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1. INTRODUCTION

Model Based Design (MBD) and automatic code generation are becoming the development method-
ologies of choice for safety critical applications. Most prominently, such design methodologies have
been adopted by the automotive, medical and aerospace industries [Mathworks 2011; Esterel Tech-
nologies 2011] where correctness of the end product is of paramount importance. The types of
systems in these industrial domains are particularly challenging because software is controlling the
safe operation of a physical system. Such systems are also known as Cyber-Physical Systems (CPS).
One of the pressing challenges in the MBD of CPS is how to verify the correctness of the developed
model of the system as early as possible in the design cycle.

In answering such a problem, one must first specify what is an appropriate mathematical model
that captures the behavior of the system and, second, what isan appropriate specification framework
that has a nice mathematical structure that can help in analyzing the mathematical model of the sys-
tem. One such popular mathematical framework for CPS modeling is hybrid automata [Henzinger
1996]. Unfortunately, in general, the verification problemfor hybrid automata is undecidable even
for simple safety requirements [Henzinger et al. 1998], i.e., there is no terminating algorithm that
can answer whether a CPS ever enters a set of bad states. Thus,a lot of research has focused on
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discovering the classes of hybrid automata where the safetyverification problem is decidable [Alur
et al. 2000] and on reachability analysis and testing based techniques [Tripakis and Dang 2009].

However, in many cases, the system requirements extend wellbeyond simple safety properties.
For example, we might be interested in conditional requirements such that “if the temperature in-
creases above 10 degrees and remains above 10 degrees for 1 min, then it should be drop below 10
degrees within 2 min and remain below 10 degrees for 30min.” Such specifications can be captured
using Metric Temporal Logic (MTL) [Koymans 1990].

In this paper, we propose a technique for finding counterexamples to (MTL) properties for CPS
through global minimization of arobustness metric. Global optimization is carried out using a
Monte-Carlo technique that performs a random walk over the space of inputs consisting of initial
states, controls and disturbances. The robustness metric defines the satisfaction of an MTL property
over a given trajectory as a real number, as opposed to the Boolean notion used in Logic. The sign of
the metric for a given trajectoryy and formulaϕ indicates whethery satisfiesϕ (written asy |= ϕ).
Furthermore, “nearby” trajectories, defined using a metricover trajectories, whose distances from
y are smaller than its robustness also have the same outcome for the propertyϕ asy.

Given a robustness metric, finding a counterexample to a given propertyϕ reduces to finding
a trajectoryy that minimizes the robustness score w.r.tϕ. This can be viewed as an optimization
problem over the space of inputs of the system. However, in practice, this optimization problem is
not necessarily guaranteed to be tractable. In almost all cases, the optimization problem (objective
function and constraints) cannot be written down in a closedfunctional form. Nevertheless, such op-
timization problems can often be solved satisfactorily using Monte-Carlo techniques that perform a
random walk in order to sample from a probability distribution defined implicitly by the robustness
metric [Rubinstein and Kroese 2008]. Over the long run, the random walk converges to a station-
ary distribution over the input space such that the neighborhood of inputs with smaller values of
robustness are sampled more frequently than inputs with larger values. Furthermore, Monte-Carlo
techniques do not require the distribution itself to be known in a closed form. Instead, these tech-
niques simply require the ability to compare the values (ratio) of the probability density function
at two given points in the search space. In practice, this reduces to simulating the system using the
sampled inputs.

The contributions of this work can be summarized as follows:

(1) We show that metrics used for robust testing naturally define objective functions that enable us
to cast the problem of falsifying MTL properties into a global optimization problem.

(2) We demonstrate the use of hit-and-run Monte-Carlo samplers to carry out this optimization in
the presence of (possibly non-convex) constraints over theinputs.

(3) We extend our notions to CPS using quasi-metrics to provide a notion of robustness for hybrid
trajectories w.r.t properties that can involve discrete aswell as continuous state variables.

Our approach is applicable even if the property has been proven using a verification technique.
In such cases, our technique obtains system trajectories that have low robustness values w.r.t the re-
quirements.In practice, finding non-robust trajectories may imply designs with smaller safety mar-
gins. Traditional testing or verification techniques do notconsider such trajectories using Boolean
notions of temporal satisfaction. Our approach is readily applicable toSimulink/StateflowTM (S/S)
models, since simulating the system is the only primitive needed. We have implemented our ap-
proach in the Matlab (TM) toolbox S-TAL IRO [Annapureddy et al. 2011] and use it to discover
counterexamples to MTL properties. We establish that random walks guided by robustness metrics
can often falsify MTL properties that cannot be easily falsified using blind (uniform random) search.

Preliminary results of this work have appeared in [Nghiem etal. 2010], while the architecture of
our toolbox S-TAL IRO has appeared in [Annapureddy et al. 2011]. In this paper, we reformulate the
problem and its solution into a more general framework, we present the proofs that were omitted
from [Nghiem et al. 2010], we provide new hybrid metrics in Section 4 and we perform more
thorough experimental analysis using our toolbox S-TAL IRO.
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2. PRELIMINARIES

In this section, we provide a formal and concise definition ofthe problem that this work addresses.
Then, we introduce metrics and we utilize them to provide continuous semantics for Metric Tem-
poral Logic (MTL) specifications over continuous time trajectories. We will be using the following
notation:R is the set of real numbers;R is the closure of the reals, i.e.,[−∞,+∞]; R+ is the set
of positive real numbers andR+ its closure, i.e.,R+ = [0,+∞]; N is the set of natural numbers
(including0) andN∞ = N ∪ {+∞}; Z is the set of integers andZ∞ = Z ∪ {±∞}. Given setsA
andB, BA defines the set of all functions fromA toB andP(A) denotes the powerset ofA.

