the conformance degree between two systems in
Section IV. Specifically, we explore the use of Rapidly-
exploring Random Trees for arbitrary controllable sys-
tems, and the use of state-of-the-art commercial solvers
for the restricted class of switched linear systems.

Experiments (Section V) and a review of related work in the
literature (Section VI) conclude the paper. All proofs are in
the online technical report [4].

Notation. Given an n-tuple α = (a1, a2, . . . an), we denote
by pri(α) the i-th element of the tuple, i.e., pri(α) = ai.
Similarly, we let pri,j(α) = (ai, aj). Given a relation R ⊂
A×B, and b ∈ B, we also define prb(R) = {a ∈ A : (a, b) ∈
R}. The set of integers is Z, of non-negative integers is N,
N>0 = N \ {0}, and the set of non-negative reals is R+. For
N ∈ N, [N ] is the set {0, . . . , N}. For reals a and b, we write
a ∨ b = max{a, b} and a ∧ b = min{a, b}. For x ∈ Rn, ‖x‖
is the Euclidian norm (though any norm will do). Finally, #S
is the cardinality of set S.

II. CONFORMANCE OF SYSTEMS

A. System Model

In this paper, we deal with embedded control systems.
Such systems typically have certain ‘modes’ of operation, and
the dynamics are generally different between the modes. For
example, a switched power converter is a common electronic
component with one switch. Depending on the switch’s po-
sition, the circuit can be in one of two modes, with different
dynamics depending on the active circuit elements [32]. Jumps
between modes are modeled to be instantaneous. To model
such systems, we adopt the hybrid systems formalism. Hy-
brid systems include as special cases Extended FSMs [16],
switched, impulsive and classical nonlinear and linear dy-
namical systems, and have been used extensively to model
embedded control systems. Specifically, let H ⊂ Rn be the
state space, C and D be subsets of H , U be a set of input
values, and F , G, and h be functions defined over H . The
hybrid dynamical system H with data C,F,D,G, h, internal
state η ∈ H and output y ∈ Y is governed by (η̇ is the time
derivative of η) [21]

H

{
η̇ = F (η, u) (η, u) ∈ C
η+ = G(η, u) (η, u) ∈ D
y = h(η) η ∈ H

(1)

The discrete mode can be part of the state variable η, e.g.
η = [x, `], where ` takes values in a finite set L, and x is
the real-valued state of the system (e.g. voltage). In this case,
˙̀ = 0. The ‘jump’ map G models the change in system state
at a mode change, or ‘jump’, and the jump set D captures
the conditions causing a jump. The ‘flow’ map F models
state evolution away from jumps, while (η, u) is in the flow
set C. System trajectories start from a specified set of initial
conditions H0 ⊂ H . Finally, the output of the system y ∈ Y
is given as a function h of its internal state, and its input is
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Fig. 2: Hybrid-TS for a 2-mode DC-to-DC buck-boost con-
verter [32]. The red circles show hybrid time evolution
pr2,3(µ) (each circle corresponds to a value (t(i), j(i)), while
the crosses show the value of pr1(µ) (each cross corresponds
to y(i)). Perspective distortion causes the circles to be mis-
aligned along the j-axis. With every mode switch (‘jump’),
the j parameter increments by 1. Between jumps, the system
evolves along the t axis as time progresses.

given by u which takes values in a set U . This is common
hybrid systems terminology.

The trajectories (or ‘solutions’ or ‘traces’) of purely
continuous-time dynamical systems (with only one mode) are
parameterized by the time variable t, and those of purely
discrete-time dynamical systems (with no continuous evolu-
tions) are parametrized by the number of discrete jumps j.
Following Goebel and Teel [22], the trajectories of hybrid
systems are parameterized by both t and j, to reflect that both
evolution mechanisms are present. (For example, this describes
the view of time for SoC verification in [18]). The resulting
time structure is referred to as ‘hybrid time’. Hybrid time is
better suited to capture phenomena unique to the modeling
of hybrid systems, like Zeno executions [25], and to study
issues related to composition of hybrid systems [37]. See
also [21, Ch. 2] and references therein. We further consider
that the outputs of a dynamical system are first sampled (or, in
simulation, a numerical integrator generates a solution) before
being fed to a controller. Thus, we model the outputs of
a hybrid system as hybrid-timed sequences. Specifically, let
N ∈ N>0 be a positive integer and T ∈ R+ be a positive real.

Definition 2.1: Given a set Y , a Y -valued hybrid-timed
sequence (hybrid-TS or simply TS) is a function µ :
{0, 1, . . . , N} → Y × [0, T ] × N, such that for all i ∈
{0, 1, . . . , N}, pr2,3(µ(i)) = (t(i), j(i)) with t(0) = j(0) =
0, t(i) ≤ t(i + 1) and j(i) ≤ j(i + 1), t(i) = t(i + 1) =⇒
j(i) < j(i+ 1) and j(i) = j(i+ 1) =⇒ t(i) < t(i+ 1). The
domain of µ is dom(µ) = {0, 1, . . . , N} = [N ].

For a TS µ, the first component, i.e., pr1(µ) = y captures
the output of the system, while the second and third compo-
nents, i.e., pr2,3(µ) = (t, j), capture the absolute time t and
the number of jumps j that led to the state y. See Fig. 2.
Together, (t, j) are referred to as ‘hybrid time’. Most of the
time, the set Y will be clear from the context.

Given an initial state η ∈ H0 and an input TS u (which is
a U -valued TS), the system H produces an output Y -valued
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Fig. 3: The 1st component pr1(µ) of an output TS of a fuel
control system model M and its implementation I. For each
i ∈ dom(µ), pr1(µ(i)) is a real varlue λ.

TS µ, which we note as µ = H(η, u). The TS µ can be the
result of a sampling process or a numerical integration. Then
the sequence of ‘timestamps’ pr2,3(µ) represents the sequence
of (hybrid) sampling times, or times at which a numerical
solution is computed: pr1(µ(i)) is the value of the output at
(hybrid) time pr2,3(µ(i)). We do not assume, in general, that
the sampling period (or integration step) is constant. Note that
two output TS of the same system may have different domains.
We refer the reader to [22] for exact definitions of discrete and
hybrid time domains, arcs and trajectories.

Assumption 2.1: We assume that when system I is derived
(by some application-dependent process) fromM, there exists
a surjective and left-total relation R ⊂ H0,M ×H0,I relating
the initial states of the two systems. This is commonly true in
practice to enable testing; we will say ‘I is derived from M
with relation R’. The output space Y is assumed equipped
with a metric d. Finally, for every initial condition η0 ∈ H0

and input TS u, the system H produces at least one output
TS. This is imposed to avoid modeling issues where either
system’s equations have no solutions.

B. Conformance via (T, J, (τ, ε))-closeness

In this section, we introduce the (T, J, (τ, ε))-closeness
measure between the output TS of hybrid systems in time and
space. It is derived from [22].