2.1. Problem Definition

In this work, we take a very general approach in modeling real-time embedded systems that interact
with physical systems that have non-trivial dynamics. Suchsystems are also referred to as hybrid
systems or Cyber-Physical Systems (CPS). In the following,we will be using the term hybrid sys-
tems since it is more concise. However, we would like to caution the reader against associating
hybrid systems with hybrid automata [Alur et al. 1995] sincethe scope of our work is more general.

We view a systemΣ as a mapping from a compact set of initial conditionsX0 and input signals
U ⊆ UR to output signalsY R. Here,R is a bounded time domain equipped with a metricdR, U is
a compact set of possible input values at each point in time (input space) andY is the set of output
values (output space). This view of a system is standard in signals and systems [Lee and Varaiya
2003]. We impose four assumptions / restrictions on the systems that we consider:

(1) The input signals (if any) must be parameterizable usinga finite number of parameters. That is,
there exist two parameter vectorsλ = [λ1 . . . λm]T ∈ Λ, whereΛ is a compact set, andτ = [τ1
. . . τm]T ∈ Rm and a functionU such that for anyu ∈ U, there exist someλ andτ such that for
all t ∈ R, u(t) = U(λ, τ)(t).

(2) The output spaceY must be equipped with a generalized metricd which contains a subspaceZ
equipped with a metricd.

(3) For a specific initial conditionx0 and input signalu, there must exist a unique output signaly
defined over the time domainR. That is, the systemΣ is deterministic and we implicitly assume
that the system does not exhibit Zeno behaviors [Lygeros et al. 2003].

(4) For considering the convergence of our sampling scheme,we assume that the space of inputs
is bounded and discretized to a large but finite set. In practice, any representation of the input
through a vector of floating point numbers inside the computer must be finite and, therefore,
implicitly discretizes the space of inputs. Thus, this assumption does not pose a restriction.

Under Assumption 3, a systemΣ can be viewed as a function∆Σ : X0 ×U → Y R which takes
as an input an initial conditionx0 ∈ X0 and an input signalu ∈ U and it produces as output a
signaly : R → Y (also referred to astrajectory). When the output signals are only a function of
the initial condition, i.e.,∆Σ : X0 → Y R, then the systemΣ is calledautonomous. In either case,
the set of all output signals ofΣ will be denoted byL(Σ). That is,L(Σ) = {y | ∃x0 ∈ X0 . ∃u ∈
U .y = ∆Σ(x0, u)} or in case of autonomous systemsL(Σ) = {y | ∃x0 ∈ X0 .y = ∆Σ(x0)}.

Our high level goal is to infer the correctness of the systemΣ by observing its response (output
signals) to particular input signals and initial conditions. In particular, we are interested in finding
witnesses, i.e., output signals, which prove that a requirement or specification is not satisfied by the
system. The process of discovering such witnesses is usually referred to asfalsification.

Example2.1. As a motivating example, we will consider the Automatic Transmission example
which was also considered in [Zhao et al. 2003]. This is a slightly modified version of the Automatic
Transmission model provided by Mathworks as a Simulink demo1. It is a model of an automatic
transmission controller (See Fig. 1) with the following modifications. The only input to the system
is the throttle schedule, while the break schedule is set simply to 0 for the duration of the simulation

1Available at:http://www.mathworks.com/products/simulink/demos.ht ml
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Fig. 1. A modified version of the Simulink (TM) Automatic Transmission Demo.
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Fig. 2. Example 2.1.Left: The switching logic for the automatic drivetrain;Right: A input signal and the corresponding
output signals that falsify the specification.

which is 30 sec, i.e.,R = [0, 30]. Finally, the system has two outputs the speed of the engineω
(RPM) and the speed of the vehiclev, i.e.,Y = R

2 andy(t) = [ω(t) v(t)]T for all t ∈ [0, 30].
Internally, the system has two 2 continuous-time state variables: the vehicle speedv and engine

speedω. That is, for this example, the output of the system is the same as the continuous state of
the system. Initially, the vehicle is at rest at time 0, i.e.,X0 = {[0 0]T } andx0 = y(0) = [0 0]T .
Therefore, the output trajectories depend only on the inputsignal u which models the throttle,
i.e., y = ∆Σ(u). The throttle at each point in time can take any value between0 (fully closed)
to 100 (fully open). Namely,u(t) ∈ [0, 100] for eacht ∈ [0, 30]. We remark that the system is
deterministic, i.e., under the same inputu, we will always observe the same outputy.

We will assume that a system specification requires that the vehicle speedv is always under
120km/h or that the engine speedω is always below 4500RPM. Our goal is to falsify the above
specification. In other words, we would like to generate tests such that the vehicle speedv and the
engine speedω exceed the values 120km/h and 4500RPM, respectively. Such afalsifying system
trajectory appears in Fig. 2.

The model contains 69 blocks out of which there are 2 integrators (i.e., 2 continuous state vari-
ables), 3 look-up tables, 3 look-up 2D tables and a Stateflow chart. The Stateflow chart (see Fig. 2)
contains two concurrently executing Finite State Machines(FSM) with 4 and 3 states, respectively.
Even though this is a small size model and the specification isa simple bounded time reachability
requirement, it already exhibits all the complexities thatprevent formal modeling and analysis using
the state of the art tools, e.g., SpaceEx [Frehse et al. 2011]. ⋄
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Reachability requirements as described in Example 2.1 do not suffice to specify all system be-
haviors in practice. This is especially true for real-time embedded systems wherein richer properties
such as timing requirements, sequencing of events, conditional requirements, stability and so on
are equally important. Metric Temporal Logic (MTL) introduced by Koymans [Koymans 1990] is a
popular formalism that can express such properties. Our objective in this work is to provide efficient
tools for the falsification of bounded time MTL properties for CPS.

PROBLEM 2.1 (MTL FALSIFICATION). For an MTL specificationϕ, the MTL falsification
problem consists of finding an output signaly of the systemΣ starting from some valid initial
statex0 ∈ X0 under an input signalu ∈ U such thaty does not satisfy specificationϕ.