Definition 2.2 ((T, J, (τ, ε))-closeness): Take a test dura-
tion T ∈ R+, a maximum number of jumps J ∈ N, and
parameters τ, ε > 0. Two timed sequences µ = (y, t, j) and
µ′ = (y′, t′, j′) with domains [N ] and [N ′], respectively, are
(T, J, (τ, ε))-close, which we write µ ≈(τ,ε) µ

′, if
(a) for all i ∈ [N ] such that t(i) ≤ T, j(i) ≤ J , there exists
k ∈ [N ′] such that j(i) = j′(k), |t(i) − t′(k)| < τ , and
‖y(i)− y′(k)‖ < ε
(b) for all i ∈ [N ′] such that t′(i) ≤ T, j′(i) ≤ J , there
exists k ∈ [N ] such that j′(i) = j(k), |t′(i) − t(k)| < τ , and
‖y′(i)− y(k)‖ < ε
The infimum of all ε such that µ and µ′ are (T, J, (τ, ε))-close
is called the achievable closeness degree given τ .

(T, J, (τ, ε))-closeness may be thought of as giving a prox-
imity measure between the two hybrid-timed sequences, both



in time and space. Allowing some ‘wiggle room’ in both
time and space is important for conformance testing: e.g. in
Fig. 3, intuitively, the two output signals are very similar,
yet the sup norm would give a large value to the distance
between them. Thus (T, J, (τ, ε))-closeness captures nicely
the intuitive notion that ‘the outputs should still look alike’.
The two values T and J limit our testing horizon, and will
typically be set based on application domain considerations.
When they are clear from the context, we will drop them to
simplify the language.

Finally, Def. 2.2 requires equality in the number of jumps
j between the two TS, but the results of this paper can be
extended in a straightforward manner to allow some wiggle in
the numbers of jumps, i.e. |j(i)− j′(k)| < δ.

Definition 2.3: Let H1 and H2 be two hybrid systems,
such that H2 is derived from H1 with relation R ⊂ H0,1 ×
H0,2. Take a test duration T ∈ R+, a maximum number
of jumps J ∈ N, and parameters τ, ε > 0. We say that
system H2 simulates H1 with precision (τ, ε), which is
written H1 �τ,ε H2, if for all (η1, u) ∈ H0,1 × U, and for
all µ1 = H1(η1, u), there exists η2 ∈ H0,2 s.t. (η1, η2) ∈ R
and for some µ2 = H2(η2, u), µ1 ≈(τ,ε) µ2.

This definition is near-identical to that of approximate sim-
ulation given in [26, Def. 2.6]. The subtle but important
differences due to our setting are that : 1) the relation R
between initial sets does not arise here as a result of the
approximation by (τ, ε)-closeness, rather it is dictated by the
derivation process from M to I. This bounds the quality of
the approximation. 2) Whereas in [26], R is required to be left-
total only, here we require R to be surjective as well. This again
is dictated by the derivation process. Modulo this distinction,
our work fits within the approximate bisimulation framework
presented in [26]. Therefore, we use the same terminology
(‘simulation’) and notation.

From a conformance perspective, it is preferable to have
a smaller ε and a smaller τ . Since only a partial order exists
on the (τ, ε) pairs, we define ‘partial’ conformance degrees
between systems.

Definition 2.4: Let H1 and H2 be two hybrid systems. The
conformance degree of H1 to H2 given τ is defined as the
smallest ε such that H1 �τ,ε H2:

CDτ (H1,H2) := inf{ε : H1 �τ,ε H2}

An obvious analogous definition holds for conformance degree
given ε. Thereafter, we will always be referring to the confor-
mance degree given τ and drop ‘given τ ’ from the terminology.
Note that because the conformance degree is defined using
the output behaviors of the systems, and not their internal
structures, observability limitations on either I or M do not
affect our ability to compute it.

Example 1 (Power converters): Power converters are com-
mon electronic components, used in many safety-critical sys-
tems. A DC-to-DC converter accepts an input DC voltage Vs
and converts it to a reference Vref . It has two modes, and
the switch between them is software-controlled [32]. We use
a simplified model of a power converter as a hybrid system in
Section V, and use this model to compute the (τ, ε)-closeness
between a model and its implementation. �

Example 2 (Implementation process): A controller is de-
veloped for an automatic transmission model in Simulink.
Controller code is then automatically generated by Simulink,
targeting a given computational platform, like an embedded
board. Because the board has different computation precision
than the general-purpose host on which the model was verified,
and because Hardware-In-the-Loop testing introduces delays
and unmodeled interrupts, the generated code+automatic trans-
mission closed-loop system (I) will produce outputs that are
different from the Simulink model+automatic transmission
(M). Conformance testing is needed to quantify the discrep-
ancy between the two systems, and to derive what specification
is satisfied by I, given that M satisfies its specification. �

In all the above scenarios, we wish to test the simplified
system, say, I, rather than the costly system, say, M. In
particular, if we check that I satisfies some property ϕ (which
we can do relatively cheaply), we wish to automatically derive
a corresponding formula satisfied by M, without checking it
explicitly (which might not be possible). The result from the
next section allows us to do so, if we know the conformance
degree of I to M.

C. Local disorder in (T, J, (τ, ε))-close signals

A distinguishing feature of (T, J, (τ, ε))-closeness as a
measure of closeness between TS is that it allows for local
disorder in the signal values: i.e. given two TS µ = (y, t, j)
and µ′ = (y′, t′, j′) define the relation ρ ⊂ [N ] × [N ′] by
(i, i′) ∈ ρ iff ‖y(i) − y′(i′)‖ < ε, |t(i) − t′(i′)| < τ and
j(i) = j′(i′). Then there may exist (i, i′) ∈ ρ and (k, k′) ∈ ρ
with i < k and i′ > k′. Figure 4 (top) gives a generic
illustration of such a case.

We should note that all four points i, i′, k, k′ must occur
within a window of size τ , which is why we call this local dis-
order. The pattern of Fig. 4 (top) can not repeat in consecutive
windows of width τ : as shown in Fig. 4 (bottom), consecutive
repetitions (indicated by the brackets) actually yield two TS
whose values (pr1(µ)) are merely shifted with respect to each
other, as indicated by the arrows relating ρ-related samples.

Local disorder could arise in any situation where the output
signal pr1(µ) of the system is distorted by noise. E.g. if the
model M of an electric circuit produces a noise-free µ, its
implentation I will in general suffer from parasitics and other
noise sources. More generally, recall that signal values (i.e.
pr1(µ)) are real-valued outputs of the system, and not simply
discrete ‘events’ whose order must be preserved. A priori, and
without further defining the derivation process, there is no
reason to assume that a valid derivation will preserve signal
values order locally, even if globally, the nominal and derived
system have similar outputs. A notion of closeness between
real-valued outputs, therefore, should a priori account for (and
quantify) local disorder. Thus, by allowing local disorder,
(T, J, (τ, ε))-closeness is well-adapted to a wider class of
implementations and distortions than the measures surveyed
in the literature (Section VI).

The above discussion has a consequence for the design
process where M is implemented as I, and I is deployed:
if we calculate the conformance degree CDτ (H1,H2) given
some τ > 0, we are effectively saying that local disorder within
a τ window is permissible, and should be quantified, rather
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Fig. 4: Top: local disorder. The squares indicate elements of the
(τ, ε)-close TS, the continuous plots are only there to show the
subtending sampled signals. Samples related by ρ are related
graphically by arrows. Bottom: local disorder only lasts for an
interval of τ .

than flagged as an error. This makes design sense only if the
temporal logic specification according to whichM is designed
contains timing intervals of width at least τ . In the next section,
we further quantify the relation between satisfied properties
and conformance degree.

III. TRANSFER OF PROPERTIES

In Model-Based Design (MBD), the modelM is designed
in an iterative fashion to satisfy a certain specification ϕ. In
this work our focus is exclusively on formal specifications ex-
pressed in Metric Temporal Logic (MTL) (see Section III-A).
When moving from Model testing to Implementation testing,
the main question is: despite the inaccuracies introduced by
the implementation process, does my Implementation I still
satisfy the specification ϕ?

As mentioned in the Introduction, often, it might not be
possible to formally verify ϕ on the more complex of the two
systems, say M. For all these reasons, our confidence in the
more complex system must derive from two things: the fact
that I satisfies ϕ; and that the two systems M and I have
‘close’ behaviors. In this section, we formalize the relation
between closeness of behaviors and formula satisfiability by
deriving, automatically, which formulae are satsified by a TS µ′
which is (τ, ε)-close to a TS µ, given that the latter satisfies ϕ.
Note that this does not require any testing of µ′: the formulae
are derived automatically via syntactic manipulations.

A. MTL for Hybrid Timed State Sequences

In order to introduce the MTL-based design framework
in Section III, we now briefly go over the definition of
Metric Temporal Logic (MTL) [29]. MTL is a temporal logic
for expressing real-time properties of embedded and cyber-
physical systems, and allows the specification of constraints on
the timing of events. In this section, we present an extension
of MTL over hybrid time. In a hybrid time domain, the time
variable takes values in T = [0, T ]×{0, . . . , J}. This extension
naturally subsumes the case of real-valued time. A hybrid time
set is a non-empty set of the form I = Ec × Ed ⊂ R × N,
where Ec is an interval in R and Ed is a set of successive
integers. Given the hybrid time (s, j) ∈ R × N, (s, j) ⊕ I :=
{(s′, j′) | ∃(s̄, j̄) ∈ I . s′ = s + s̄ and j′ = j + j̄}. This is
itself a hybrid time set.

Definition 3.1 (MTL+ Syntax): Let AP be a set of atomic
propositions and I be a hybrid time set. The set MTL+ of
all well-formed MTL formulas in negation normal form is
inductively defined as ϕ := > | ⊥ | p | ¬p | ϕ ∨ ϕ | ϕ ∧
ϕ | ϕ UIϕ | ϕRIϕ, where p ∈ AP , > is true and ⊥ is false.

We instantiate the definitions of the semantics over abstrac-
tions of the output TS of the hybrid system H with respect to
the sets O(p) ⊆ Y for all p ∈ AP . Let (µ, i) |=O ϕ denote
the satisfaction of the MTL formula ϕ over a TS µ starting
at sample i with respect to the atomic proposition-mapping
O. If µ does not satisfy ϕ under the map O, then we write
(µ, i) 6|=O ϕ.

Definition 3.2 (MTL+ Semantics): Let µ be a TS and O :
AP → P(Y ). For i, k, l ∈ N, the semantics of any MTL+

formula ϕ can be recursively defined as:

(µ, i) |=O > and (µ, i) 6|=O ⊥
(µ, i) |=O p iff pr1(µ(i)) ∈ O(p)

(µ, i) |=O ¬p iff pr1(µ(i)) 6∈ O(p)

(µ, i) |=O ϕ1 ∨ ϕ2 iff (µ, i) |=O ϕ1 or (µ, i) |=O ϕ2

(µ, i) |=O ϕ1 ∧ ϕ2 iff (µ, i) |=O ϕ1 and (µ, i) |=O ϕ2

(µ, i) |=O ϕ1 UIϕ2 iff ∃k ∈ dom(µ) such that
pr2,3(µ(k)) ∈ pr2,3(µ(i))⊕ I and (µ, k) |=O ϕ2

and ∀l with i ≤ l < k we have (µ, l) |=O ϕ1

(µ, i) |=O ϕ1RIϕ2 iff ∀k ≥ i,
pr2,3(µ(k)) ∈ pr2,3(µ(i))⊕ I implies (µ, k) |=O ϕ2

or ∃l with i ≤ l < k such that (µ, l) |=O ϕ1

Other operators can be defined using the above, e.g. the
Eventually operator 3Iϕ := >UIϕ and the Always operator
�Iϕ := ⊥RIϕ. The usual MTL+ logic over real time is
recovered by choosing all hybrid time sets to be I = Ec ×N.

Note that in defining the semantics for Until, we did not
require that k ≥ i, since we are allowing negative endpoints on
the intervals Ec of a hybrid time set. In the case of a negative
endpoint, there may be a need to refer to a state µ(k) that
preceded µ(i).

B. Property transfer

Given a set S ⊂ Rn equipped with a metric d, P(S) is the
set of subsets of S. Its δ-expansion E(S, δ) and δ-contraction



C(S, δ) are defined by: E(S, δ) = {x ∈ Rn | infs∈S d(x, s) ≤
δ} and C(S, δ) = Rn \E(Rn \S, δ). Finally, for a hybrid time
set I = Ec × Ed and reals a, b, define I〈a,b〉 := (inf Ec +
a, supEc + b)×Ed, where inf and sup are the greatest lower
bound, and least upper bound, operators, respectively.

Theorem 1: Let ϕ be an MTL+ formula with atomic
propositions in AP and O : AP → P(Y ). Let µ = (y, t, j),
µ′ = (y′, t′, j′) be two TS such that µ ≈(τ,ε) µ

′. If (µ, i) |=O ϕ
then for all i′ ∈ dom(µ′) s.t. |t′(i′)− t(i)| ≤ τ , j(i) = j′(i′),
and ‖y(i)− y′(i′)‖ ≤ ε,

(µ′, i′) |=Oε [ϕ]τ

where the operator [·]τ : MTL+ → MTL+ obeys the
following rules:

[>]τ = > , [⊥]τ = ⊥
[p]τ = p+ , [¬p]τ = p−

[ϕ1 ∨ ϕ2]τ = [ϕ1]τ ∨ [ϕ2]τ
[ϕ1 ∧ ϕ2]τ = [ϕ1]τ ∧ [ϕ2]τ
[ϕ1UIϕ2]τ = (3(−2τ,0]×{0}[ϕ1]τ )

UI〈−2τ,2τ〉(3[0,2τ)×{0}[ϕ2]τ )

[ϕ1RIϕ2]τ = (3(−2τ,0]×{0}[ϕ1]τ )

RI〈2τ,−2τ〉(3[0,2τ)×{0}[ϕ2]τ )

where I = Ec × Ed is a hybrid time set. Also, Oε(p+) =
E(O(p), ε) and Oε(p−) = C(O(p), ε).

The proof is in the technical report [4]. The results of [24]
and [35] can now be recovered as special cases of the above
theorem. The result of [24] is a special case of Thm. 1 where
only time is allowed to deviate (ε = 0). The result of [35]
requires an order-preserving notion of closeness (which it calls
“order-preserving ε-retiming”). Both operate over real time,
rather than hybrid time, which is more suitable for the study
of hybrid systems. To illustrate the content of Thm. 1, we give
two examples:

[�[3,6]×{1,2}p]τ = [⊥RIp]τ

= 3(−2τ,0]⊥R[3+2τ,6−2τ ]×{1,2}3[0,2τ)p
+

= ⊥R[3+2τ,6−2τ ]×{1,2}3[0,2τ)p
+

= �I〈−2τ,2τ〉(3[0,2τ)[p]τ )

[3Iϕ]τ = 3I〈−2τ,4τ〉 [ϕ]τ

The main result of this section now follows from the definitions
and Thm. 1, and its proof is in [4]. For a hybrid system H and
a map O : AP → P(H), we write Hτ |=O ϕ, if for all output
TS µ of H, there exists i ∈ dom(µ) s.t. pr2(µ(i)) ≤ τ and
(µ, i) |=O ϕ. We simply write H |=O ϕ if H0 |=O ϕ.