System Σ 
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Fig. 3. Overview of the solution
to the MTL Falsification of CPS.

An overview of our proposed solution to Problem 2.1 appears in
Fig. 3. The sampler produces a pointx0 from the set of initial condi-
tions and a vector of parametersλ that characterize the control input
signalu. These are passed to the system simulator which returns an
execution trace (output trajectory). The trace is then analyzed by the
MTL robustness analyzer which returns a robustness value. In turn,
the robustness score computed is used by the stochastic sampler to
decide on a next input to analyze. If in this process, a falsifying trace
is found, it is returned to the user, who can then proceed to examine
it inside the system modeling environment.

In this paper, not only we provide an efficient solution to Problem
2.1, but we are also able to provide a measure of how robustly the
system satisfies or not an MTL property. That is, our falsification
framework does not have to return the first falsifying trajectory it
detects, but it can continue searching for the least possible robust
system behavior. Similarly, even if the system is not falsifiable, our
tool returns the least robust correct behavior that was detected. Such
information can be valuable to the system designer.

2.2. Metrics and Distances

When given a collection of objects, it is frequently necessary to reason about how “close” these
objects are to each other. In other words, we need a way to measure or compute the distance between
any two objects in the collection. In mathematics, the distance between two objects that belong to a
setY can be quantified by a metricd. The pair(Y,d) is called a metric space.

Metrics arise very naturally in control and analysis of physical systems [Sontag 1998]. Interesting
metrics can also be defined in computation theory with a number of diverse applications [Seda and
Hitzler 2008]. In either case, the interest in defining metrics is usually to show that a function
is contractive (and, thus, to prove some notion of stability[Sontag 1998] or utilize a fixed-point
computation [Seda and Hitzler 2008]) or that we can define an interesting topology [Kopperman
1988]. Here, our interest in metrics is different. We are interested in quantifying set membership
questions, i.e., how deep is the object within the set it belongs or how far away is from the set it
should belong. At a high level, quantification of set membership questions is the subject of study in
fuzzy mathematics [Bandemer and Gottwald 1995]. The fundamental difference between fuzzy set
theory and our work is that fuzzy set theory abstracts away any topological information regarding
the degree of membership. Such topological information is vital in our case as we will demonstrate
in Section 2.3. Next, we briefly review the notion of generalized metrics and we refer the reader to
[Seda and Hitzler 2008] and the references therein for a moredetailed exposition.

Definition2.2 (Positively Ordered Commutative Monoid).

— A semigroup(V,+) is a setV together with a binary operation+ such that (i) the set is closed
under+ and (ii)+ is associative.

— A monoidis a semigroup which has an identity element0, i.e., for anyv ∈ V , v+0 = 0+ v = 0.
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— A commutative monoidis a monoid whose binary operation is commutative.
— An ordered monoid(V,+,�) is a monoid with an (partial) order relation� which is compatible

with +, i.e.,v1 � v2 impliesv1 + v3 � v2 + v3 andv3 + v1 � v3 + v2 for all v1, v2, v3 ∈ V .
— A positively ordered monoidis an ordered monoid such that for allv ∈ V , 0 � v.

Definition2.3 (Generalized Metric). Let (V,+,�) be a positively ordered commutative
monoid andY be an arbitrary set. Ageneralized metricd is a functiond : Y × Y 7→ V which sat-
isfies the following properties fory1, y2, y3 ∈ Y : Identity: d(y1, y2) = 0 iff y1 = y2, Symmetry:
d(y1, y2) = d(y2, y1), andTriangle Inequality: d(y1, y3) � d(y1, y2) + d(y2, y3).

If V also has an absorbing element∞, i.e., for anyv ∈ V , v+∞ = ∞+v = ∞, thend is called
an extended generalized metric. If theSymmetrycondition is dropped from the definition, thend is
termed ageneralized quasi-metric. If (V,+,�) is (R+,+,≤) with the usual addition+ and total
order≤, then we drop the term “generalized” from the terminology and denote the metric byd.

Using a generalized metricd, we can define the distance of a pointy ∈ Y from a setS ⊆ Y .
Intuitively, this distance is the shortest distance fromy to all the points inS. In a similar way, the
depth of a pointy in a setS is defined to be the shortest distance ofy from the boundary ofS.

Definition2.4 (Distance, Depth, Signed Distance [Boyd and Vandenberghe 2004] §8). Let y ∈
Y be a point,S ⊆ Y be a set andd be a generalized metric onY . Then, we define the

— Distance fromy to S to bedistd(y, S) := inf{d(y, y′) | y′ ∈ S}, and
— Signed DistanceDistd(y, S) to be−distd(y, S) if y 6∈ S anddistd(y, Y \S) if y ∈ S.

We should point out that we use the extended definition of supremum and infimum. In other
words, the supremum of the empty set is defined to be bottom element of the domain, while the
infimum of the empty set is defined to be the top element of the domain. For example, when we
reason overR, thensup ∅ := −∞ andinf ∅ := +∞.

Also of importance is the notion of an open ball of radiusε centered at a pointy ∈ Y . Given a
generalized metricd, a radiusε ∈ V and a pointy ∈ Y , the openε-ball (or neighborhood) centered
at y is defined asBd(y, ε) = {y′ ∈ Y | d(y, y′) ≺ ε}. The previous definition of a neighborhood
includes all pointsy′ which have distance fromy less thanε. Since in this work we also use quasi-
metrics, we also need the notion ofneighborhood-to. The neighborhood-to includes all pointsy′

which have distance toy less thanε. Similar toBd, we defineNd(y, ε) = {y′ ∈ Y | d(y′, y) ≺ ε}.
Finally, in order to reason in time about the system behavior, we need to define metrics over signal

spaces. Ify andy′ are two system output signalsy,y′ : R → Y that take values in a generalized
metric space(Y,d), we will useρd to denote the metricρd(y,y′) = supt∈R{d(y(t),y

′(t))}.

2.3. Robustness of Trajectories

With the help of metrics we can now provide a robust interpretation (semantics) to MTL formulas.
Details are available in our previous work [Fainekos and Pappas 2009]. In this section, we refer to
output signals simply assignals.

Definition2.5 (MTL Syntax). LetAP be the set of atomic propositions andI be any non-empty
interval ofR+. The setMTL of all well-formed MTL formulas is inductively defined asϕ ::=
⊤ | p | ¬ϕ | ϕ ∨ ϕ | ϕUIϕ, wherep ∈ AP and⊤ is true.

For (real-time) hybrid systems, the atomic propositions label subsets of the output spaceY . An
observation mapO : AP → P(Y ) maps each propositionp ∈ AP to a setO(p) to a subset ofY .
We require that for allp ∈ AP , ∅ ⊂ O(p) ⊂ Y . We emphasize here that the results in [Fainekos
and Pappas 2009] require that the output spaceY is equipped with an extended metricd. In Section
4, we relax this requirement and we demonstrate how these results are extended to output spaces
which are equipped with a generalized quasi-metric.

We provide semantics that maps an MTL formulaϕ and a signaly(t) to a value drawn from
the linearly ordered setR. The semantics for the atomic propositions evaluated fory(t) consists of
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the distance betweeny(t) and the setO(p) labeling atomic propositionp. Intuitively, this distance
represents how robustly the pointy(t) lies within (or is outside) the setO(p). If this distance is
zero, then the smallest perturbation of the pointy can affect the outcome ofy ∈ O(p). We denote
the robust valuation of the formulaϕ over the signaly at timet by [[ϕ,O]]d(y, t). Formally,[[·, ·]]d :
(MTL× P(Y )AP ) → (Y R ×R → R).

Definition2.6 (Robust Semantics). Consider a metric space(Y, d), whered is an extended met-
ric. Let y ∈ Y R, c ∈ R andO ∈ P(Y )AP , then the robust semantics of any formulaϕ ∈ MTL
with respect toy is recursively defined as follows

[[⊤,O]]d(y, t) := +∞

[[p,O]]d(y, t) :=Distd(y(t),O(p))

[[¬ϕ1,O]]d(y, t) :=− [[ϕ1,O]]d(y, t)

[[ϕ1 ∨ ϕ2,O]]d(y, t) :=max([[ϕ1,O]]d(y, t), [[ϕ2,O]]d(y, t))

[[ϕ1 UIϕ2,O]]d(y, t) := sup
t′∈(t+RI)

min
(

[[ϕ2,O]]d(y, t
′), inf

t<t′′<t′
[[ϕ1,O]]d(y, t

′′)
)

wheret ∈ R andt+R I = {τ | ∃τ ′ ∈ I . τ = t+ τ ′} ∩R.

Example2.7. The requirement expressed in natural language in Example 2.1 can be formally
written as:φAT

0 = ✷pAT
1 ∨ ✷pAT

2 , where each atomic propositionp0i is mapped to:O(pAT
1 ) =

[120,+∞) × R andO(pAT
2 ) = R × [4500,+∞), respectively. From the designer perspective, it

might be easier to conceptualize the falsification problem as a test generation problem and, therefore,
pose the formal requirement as the negation of the behavior that she/he would like to observe, i.e.,
φAT
1 = ¬(✸pAT

1 ∧✸pAT
2 ). Under the semantics of Def. 2.6, the two formulas are equivalent. ⋄

For the purposes of the following discussion, let(y, t,O) |= ϕ denote the standard Boolean MTL
satisfiability. For clarity in the presentation, we define the satisfiability relation for the base case,
i.e., for atomic propositions:p ∈ AP , (y, t,O) |= ϕ if y(t) ∈ O(p). Note that Boolean MTL
satisfiability reduces to an application of Def. 2.6 whereinthe negation is defined to be the Boolean
negation and the metricd is the discrete metric: fory1, y2 ∈ Y , d(y1, y2) = 0 if y1 = y2 and
d(y1, y2) = 1 if y1 6= y2. It is easy to show that if the signal satisfies the property, then its robustness
is non-negative and, similarly, it the signal does not satisfy the property, then its robustness is non-
positive. The following result holds [Fainekos and Pappas 2009].

THEOREM 2.8. Given an output space(Y, d), whered is an extended metric, a formulaϕ ∈
MTL, an observation mapO ∈ P(Y )AP and an output signaly ∈ Y R, the following hold:

(1) If (y, t,O) |= ϕ, then[[ϕ,O]]d(y, t) ≥ 0. Conversely, if[[ϕ,O]]d(y, t) > 0, then(y, t,O) |= ϕ.
(2) If (y, t,O) 6|= ϕ, then[[ϕ,O]]d(y, t) ≤ 0. Conversely, if[[ϕ,O]]d(y, t) < 0, then(y, t,O) 6|= ϕ.
(3) If for somet ∈ R

+, ε = [[ϕ,O]]d(y, t) 6= 0, then for ally′ ∈ Bρd
(y, |ε|), we have(y, t,O) |= ϕ

if and only if(y′, t,O) |= ϕ. I.e,ε defines arobustness tubearound the trajectory such that other
“nearby” trajectories lying inside this tube also satisfyϕ.

Theorem 2.8 establishes the robust semantics of MTL as a natural measure of signal robustness.
Namely, a signal isε robust with respect to an MTL specificationϕ, if it can tolerate perturbations up
to sizeε and still maintain its current Boolean truth value. Alternatively, a signal with the opposite
outcome forϕ, if it exists, has a distance of at leastε away.