Theorem 2: Let H1 and H2 be two hybrid systems, and ϕ
be an MTL+ formula. If H1 �τ,ε H2 and H2 |=O ϕ, then
Hτ1 |=Oε [ϕ]τ .

The theorem may be interpreted informally as saying that
system H1 needs an ‘initialization phase’, of duration at most
τ , before it satisfies [ϕ]τ . The role played by the Eventually
operators with negative time intervals appearing in [ϕ1UIϕ2]τ
and [ϕ1RIϕ2]τ of Thm. 1 also becomes clear: they serve to
cover this initialization phase.

If, say, M is what ultimately gets deployed (or is input
to the next phase of the design cycle), and I is derived from
M by a simplification for testing purposes (e.g. model order
reduction), then we care about M verifying the specification
ϕs, but we want to do the testing on I since it is simpler. We
then use Thm. 2 to derive the specification [ϕp]τ satsisfied by
M, and whether it equals ϕs. Thus in this case, we identify
H1 = M and H2 = I in Thm. 2. If, as often happens, a
new specification becomes relevant, then instead of testing
the expensive M, we may simply test I, and use Thm. 2 to
conclude the specification satisfied by M. Thus conformance
testing is a one-time cost (as long asM isn’t modified), which
reduces the testing effort when specifications change.

IV. COMPUTING THE CONFORMANCE DEGREE

In this section we treat the problem of computing the
conformance degree given in Def. 2.4. Conformance testing
is the process of finding two trajectories µ1 and µ2, of H1

andH2 respectively, such that they achieve (τ,CDτ (H1,H2))-
closeness. The result can be used in two ways: first, the
conformance degree is needed to apply the property transfer
results of the previous section. Secondly, µ1 and µ2 can be
used to debug a derivation process: suppose M and I were
designed to achieve a certain (τ, ε). If conformance testing
yields an achievable degree (τ, ε′) with ε′ > ε, i.e. the
true distance is greater than what was designed for, then the
‘witness’ TS µ1 and µ2 act as debugging traces to detect where
the behavior was erroneous, and therefore what needs to be
fixed in the derivation process. The details of such debugging
are naturally application-dependent.

The value CDτ (H1,H2) is computed in stages. For two
TS µ = (y, t, j) and µ′ = (y′, t′, j′), define

cd(µ, µ′) := max{cd1(µ, µ′), cd1(µ′, µ)}

where

cd1(µ, µ′) = max
i∈dom(µ)

min
i′∈dom(µ′):

j(i)=j′(i′)

|t(i)−t′(i′)|<τ

‖y(i)− y′(i′)‖

Note that cd is symmetric. Then, given two hybrid systems
related by R, CDτ (H1,H2) is calculated as

CDτ (H1,H2) = sup{cd(H1(η1, u),H2(η2, u)) :

η1 ∈ H0,1, u ∈ U, η2 ∈ H0,2 ∩ prη1(R)}

This dynamically-constrained optimization can be seen to be
nonsmooth, nonlinear and indeed in general nonconvex. Its
format does not satisfy the principle of optimality because of
the max operators and so it does not lend itself to dynamic
programming. It doesn’t take the form of an integrated or
final cost, and so is not readily amenable to optimal control
methods. In our previous work [3], due to these complexities,
we adopted Simulated Annealing (SA) as a general-purpose,
derivative-free, stochastic global optimizer. We will next de-
velop the computation of CDτ (H1,H2) in two directions:
by the use of an adapted Rapidly-exploring Random Trees
(RRTs) [13], and by computing an upper bound in the case of
switched linear systems, which we derive now.



Let z be a symbol denoting a pair of TS: z = (µ1, µ2) ∈ Z ,

Z = {(µ1, µ2) : µ2 = H2(η2, u), µ1 = H1(η1, u)

s.t. (η1, u) ∈ H0,1 × U, η2 ∈ H0,2 ∩ prη1(R)}

Noting that CDτ (H1,H2) = supz∈Z cd1(µ1, µ2) ∨
supz∈Z cd1(µ2, µ1), we compute supz∈Z cd1(µ1, µ2) := ε∗1
and supz∈Z cd1(µ2, µ1) separately. These two optimizations
can be done in parallel and are symmetric in their structure,
so in the remainder we focus on ε∗1.

Proposition 4.1: For each z = (µ1, µ2) ∈ Z , with
µ1 = (y1, t1, j1), µ2 = (y2, t2, j2), i ∈ dom(µ1), define
the set S(i, z) := {k ∈ Z | i + k ∈ dom(µ2)}. If
S := ∩z=(µ1,µ2)∈Z,i∈dom(µ1)S(i, z) 6= ∅, define for each
k ∈ S, gk(z) = maxi∈dom(µ1) ‖y1(i) − y2(i + k)‖2. Then
ε∗1 ≤ K :=

√
mink∈S supz∈Z gk(z)

The proof is in [4]. The set S contains indices for which gk
is a well-defined function of z, and thus needs to be non-
empty. While in general, the non-emptiness hypothesis might
be unrealistic, it holds in the important case of switched linear
systems treated in Section IV-B.

A. Rapidly-exploring Random Trees

RRT is a very popular and efficient method of robot motion
planning (see [13] and references therein). Its strength lies in
its ability to explore the robot space quickly to reach a target
from a given starting point. In this section we present an adap-
tation of RRTs to the problem of computing CDτ (H1,H2).
The workspace Q of the RRT is the product of the two output
spaces Y1 and Y2 of nominal system H1 and derived H2:
Q = Y1 × Y2. Let distQ : Q × Q → R+ be a distance
function over Q.

RRT builds a tree to explore the workspace. The root of the
tree is chosen to be a pre-determined couple of initial outputs,
namely q0 = [h1(η1), h2(η2)], with (η1, η2) ∈ R. Suppose
the tree currently has i ≥ 1 nodes. A probability distribution
with support Q is used to select a sample qs = [y1, y2] in
the workspace. The nearest distQ-neighbor to qs on the tree
is found, say qnear = [ynear1 , ynear2 ]. See Fig. 5. A local
controller is then applied to H2 to synthesize an input TS
ui, of duration Dplan, which drives H2 from ynear2 to y2. This
input is applied for a pre-determined duration Dhor, called
the control horizon, which may be different from Dplan. This
leads H2 to output y′2 (which is not necessarily equal to y2).
The same input is then applied to H1 which then reaches
output y′1. The new configuration qi+1 = [y′1, y

′
2] is then

added to the tree, and the process repeats until the tree has
a pre-determined size, or some measure of coverage exceeds
a specified threshold [14]. Once the tree is constructed, every
branch from root to leaf represents an evolution of the two
systems, starting from (η1, η2), and under a series of common
input TS. So we can associate a pair of TS µ = H1(η1, u)
and µ′ = H2(η2, u) to each branch, and compute cd(µ, µ′)
along that branch. The largest computed cd-value among all
the branches constitutes an estimate of CDτ (H1,H2) (more
accurately, it is an under-approximation).

Guarantees of this method derive from the guarantees
provided by the underlying RRT algorithm - see for exam-
ple [28]. This modified RRT only assumes that the systems

q0 

qs 

qnear 

qi+1 

ui 

Fig. 5: RRT for computing the conformance degree.

have controllers: no other assumption is made concerning their
structure or properties.

B. Switched linear systems

In this section we show how the upper bound of Prop. 4.1
can be computed when both systems are switched linear
systems driven by an external switching signal.

Assumption 4.1: Both M and I are switched linear sys-
tems (defined below); these models arise frequently in supervi-
sory control of linear systems. The integration step or sampling
period is constant: t(i+1)−t(i) = t′(i+1)−t′(i) = δt > 0 ∀i.
E.g. the output may be measured via a sample-and-hold circuit.
The initial sets H0,M and H0,I and the state spaces HM and
HI are bounded boxes in Rn1 and Rn2 , respectively. There
exists a linear transformation VR between the initial state ηI
of HI and that ηM of HM : ηI = VR · ηM . E.g. this is true
whenever I is obtained by MOR from a switched linear M.

A switched linear system H is a hybrid system (1) where
the flow and output functions are linear with respect to the
state and the input, and there are no resets of the state (i.e.
G is the identity). It can be seen as a collection of L linear
sub-systems (A`, B`, C`, D`), ` ∈ [L], L ∈ N>0, described by
the discrete-time equations:

H :

 η(0) ∈ H0 ⊂ Rn
η(s+ 1) = Aa(s)η(s) +Ba(s)u(s)
y(s) = Ca(s)η(s) +Da(s)u(s)

(2)

where a : [0, T ] → [L] is the piece-wise constant right-
continuous external switching signal with left limits, and
finitely many discontinuities in any bounded interval. When
a(s) changes value, the system starts obeying the dynamics
of the new mode, and hybrid time advances by increas-
ing j. An output TS of H is µ = (y, t, j) s.t. t(i) =
i · δt, y(i) = h(η(t(i))), and j(i) = #{s ∈ [0, i ·
δt] | a is discontinuous at s}. BothM and I are described by
(2) with common switching signal, input TS, mode set [L], out-
put set Y , and (naturally) different matrices (A`, B`, C`, D`).
In particular, this implies that their output TS have the same
domain, and that pr2,3(µM ) = pr2,3(µI) = (t, j), with t and
j given above. Therefore in this sub-section, we identify η of
(2) with the first component of the TS (η, t, j), and similarly
a ≡ pr1((a, t, j)), where (t, j) is the common domain of all
the TS.

We now present the elements of the formal ODE-
constrained optimization problem we seek to solve. The search



variable of the optimization is simply the two output TS of the
two systems, ‘unrolled’ over N + 1 time steps, starting from
corresponding initial conditions, and subject to the same input
signal u. Formally, the search variable z can now be written
as a vector of samples:

z = [η1(0), η1(1), . . . , η1(N), η2(0), η2(1), . . . , η2(N)] ∈ Z

Note that the initial states of the two systems are part of the
search variable. If we wish to make the input TS u part of
the search, we may similarly unroll it and append its sampled
values to the search vector z.

Putting it all together, our optimization problem is:

max
z

gk(z) = max
i∈dom(µ1)

‖y1(i)− y2(i+ k)‖2 (3)

s.t. (Space Constraint) ∀ i = 0, . . . , N

lbi,1 ≤ η1(i) ≤ ubi,1, lbi,2 ≤ η2(i) ≤ ubi,2
(Output constraint) ∀ i = 0, . . . , N

y1(i) = C1,a(i)η1(i) +D1,a(i)u(i)

y2(i) = C2,a(i)η2(i) +D2,a(i)u(i)

(Dynamical constraint) ∀ i = 0, . . . , N − 1

η1(i+ 1) = A2,a(i)η1(i) +B1,a(i)u(i)

η2(i+ 1) = A1,a(i)η2(i) +B2,a(i)u(i)

(Implementation constraint)
η1(0) = VR · η2(0)

Proposition 4.2: If Assumption 4.1 holds, then dom(µ) =
dom(µ′) = [N ] for all (µ, µ′) ∈ Z , and for all k ∈ [N ], the
function z 7→ gk(z) is convex.

The proof is in [4]. Thus, because we are maximizing a convex
function over a convex domain, it suffices to restrict the search
to the feasible set’s boundary. We conclude by noting that for
the solution of (3) to be acceptable as valid output TS, we set
the error tolerance to be less than the integration error incurred
when simulating the system by numerical integration.

V. EXPERIMENTS

In this section, we illustrate the preceding theory and
algorithms on benchmark examples. For the first two systems,
we used the state-of-the-art optimization solver KNITRO [43].
KNITRO can handle very large-scale mixed integer nonlinear
programs. While not designed for nonsmooth optimization,
it can still provide a number of local maxima, so we can
approximate the global maximum via multi-start. To illustrate
Thm. 2, we use two tools for property verification: the first is
SpaceEx, a reachability analysis tool which over-approximates
the reachable set of a hybrid linear system, and thus can be
used to rigorously verify safety properties [17]. The second
tool is S-TALIRO, which searches the set of initial conditions
and input TS (if any) for a falsifier, i.e. an output TS which
does not satisfy the property [6]. S-TALIRO can handle
arbitrary MTL specifications (not just safety/reachability). Its
guarantees are probabilistic: i.e. if S-TALIRO does not find
a falsifier, then we know with high probability that one does
not exist. The exact probability depends on the tool’s runtime
and certain other parameters. Other verification methods exist
like coverage-based testing, which can cover the set of initial
conditions with a finite number of tests [27]. In this section, to

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

−8.2

−8

−7.8

−7.6

−7.4

−7.2

−7

−6.8

−6.6

t

 

 

y
M

y
I

Fig. 6: Trajectories that maximize the upper bound for
RLC600, zoomed in to show differences on the order of K.

avoid overloading the notation, a hybrid time set of the form
I = Ec × {0} will be written simply as Ec.

RLC circuits: The first system, RLC200, is a 200D RLC
circuit obtained from [23]. We take RLC200 to be the nominal
model M. We obtain I from M by balanced model order re-
duction (MOR), which produces a 14D linear system. Because
it satisfies Assumption 4.1, we formulate the optimization as
given in (3), for a given pre-determined input TS. This yields
a K upper bound value (Prop. 4.2) of 0.5453. We computed
the achievable closeness degree ε between the two trajectories
that maximize K (i.e. the solution of (3)), and the obtained
value was also 0.5453. So for this maximum, the bound K is
tight. We also ran the same procedure on a 600-dimensional
scaling up of RLC200 with similar results. See Fig. 6. For
both systems, it took KNITRO an average of 30mins to reach
a maximum.