This is the main differentiating property from other works that also consider quantitative seman-
tics for temporal logics such as [de Alfaro et al. 2004; Lamine and Kabanza 2000]. Namely, our
semantics maintain the topological information which can be used to define neighborhoods for sig-
nals, while in quantitative or fuzzy semantics such information is lost. A more thorough comparison
with other quantitative logics is provided in [Fainekos andPappas 2009].
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3. FALSIFYING SYSTEMS WITH METRIC OUTPUT SPACES

In this section, we provide the basic formulation of MTL falsification as a global minimization of
the robustness metric defined in Section 2 when the output space(Y, d) is a metric space, i.e., when
(Y,d) = (Z, d), and describe a Monte-Carlo technique to solve this global optimization problem.

LetΣ be a system as defined in Section 2.1. Letϕ be a given MTL property that we wish to falsify.
Given a signaly, we have defined a robustness metric[[ϕ,O]]d (y, t) that denotes how robustlyy
satisfies (or falsifies)ϕ at timet. For the following discussion, we assume a fixed label mapO and
always interpret the truth (and robustness) of MTL formulasevaluated at the starting timet = 0.
LetDϕ(y) = [[ϕ,O]]d (y, 0) denote the robustness metric fory under these assumptions.

The robustness metricDϕ maps each output signaly to a real numberr. The sign ofr indicates
whethery |= ϕ and its magnitude|r| measures its robustness. Ideally, for the MTL verification
problem, we would like to prove thatinfy∈L(Σ) Dϕ(y) > ε > 0 whereε is a desired robustness
threshold. For the MTL falsification problem (Problem 2.1),we attempt to solve the problem:

Findy ∈ L(Σ) s.t.Dϕ(y) < 0 (1)

More generally, given a robustness thresholdε ≥ 0, we would like to solve the problem:

Findy ∈ L(Σ) s.t.Dϕ(y) < ε (2)

In this work, we provide a solution to either problem throughthe optimization problem:

y⋆ = arg min
y∈L(Σ)

Dϕ(y) (3)

If Dϕ(y
⋆) < ε, then we have produced a counterexample that can be used for debugging.

In the following, we provide parameterizations of the search space and a Monte-Carlo sampling
method that will help us solve (3).

3.1. Autonomous Systems

In case of autonomous systems, the space of output signals isnot the true search space for this
problem. For instance, it is hard to explore the space of trajectories directly while guaranteeing that
each trajectory considered is valid. Fortunately, for deterministic systems, we may associate each
input x0 ∈ X0 with a unique trajectoryy and vice-versa. LetFϕ(x0) = Dϕ(∆Σ(x0)) denote
the robustness of the trajectory obtained corresponding tothe initial statex0 ∈ X0. Therefore, the
optimization can be expressed over the space of inputs as follows:

min
x0∈X0

Fϕ(x0) (4)

The components of the vectorx0 are the search variables of the problem and the optimizationis
carried out subject to the constraints inX0.

Continuous trajectories are hard to compute precisely, even when the analytical form of the so-
lution of the system is known. Thus, trajectories have to beapproximatednumerically. An ap-
proximatesimulation function∆̃Σ that supportsrobust evaluationof the given propertyϕ should
guarantee that for some finite samplingR̃ of the bounded time domainR, for ỹ = ∆̃Σ(x0) and for
y = ∆Σ(x0), |[[φ,O]]d(y, t) − [[φ,O]]d(ỹ, t)| ≤ ǫ, for all t ∈ R̃, for a sufficiently small positiveǫ.
Such a robust simulation function suffices, in practice, to resolve properties that may be of interest to
the system designers. An appropriate simulation function can be obtained for a large class of ODEs
using numerical simulation techniques of an appropriate order such asRunge-Kuttaor Taylor-series
methods with adaptive step sizes [Press et al. 1992]. Numerical integration schemes can also be
adapted to provide reliable boundsǫ on the distance between the actual and the numerical solution.
Thus, the robustness valueDϕ(y) can be approximated by a valuẽDϕ(ỹ) using the set of sample
pointsỹ obtained by a numerical integrator. Details on howD̃ϕ(ỹ) can be computed can be found
in [Fainekos and Pappas 2009].
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Unfortunately, for a trajectorỹy obtained as the output of a numerical integrator with known
error bounds, the trace distance function may no longer satisfy D̃ϕ(ỹ) ≥ 0 whenevery |= ϕ.
Instead, we may conclude the existence of some interval[−ǫ2, ǫ1] for someǫ1, ǫ2 ≥ 0, such that
if D̃ϕ(ỹ) ≤ −ǫ2, theny 6|= ϕ and if D̃ϕ(ỹ) ≥ ǫ1 theny |= ϕ. In general, we may not draw any
conclusions if−ǫ1 ≤ Dϕ(ỹ) ≤ ǫ2. Furthermore, the boundsǫ1, ǫ2 are often unknown for a given
system. Nevertheless, the presence of such a bound implies that it still makes sense to perform the
optimization using a numerically simulated trajectoryỹ. Thus, our optimization problem becomes:

min
x0∈X0

Fφ(x0) = min
x0∈X0

D̃ϕ(∆̃Σ(x0)). (5)

In practice, even minimally “robust” simulated trajectories will often be of great interest to system
designers even if mathematically speaking they do not violate the property under consideration.

Remark3.1. If the user is willing to tolerate additional computational cost, then it is possible to
bound the inaccuracies of the numerical simulation even under the presence of floating-point errors
[Fainekos et al. 2009]. Then, these bounds can be used to provide bounds on the robustness of the
actual continuous-time trajectory [Fainekos and Pappas 2009].

The resulting optimization problem (5) can be quite complex, unlikely to be convex for all but
the simplest of cases. Furthermore, the objective functionF though computable for any given input
through simulation, is not expressible in a closed form. Directly obtaining gradients, Hessians and
so on is infeasible for all but the simplest of cases. We now present Monte-Carlo techniques that
can solve such global optimization problems through a randomized technique that mimics gradient
descent in many cases.