As an example specification for RLC200, consider the
following progressive settling time formula expressed in MTL:
ϕ = (�[0,0.8]|y1 − y2| ≤ 1) ∧ (�[0.8,2.5]|y1 − y2| ≤ 0.5).
This formula says that in the initial 0.8 secs, the output of
the reduced order system I must not differ from that of M
by more than 1 Volt. Then, and up to time 2.5 secs, it must
differ by even less, namely 0.5V. This reflects the gradual dis-
appearance of transients in the circuits and settling to steady-
state operation. We ran S-TALIRO on I, to test whether it
satisfied ϕ. S-TALIRO found no falsifiers, indicating that with
high probability, I satisfies the property. The corresponding
transformed formula is (�[0.06,0.74]3[0,0.06]|y1−y2| ≤ 1.54)∧
(�[0.86,2.44]3[0,0.06]|y1 − y2| ≤ 1.04) S-TALIRO returned no
falsifiers of [ϕ]τ by M. �

Buck converter [32]: A DC-to-DC buck converter accepts
an input DC voltage Vs and converts it down to a lower
Vref . It has two modes. Given a switching period P and a
duty cycle f , it is in mode 1 for f · P units of time and
mode 2 for (1 − f)P units. For this example’s purposes,
we adopt a simple open-loop strategy where the duty cycle
is a function of the reference voltage: f = Vref/Vs. When
implemented, the circuit’s R,L,C parameters will typically
deviate from their nominal values, and the switching period P
computed by the software will drift from its nominal value.
Thus to study worst-case behavior, the nominal system M
and derived I are taken to correspond to the two extremes
of the valid ranges of R,L,C, P . This is now an example of
a switched system, so we ran KNITRO to find the confor-
mance degree given τ = 3e − 5 secs. It returned ε = 2.24
in under 4 secs. We then ran SpaceEx to verify a safety
property ϕ := �[0.001,0.0147]×A|y − 5| ≤ 1 of M, with
A = [d(0.0147− 0.001)/P e]. The corresponding transformed



formula

[ϕ]3e−5 = �[0.001+2τ,0.0147−2τ ]×A3[0,6e−5)|y − 5| ≤ 3.24

is implied by the following safety formula: ϕs =
�[0.001+2τ,0.0147−2τ ]×A|y − 5| ≤ 3.24, so that verifying that
I satisfies ϕs implies it also satisfies [ϕ]3e−5. We again used
SpaceEx, confirming that I satisfies ϕs. �

Hybrid nonlinear: This is a 3D hybrid nonlinear system,
with three modes and a 1D input signal. It is modified from
[20]. In each mode, the dynamics of the nominal model M
are given by:

M



[
ẋ1
ẋ2
ẋ3

]
=

 −(1 + γx22)x1 + 0.1u
−0.5(1− γx21)x2 + 2x3

−(1− γx1)2x2 − 0.5x3 + 0.4u


[
y1
y2

]
=

[
γx1 + x2

x3

] (4)

where γ is a mode-specific constant. The derived model I is
obtained from M by linearizing the mode dynamics around
the 0 equilibrium. In [20] it was established that with 0 input,
the two systems’ location-specific dynamics are approximately
bisimilar. We ran the RRT method of Section IV-A on the
two systems, using a uniform sampling distribution, Euclidian
distance function, and a Model Predictive Controller for local
motion planning to generate a tree with 1000 nodes. We
computed the largest ε along all branches of the tree, which
yielded a value of 7.157 for τ = 0.06. To illustrate Thm. 2 for
this case, we used S-TALIRO to check that I satisfies ϕ:

ϕ = 3[0,4]×[JMAX ](�[0,0.4]|y1 − y2| ≤ 8)

where JMAX is an upper bound on the number of jumps in
[0,4]. S-TALIRO reports no falsifying trajectories when trying
to falsify the corresponding [ϕ]τ for M. �

VI. RELATED WORK

In this paper we understand conformance as a notion that
relates systems, as done in [38], rather than a system and
its specification as in [14], [41]. The work in [38] studies
conformance of embedded software using type systems and
a notion of conformance that only relaxes time, whereas we
are interested in hybrid system models of embedded cyber-
physical systems with real-valued outputs and a relaxation of
space as well time distances. The work in [30] provides an
approximate method for verifying formal equivalence between
a Simulink model and its corresponding C code; however it
requires equality of outputs between the two (an extension is
alluded to in the Conclusion), and does not account for timing
differences. The approach to conformance of hybrid systems
in [33] (building on [39]) results in untestable definitions, and
falls in the domain of nondeterministic abstractions. Other
approaches, like [9], require knowledge of the internal system
structure, which is not necessary, in our case, for Def. 2.3.

We defined conformance via the (T, J, (τ, ε))-closeness
between hybrid trajectories, based on the work of Goebel and
Teel [22]. A number of closeness measures between hybrid
trajectories and systems exist. Measures based on bisimula-
tion [19] and supnorms [10] only consider the differences
in signal values at the same moment in time, which is

not appropriate here since TS may have different domains.
Other closeness measures, on the other hand, consider only
differences in trajectories’ timing, e.g., [24]. It can be shown
that (T, J, (τ, ε))-closeness provides a continuum of closeness
degrees between the two extremes presented in [1]. The Sko-
rokhod distance between trajectories used in [12] is related to
(T, J, (τ, ε)), but its use of bijective retimings is too restrictive
in our context. More on the limitations of bijective retimings
in the hybrid systems context can be read in [15, Section 5]. In
the latter work, a generalization of (T, J, (τ, ε))-closeness is
presented as a pseudo-metric, but no computational procedure
is given for computing this more general pseudo-metric.

The works closest to ours are [26] and [35]. In [26], (τ, ε)-
bisimulation relations between metric transition systems are
defined. The goal is to define robust approximate synchro-
nization between systems (rather than conformance testing).
(T, J, (τ, ε))-closeness extends (τ, ε)-bisimulation relations in
a straighforward manner to hybrid time domains, and we place
it in a computational framework where the objective is to
estimate the conformance degree. Later, Quesel [35] defined
the notion of (τ, ε)-similar traces, and proved a property
transfer result between (τ, ε)-similar traces, which is a special
case of our Thm. 1. The main differences with our work are
three. First, unlike (τ, ε)-closeness, (τ, ε)-similarity requires
the retiming relation to be order-preserving [35, Def. 17].
Whether this is important depends on the intended application.
Allowing local ‘disorder’ might be necessary to deal with
noisy signals as shown in Section II-C. Second, multiple jumps
within the same time step are ‘deleted’ [35, Section 3.1] and
not captured in (τ, ε)-similarity: this can be problematic in a
number of applications where such events are indicative of
bugs (e.g. race conditions in mixed-signal circuit verification,
gear slippage in automotive applications, Zeno behavior arising
out of high-level modeling [42], or code generation scenarios
like [5]). Finally, our Thm. 1 generalizes the result in [35] to
hybrid time domains, which allows us to explicitly take into
account discrete events that are of interest to the designer,
whereas they are ignored in [35]. It is also a generalization to
non-order preserving retimings.

VII. CONCLUSIONS

In this paper, we have defined conformance between a
system model and a system derived from it, by a process
of simplification or implementation, as a degree of closeness
between the outputs of the two systems. We then demonstrated
two methods to approximate this degree of conformance. In
future work, we plan on conducting a systematic comparison
of the three optimization methods: Simulated Annealing, RRTs
and multi-start KNITRO. We will consider coverage-based
methods for guiding the RRT optimization and the choice of
sampling distribution [14], and how to ‘pre-design’ a model
such that the derived implementation satisfies certain desired
properties. Finally we will apply this framework to concrete
examples of derivation processes such as code generation, and
illustrate how it helps debugging the derivation process.
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APPENDIX

Proof: (Theorem 1)

The proof is by induction on the formula structure. We
present only the cases for the positive predicate, the Until and
the Release since the other cases are immediate. For conve-
nience, given i ∈ dom(µ), let ρ′(i) = {i′ ∈ dom(µ′) | |t(i)−
t′(i′)| ≤ τ, j(i) = j′(i′), and ‖y(i) − y′(i′)‖ ≤ ε} be the
set of ‘matching indices’ for µ(i). By definition of achievable
closeness (Def. 2.2), ρ′(i) is non-empty for all i (note the use
of nonstrict inequalities in its definition). Define the function
d : Y ×P(Y )→ R+ to be d(y, S) = infs∈S ‖y− s‖ if y /∈ S
and d(y, S) = infs∈∂S ‖y − s‖ if y ∈ S where ∂S is the
boundary of S.