3.2. Monte-Carlo Sampling

The Monte-Carlo techniques presented here are based onacceptance-rejectionsampling [Chib and
Greenberg 1995; Andrieu et al. 2003]. These techniques werefirst introduced in statistical physics,
wherein, they were employed to simulate the behavior of particles in various potentials [Frenkel
and Smit 1996]. Variations of Monte-Carlo techniques are also widely used for solving global opti-
mization problems [Rubinstein and Kroese 2008]. In this paper, we focus on a class of Monte-Carlo
sampling techniques known as Markov-Chain Monte-Carlo (MCMC) techniques. These techniques
are based on random walks over a Markov chain that is defined over the space of inputs.

ALGORITHM 1: Monte-Carlo sampling algorithm.

Input: X0: Input Space,f(·): Robustness Function,ε:
Robustness threshold,PS(·): Proposal Scheme

Output: x ∈ X0

begin
1 Choose some initial inputx ∈ X0;
2 while (f(x) ≥ ε) do

/ * Select x′ using Prop. Scheme * /
3 x′ ← PS(x) ;
4 α← exp(−β(f(x′)− f(x)));
5 r ← UniformRandomReal(0, 1) ;
6 if (r ≤ α) then / * Accept proposal? * /
7 x← x′ ;

end
end

We first present the basic sampling
algorithm for drawing samples from
a probability distribution and then the
technique ofhit-and-runsampling that
respects the (convex) constraints on the
input space due toX0. Let f(x) =
Fϕ(x) be a computable robustness
function, given a propertyϕ. We seek
to minimize f over the inputs in the
set X0. We wish to sampleX0 such
that any two pointsx, x′ ∈ X0 with
robustness valuesf(x) and f(x′) are
sampled with probability proportional
to e−βfϕ(x)

e−βfϕ(x′) , whereβ > 0 is a “temper-
ature” parameter explained in the fol-
lowing.

Algorithm 1 shows the schematic implementation of the algorithm. Each iteration of the sam-
pler generates a newproposalx′ ∈ X0 from the current samplex using someproposal scheme
defined by the user (Line 3). The objectivef(x′) is computed for this proposal. Subsequently, we
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compute the ratioα = e−β(f(x′)−f(x)) (Line 4) and accept the proposal randomly, with probability
α (Line 5). Note that ifα ≥ 1 (i.e, f(x′) ≤ f(x) ), then the proposal is accepted with certainty.
Even if f(x′) > f(x) the proposal may still be accepted with some non-zero probability. If the
proposal is accepted thenx′ becomes a new sample. Failing this,x remains the current sample.
In general, MCMC techniques require the design of aproposal schemefor choosing a proposalx′

given the current samplex. The convergence of the sampling to the underlying distribution defined
by f , depends critically on the choice of this proposal distribution.

Proposal Scheme:A proposal scheme is generally defined by a probability distributionP (x′|x) that
specifies the probability of proposing a new sample inputx′ given the current samplex. In general,
there are two requirements that a proposal scheme needs to satisfy so that its use in Algorithm 1
converges to the distribution defined byf(x).

Detailed Balance.Thedetailed balancerequirement, see [Chib and Greenberg 1995]), we re-
quire thatf(x′)P (x′|x) = f(x)P (x|x′).
Ergodicity. Given any two inputsx, x′ ∈ X0, it should be possible with nonzero probability to
generate a series of proposalsx, x1, . . . , x

′ that takes us from inputx to x′. This is necessary in
order to guarantee that the entire input state space is covered.

Convergence:Convergence of the sampling scheme guarantees that eventually after drawing a large
but finite number of samples, the distribution of the samplesapproaches the distribution defined by
the robustness functionf . We will discuss convergenceunder the simplifying but practically relevant
assumption of discreteness.

We assume that the space of inputsX0 is bounded and discrete, consisting of a large but finite
number of points. This assumption is always relevant in practice, since the inputs inX0 that we
consider are finitely represented floating point numbers inside a computer. As a result, the proposal
schemeP defines a discrete Markov chain on the space of inputs. Convergence of MCMC sampling
follows directly from the convergence of random walks on ergodic Markov Chains [Randall 2006;
Chib and Greenberg 1995; Rubinstein and Kroese 2008].

The functionf(x) overX0 induces a discrete probability distributionp(x) = 1
M
e−βf(x), where

M is an unknown normalizing factor added to ensure that the probabilities add up to one. Suppose
Algorithm 1 were run to generate a large number of samplesN . Letγ denote the frequency function
mapping subsets of the input space to the number of times a sample was drawn from the set. Let
P (S) =

∑

x∈S p(x) denote the volume of the probability function for a setS ⊆ X0.

THEOREM 3.2. In the limit, the acceptance rejection sampling technique (almost surely) gener-
ates samples according to the distributionp, P (S) = limN→∞

γ(S)
N

As a direct consequence, one may conclude, for instance, that an inputx1 with f(x1) = −100 is
more likelyto be sampled as compared to some other inputx2 with f(x2) = 100 in the long run.

It is possible, in theory, to prove assertions about the numberN of samples required for the sam-
pled distribution to converge within some distance to the desired distribution governed bye−βfϕ(x).
This rate of convergence is governed by themixing timeof theMarkov chainon the inputs defined
by the proposal scheme. This time is invariably large (polynomial in the number of input points),
and depends on the proposal scheme used [Randall 2006].

Importance ofβ: The overall algorithm itself can be seen as arandomizedgradient descent, wherein
at each step a new pointx′ in the search space is compared against the current sample. The proba-
bility of moving the search to the new point follows an exponential distribution on the difference in
their robustness values:p ∼ e−β(f(x′)−f(x)). In particular, iff(x′) ≤ f(x), the new sample is ac-
cepted with certainty. Otherwise, it is accepted with probability e−β(f(x′)−f(x)). Informally, larger
values ofβ ensure that only reductions tof(x) are accepted whereas smaller values correspondingly
increase the probability of accepting an increase inf(x). As a result, points with lower values off
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are sampled with an exponentially higher probability as compared to points with a higher value of
the functionf .