Base Case: (µ, i) |= p implies that pr1(µ(i)) ∈ O(p).
Now because µ ≈(τ,ε) µ

′, ρ′(i) is non-empty and for all i′ ∈
ρ′(i), ‖y(i) − y′(i′)‖ ≤ ε. By the triangle inequality, for any
point w ∈ O(p), ‖y(i)−w‖+ ‖w− y′(i′)‖ ≤ ‖y(i)− y′(i′)‖.
Taking the infimum over w twice on the left hand side, it comes
that d(y′(i′),O(p)) ≤ ε − d(y(i),O(p)) ≤ ε. This implies
pr1(µ′(i′)) ∈ E(O(p), ε) by definition of the expansion. So
for all i′ ∈ ρ′(i), pr1(µ′(i′)) ∈ Oε(p+) and, thus, (µ′, i′) |=
p+ ≡ [p]τ .

Until Case: Assume that (µ, i) |=O ϕ1UIϕ2. By def-
inition there exists an integer i2 such that pr2,3(µ(i2)) ∈
pr2,3(µ(i)) ⊕ I and (µ, i2) |=O ϕ2 and for all i1 such that
i ≤ i1 < i2 we have (µ, i1) |=O ϕ1. Let i2 be the smallest
such integer. By the induction hypothesis, ∀i′2 ∈ ρ′(i2),
(µ′, i′2) |=Oε [ϕ2]τ . Also by the induction hypothesis,

∀i′ ∈ ρ′(i), (µ′, i′) |=Oε [ϕ1]τ (5)

We now need to see what happens between such i′ and i′2.

Since pr2,3(µ(i2)) ∈ pr2,3(µ(i)) ⊕ I, we have
pr2,3(µ′(i′2)) ∈ pr2,3(µ′(i′)) ⊕ I〈−2τ,2τ〉. Let i′2 be the
smallest such integer.

Now consider any i′ ∈ ρ′(i). For all i′1 such that i′ ≤ i′1 <
i′2, we ask the question: is 3(−2τ,0]×{0}[ϕ1]τ satisfied at i′1? By
the fact that µ ≈(τ,ε) µ

′, there is some i1 such that i′1 ∈ ρ′(i1).
If it were always the case that i ≤ i1 < i2, then the induction
hypothesis would allow us to answer in the affirmative. But
this is not always the case. Therefore, we need to consider
three cases. Define i′′2 to be the smallest integer in dom(µ′)
such that t′(i′′2) > t′(i′2)− 2τ .

1) Case i ≤ i1 < i2: then (µ, i1) |=O ϕ1 by definition of
the Until, and by the induction hypothesis, (µ′, i′1) |=Oε
[ϕ1]τ . A fortiori, (µ′, i′1) |=Oε 3(−2τ,0]×{0}[ϕ1]τ .

2) Case i1 < i: In this case, we have no guarantee that
(µ, i1) |=O ϕ1, so the transformed formula needs to be
made more permissive. That i1 < i and i′1 ≥ i′ implies
that t′(i′1) < t′(i′) + 2τ , as shown (see also Fig. 7, top):

t′(i′1) < t(i1) + τ < t(i) + τ

t′(i′) > t(i)− τ =⇒ −t′(i′) < −t(i) + τ

=⇒ t′(i′1)− t′(i′) < 2τ

=⇒ t′(i′1) < 2τ + t′(i′) (6)

Moreover, j(i1) ≤ j(i) = j′(i′) ≤ j′(i′1). But j(i1) =
j′(i′1), so we have equalities throughout, and in particular

j′(i′) = j′(i′1) (7)

Therefore, by (5), (6) and (7),

(µ′, i′1) |=Oε 3(−2τ,0]×{0}[ϕ1]τ

3) Case i1 ≥ i2: in this case there isn’t much that can be said
about the satisfaction of [ϕ1]τ . However, we will make
an argument similar to that of Case 2: along with i′1 < i′2,
this case implies that

t′(i′2)− t′(i′1) < 2τ (8)

as shown (see also Fig. 7 (bottom) for an illustration of
these relations):

t′(i′2) < t(i2) + τ

t′(i′1) > t(i1)− τ ≥ t(i2)− τ
=⇒ t′(i′1) > t′(i′2)− 2τ

Moreover, j(i2) ≤ j(i1) = j′(i′1) ≤ j′(i′2). But j(i2) =
j′(i′2), so we have equalities throughout, in particular

j′(i′1) = j′(i′2) (9)

This has two consequences: first, pr2,3(µ(i′1)) ∈
pr2,3(µ(i′))⊕ I〈−2τ,2τ〉. Second,

(µ′, i′1) |=Oε 3[0,2τ)×{0}[ϕ2]τ

Recall we defined i′′2 as the smallest integer in dom(µ′)
such that t′(i′′2) > t′(i′2)− 2τ (it could be i′1 itself). And
note that ∀k′ < i′′2 ,∃ k s.t. k′ ∈ ρ′(k) and t′(k′) ≤
t′(i′2)−2τ and so k < i2, so k′ fits one of the first 2 cases.
Then (µ′, i′′2) |=Oε 3[0,2τ)×{0}[ϕ2]τ , and pr2,3(µ(i′′2)) ∈
pr2,3(µ′(i′))⊕ I〈−2τ,2τ〉.

Combining the three cases, for all i′ ≤ i′1 < i′′2 (implying
that i1 < i2), it holds that 3(−2τ,0]×{0}[ϕ1]τ is true of (µ′, i′1).

In conclusion we may assert that ∀i′ ∈ ρ′(i),

(µ′, i′) |=Oε (3(−2τ,0]×{0}[ϕ1]τ )UI〈−2τ,2τ〉(3[0,2τ)×{0}[ϕ2]τ )

Case 1 always holds if the (T, J, (τ, ε))-closeness relation
were order-preserving for a given pair (µ, µ′). In this case
we can make the stronger assertion that for all i′ ∈ ρ′(i),
(µ′, i′) |=Oε [ϕ1]τUI〈−2τ,2τ〉 [ϕ2]τ .

Release case: Assume that (µ, i) |=O ϕ1RIϕ2. let i′ be
any element of ρ′(i). For any k′ ∈ dom(µ′),

pr2,3(µ′(k′)) ∈ pr2,3(µ′(i′))⊕ I〈−2τ,2τ〉

=⇒ pr2,3(µ′(k′)) ∈ pr2,3(µ(i))⊕ I〈−τ,τ〉

=⇒ ∃k ∈ [N ].k′ ∈ ρ′(k) and pr2,3(µ(k)) ∈ pr2,3(µ(i))⊕ I

By definition of the Release it holds either that
(A) (µ, k) |=O ϕ2, or
(B) ∃i ≤ ` < k.(µ, `) |=O ϕ1.
If (A), then by the induction hypothesis ∀k′′ ∈ ρ′(k),
(µ′, k′′) |=Oε [ϕ2]τ , in particular at k′′ = k′. If (B), then
without loss of generality, assume ρ′(`) = {`′}. We distinguish
three cases:

(B.1) i′ ≤ `′ < k′: then by the induction hypothesis,
(µ′, `′) |=Oε [ϕ1]τ .
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Fig. 7: Until case. Top: Case 2. Bottom: Case 3. In this and
all figures of the appendix, the horizonal lines represent real
time, and the indices mark the location of real time, i.e. i is
located at t(i), etc.