Adaptingβ. One of the main drawbacks of Algorithm 1 is that, based on nature of the distribu-
tion, the sampling may get “trapped” inlocal minima. This typically results in numerous proposals
getting rejected and few being accepted. Even though we are guaranteed eventual convergence, the
presence of local minima slows down this process, in practice. We therefore periodically adjust the
values ofβ (and also the proposal scheme) to ensure that the ratio of accepted samples vs. rejected
samples remains close to a fixed value (1 in our experiments). This is achieved by monitoring the
acceptance ratio during the sampling process and adjustingβ based on the acceptance ratio. A high
acceptance ratio indicates thatβ needs to be reduced, while a low acceptance rate indicates that β
needs to be increased.

Proposal Schemes.It is relatively simple to arrive at viable schemes for generating new proposals.
However, designing a scheme that works well for the underlying problem requires a process of
experimentation. For instance, it suffices to simply choosean inputx′ uniformly at random from the
inputs, regardless of the current sample. However, such a scheme does not provide many advantages
over uniform random sampling. In principle, given a currentsamplex, the choice of the next sample
x′ must depend uponx.

x

v

x+ 
M
v

x+ 
m
v

X
0

x'

Fig. 4. Hit-and-run proposal
scheme.

A typical proposal scheme samples from a normal distribution
centered atxwith a suitably adjusted standard deviation (using some
covariance matrixH). The covariance can be adjusted periodically
based, once again, on the observed samples as well as the acceptance
ratio. A smaller standard deviation aroundx yields samples whose
robustness values differ very little fromf(x), thus increasing the
acceptance ratio. However, it is hard to respect the constraint x′ ∈
X0 using such a proposal scheme.

Hit-and-run proposal scheme.Hit-and-run schemes are useful in
the presence of input domains such asX0 ⊆ R

n. For simplicity,
we assume thatX0 is convex. Therefore, any line segment in some
directionv starting fromx has a maximum offsetδM such that the entire segment betweenx and
x + δv lies insideX0. At each step, we propose a new samplex′ based on the current samplex.
This is done in three steps:

(1) Choose a random unit vectorv uniformly (or using a Gaussian distribution) (Cf. Fig. 4). In
practice, one may choose a random vectorh and generate a unit vector usingv = h

|h|2
.

(2) Discover the interval[δm, δM ], such that ∀δ ∈ [δm, δM ], x + δv ∈ X0. In other words,v
yields a line segment containing the pointx along the directions±v and [δm, δM ] represent
the minimum and maximum offsets possible along the direction v starting fromx. If X0 is
a polyhedron, bounds[δm, δM ] may be obtained efficiently by using a variant of theminimum
ratio test. For a more complex convex setX0, value ofδm (resp.δM ) may be obtained by solving
the one dimensional optimization problemmin(max) δ s.t. x + δv ∈ X0, by using abisection
procedure given an initial guess on[δm, δM ].

(3) Finally, we choose a valueδ ∈ [δm, δM ] based on some probability distribution with a mean
around0. The variance of this distribution is an important parameter that can be used to control
the acceptance ratio (along withβ) to accelerate convergence.

Hit-and-run samplers can also be used for non-convex input domains such as unions of poly-
topes and so on. A detailed description of the theory behind such sampling techniques is available
elsewhere [Smith 1996; Rubinstein and Kroese 2008].

However, care must be taken to ensure that the input spaceX0 is notskewedalong some direction
v′. In the worst case, we may imagineX0 as a straight line segment. In such cases, the hit-and-
run proposal scheme fails to generate new samples. This is remedied by adjusting the scheme for

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: January YYYY.



A:12 H. Abbas et al.

−3 −2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

y
1

y 2

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

Number of simulations

R
o
b
u
s
tn

e
s
s

(b)

Fig. 5. (a) Time trajectory violating the property✷[0,2]¬a, whereO(a) = [−1.6,−1.4] × [−.9,−1.1] along with the
scatter plot of sampled inputs and (b) robustness value as a function of the simulation step number.

selecting unit directions to take the skew ofX0, embedding ofX0 inside a subspace spanned by the
independent variables and, finally, applying a suitable transformation toX0 that aids in sampling.

In practice, hit and run samplers can work over non-convex, disconnected domains. Theoretical
results on these samplers are very promising. Smith [Smith 1984] proves the asymptotic conver-
gence of hit and run sampling over arbitrary open subsets ofR

n. Lovasz [Lovasz 1999; Lovasz and
Vempala 2006] has further demonstrated convergence in timeO(n3) for hit and run sampling of
uniform distribution over a convex body inn dimensions. Algorithms for global optimization such
ashide-and-seek[Romeign and Smith 1994] andimproving hit-and-run[Zabinsky et al. 1993] have
combined hit-and-run sampling with Monte-Carlo to generate global optimization techniques.

Example3.3. Let y(t) = [y1(t) y2(t)]
T . Consider the time varying system

dy(t)

dt
=

[

dy1(t)
dt

dy2(t)
dt

]

=

[

y1(t)− y2(t) + 0.1t
y2(t) cos(2πy2(t)) − y1(t) sin(2πy1(t)) + 0.1t

]

with initial conditiony(0) = x0 ∈ X0 = [−1, 1] × [−1, 1]. In this case,Y = R
2 and, thus, we

choose to use the Euclidean metric. We wish to falsify the property✷[0,2]¬a, whereinO(a) =
[−1.6,−1.4]× [−.9,−1.1]. Our simulation uses a numerical ODE solver with a fixed time step over
the time intervalt ∈ R = [0, 2]. Figure 5(a) shows the trajectory the falsifies our safety property
using the hit-and-run sampler and the scatter plot consisting of the samples generated by the Monte-
Carlo sampler. Figure 5(b) plots the robustness of the trajectory at each simulation step. We observe
that the sampling is concentrated in the more promising regions in the set of initial conditions. ⋄

3.3. Non-autonomous Systems

We now consider extensions to non-autonomous CPS. Again, for pragmatic reasons, we focus on
the approximatioñy = ∆̃Σ(x0, ũ) of the actual trajectoryy = ∆Σ(x0, u). Here, the input signal̃u
is a discrete-time approximation of the actual continuous-time input signalu. Therefore, in a naive
search for a falsifying input signal, we may consider each sampling instance as a search variable.
However, such an approach is infeasible for long simulationtimes with fast sampling rates.