(B.2) `′ < i′: combined with ` ≥ i , this implies that t′(`′) >
t′(i′) − 2τ and that j′(`′) = j′(i′) - this can be shown
along the same lines as (6) and (7) of the Until case. See
also Fig. 8 (top). Therefore (µ′, i′) |=Oε 3(−2τ,0][ϕ1]τ .

(B.3) `′ ≥ k′: combined with ` < k, this implies that
t′(k′) ≤ t′(`′) < t′(k′) + 2τ . See Fig. 8 (bottom) for
an illustration. Therefore t′(k′)− τ < t(`) =⇒ t(`) ∈
Ec =⇒ pr2,3(µ(`)) ∈ pr2,3(µ(i))⊕ I. We will reason
iteratively: set `0 = k (initialization), m = 1, `m = `.
Because t(`m) ∈ Ec and `′m ≥ `′k,
(C.1) either (µ, `m) |=O ϕ2, in which case (µ′, `′k) |=Oε

3[0,2τ)[ϕ2]τ and we’re done, or
(C.2) ∃`m+1 < `m s.t. (µ, `m+1) |=O ϕ1.
In case (C.2), increment m ← m + 1, and let `′m ∈
ρ′(`m) (which we assume to be a singleton without loss
of generality). Again,
(C.2.1) either `′m < k′ so (µ′, `′m) |=Oε [ϕ1]τ and we’re

done.1 Or,
(C.2.2) `′m ≥ k′ =⇒ t(`m) ∈ Ec and t′(`m′) <

1Strictly speaking, we should handle the case `′m < i′ separately, but this
is handled exactly the same way as (B.2).
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Fig. 8: Release case. Top: Case B.2. Bottom: Case B.3.

t′(k′) + 2τ , and goto (C.1)
This iterations must stop at some point, either by (C.1),
or by (C.2.1) because `m are strictly decreasing.

Combining cases (A) and (C.1) together, and cases (B.1) ,
(B.2) and (C.2) together, it comes that ∀i′ ∈ ρ′(i)

(µ′, i′) |=Oε (3(−2τ,0][ϕ1]τ )RI〈−2τ,2τ〉(3[0,2τ)[ϕ2]τ )

Note that the ‘eventually’ terms arise because of local
disorder at the ‘boundaries’ of the formula, i.e. at i and k
for the Release case, and at i and i2 for the Until case.
The statement can be strengthened if we restrict ourselves to
consider the satisfaction away from those boundaries.

We now give an example to show that the above results
are the best achievable without any further assumptions.

Example 3: Consider the situation in Fig. 9, where the
top axis represents pr2(µ) and the bottom axis represents
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Fig. 9: Example 3

pr2(µ′). Set I = Ec × Ed for some Ed. We are given
that (µ, i) |=O ϕ1RIϕ2, and that (µ, k) 6|=O ϕ1 ∨ ϕ2.
Assume that i′ ∈ ρ′(i), k′ ∈ ρ′(k), `′ ∈ ρ′(`). This implies
(µ, `) |=O ϕ1 ∧ ϕ2. We know that (µ, `′) |=Oε [ϕ1]τ . The
most we can say about (µ′, k′) is that (µ′, k′) |= 3[0,2τ)[ϕ2]τ

�

Proof: (Theorem 2)

By definition of simulation, every output TS µ1 =
(y1, t1, j1) of H1 has a corresponding TS µ2 = (y2, t2, j2) of
H2 that is (T, J, (τ, ε))-close to it. By hypothesis, (µ2, 0) |=O
ϕ. Define the mapping ρ1 : dom(µ2) → dom(µ1) by
ρ1(i′) = {i ∈ dom(µ1) | |t1(i) − t2(i′)| ≤ τ, j1(i) =
j2(i′), ‖y1(i) − y2(i′)‖ ≤ ε}. It follows from Thm. 1 that
(µ1, i) |=Oε [ϕ]τ for all i ∈ ρ1(0). Since t2(0) = 0, it comes
that t1(i) ≤ τ for all i ∈ ρ1(0).

Proof: (Proposition 4.1)

Given z = (µ1, µ2) ∈ Z with dom(µ1) = [N ], and i ∈
[N ], define

W (i, z) := {k ∈ S(i) | j1(i) = j2(i+k), |t1(i)−t2(i+k)| < τ}

f(k, i, z) := ‖y1(i)− y2(i+ k)‖2

The set S(i, z) contains all indices k such that f(k, i, z) is
well-defined, and the set S, if non-empty, contains all indices
k such that gk is well-defined.

Given k ∈ S, define the following indices

k∗(i, z) = arg min
k∈W (i,z)

f(k, i, z)

i0(z) = arg max
i∈[N ]

f(k∗(i, z), i, z)

i∗(k, z) = arg max
i∈[N ]

f(k, i, z)

k0(z) = arg min
k∈W (i0,z)

f(k, i∗(k, z), z)

Now for any i, z, k, f(k∗(i, z), i, z) ≤ f(k, i∗(k, z), z), in
particular, at i0, k0, f(k∗(i0, z), i0, z) ≤ f(k0, i

∗(k0, z), z), i.e.

∀z ∈ Z,max
i∈[N ]

min
k∈W (i,z)

f(k, i, z)︸ ︷︷ ︸
LHS

≤ min
k∈W (i0,z)

max
i∈[N ]

f(k, i, z)︸ ︷︷ ︸
gk(z)

(ε∗1)2 = sup
z
LHS ≤ sup

z
min

k∈W (i0,z)
gk(z)

We further upper bound the right-hand side of the preced-
ing inequality:

∀z ∈ Z, k ∈ S, min
k′∈W (i0,z)

gk′(z) ≤ sup
z′
gk(z′)

=⇒ ∀k, sup
z

min
k′∈W (i0,z)

gk′(z) ≤ sup
z′
gk(z′)

=⇒ sup
z

min
k′∈W (i0,z)

gk′(z) ≤ min
k∈S

sup
z
gk(z)

=⇒ ε∗1 ≤
√

min
k∈S

sup
z
gk(z)

Note that if S = {0}, then the upper bound reduces to
the supnorm: g0(z) = maxi∈[N ] ‖y1(i) − y2(i)‖2. Note also
that the fact that the supnorm upper bounds ε∗1 holds more
generally than in the setting of Section IV-B.

Proof: (Proposition 4.2) The fact that the integration (or
sampling) step is fixed, and that both systems are subject to
the same external switching signal, imply that dom(µ) =
dom(µ′) = [N ] for all output TS of the two systems. Thus
the hypothesis of Prop. 4.1 is satisfied since 0 ∈ S, and gk is
well-defined.

To prove convexity, note that gk is the maximum of N + 1
functions of z, each of the form ‖y1(i)−y2(i+k)‖2. The norm
squared ‖·‖2 is convex in its argument; y2(i) and y1(i+k) are
linear in η2(i) and η1(i+k), respectively; η2(i) and η1(i+k)
are obtained by simply projecting z onto the appropriate sub-
space of Z , which is a linear operation. Therefore, gk is convex
in z for every k.
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