Our goal is to recast the search for control input signalsũ in terms of a search in the set of
parametersλ ∈ Λ andτ ∈ Rm, wherem << |R̃|, i.e.,m is substantially smaller than the number
of samples fromR. Since we have assumed that the input signal space can be parameterized onλ
andτ , we can produce a discrete-time approximationũ = Ũ(λ, τ) to u = U(λ, τ) and, thus, we are
able to represent realistic input signals. Now, our optimization problem becomes:

min
〈x0,λ,τ〉∈X0×Λ×Rm

f(x0, λ, τ) = min
〈x0,λ,τ〉∈X0×Λ×Rm

D̃ϕ(∆̃Σ(x0, Ũ(λ, τ))). (6)

In practical terms, there exist numerous ways to parameterize the space of control inputs. We
discuss a few such parameterizations below:
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Piece-wise Constant Input:We partition the overall time intervalR = [0, T ] into a set of intervals
⋃m

i=1[τi−1, τi), whereinτ0 = 0 andτm = T . For each interval[τi−1, τi), i ≥ 1, the controlu(t) is
restricted to be a constant valueλi−1.

Piece-wise Linear Input:Piece-wise constant control may be extended to piecewise linear controls.
Once again, we partitionR = [0, T ] intom disjoint intervals. For each interval[τi−1, τi], we restrict
the form of each control input to be piece-wise linear, i.e.,for t ∈ [ti−1, ti), we haveu(t) =
(1− α(t))λi−1 + α(t)λi whereα(t) = (−τi−1)/(τi − τi−1).

Spline Functions.We can choose a family of spline functionsUS(λ, τ). Details on utilizing splines
to represent control input signals can be found in [Egerstedt and Martin 2009].

Example3.4. In order to parameterize the input signal space of Example 2.1, we used a piece-
wise constant signal with 7 control points uniformly distributed over the time domain[0, 30]. That
is, our search for a minima is performed over a bounded 7 dimensional space. Furthermore, since
the output spaceY is R

2, we are using the Euclidean metric for the distance computations in the
formula defined in Example 2.7. The outcome of S-TAL IRO appears in Fig. 2. As evident from the
figure, the vehicle speed and the engine rotation indeed reach the specified thresholds. The Simulink
model was simulated 41 times for this particular test. ⋄

4. FALSIFYING SYSTEMS WITH GENERALIZED QUASI-METRIC OUTPU T SPACES

In the previous sections, we demonstrated that MTL falsification of systems is possible as long
as we can define a non-trivial metric on the output space. However, specifications on CPS usually
have requirements on both the discrete output space of the system and the continuous output space.
However, it is not straightforward to define metrics over such hybrid (discrete & continuous) out-
put spaces. Therefore, in order to formulate and analyze such specifications, we need to relax our
constraint on the system having metric output spaces.

Example4.1. Let us revisit Example 2.1. We are looking to generate tests such that the
system visits each state in the state chartselection state (see Fig. 2), i.e.,steady state,
upshifting and downshifting, when the vehicle speed exceeds79. In this case, the output
trajectoryy of the system model must not only contain information about the physical system
quantities, i.e., engine rotation and vehicle speed, but also about the current state chart state
of the system. Therefore, the temporal logic analysis must be performed over the output space
Y = {steady state, upshifting, downshifting} × R

2. ⋄

In this section, we first generalize Theorem 2.6 to signals over generalized quasi-metric output
spaces. Then, we introduce the modeling formalism of hybridautomata and two interesting gener-
alized quasi-metrics on output trajectories of hybrid automata.

4.1. Robustness of Signals over Generalized Quasi-Metrics Spaces

The only requirement in the definition of the robust semantics of MTL formulas (Section 2.3) is
that both the trajectory under study and the specifications take values from the same space. We can
prove (see Appendix) by induction on the structure of formulaϕ that Theorem 2.8 also holds in the
case where the metricd is replaced by a generalized quasi-metricd.

THEOREM 4.2. Given an output space(Y,d), whered is an extended generalized quasi-metric,
a formulaϕ ∈ MTL, an observation mapO ∈ P(Y )AP and an output signaly ∈ Y R, the
following hold:

(1) If (y, t,O) |= ϕ, then[[ϕ,O]]d(y, t) � 0. Conversely, if[[ϕ,O]]d(y, t) ≻ 0, then(y, t,O) |= ϕ.
(2) If (y, t,O) 6|= ϕ, then[[ϕ,O]]d(y, t) � 0. Conversely, if[[ϕ,O]]d(y, t) ≺ 0, then(y, t,O) 6|= ϕ.
(3) If for some timet ∈ R, ε = [[ϕ,O]]d(y, t) 6= 0, then for ally′ ∈ Bρd

(y, |ε|), we have(y, t,O) |=
ϕ if and only if(y′, t,O) |= ϕ.
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Note that now the definition of the robustness valuation function for a formulaϕ over a signaly at
timet is a function[[·, ·]]d : (MTL×P(Y )AP ) → (Y R×R → V). The setV must include the setV
of the positively ordered monoid(V,+,�) in the definition of the generalized quasi-metricd and,
also, it must be ordered under the same ordering relation�. Furthermore, appropriate definitions of
negation and absolute value are required as well as careful treatment of the absorbing elements (if
any). Essentially, we need(V,+,�) to be an Abelian group with two absorbing elements±∞ .

4.2. Generalized Quasi-Metrics for Hybrid Signals

In order to define quasi-metrics for hybrid signals, we need to take into account some information
about the structure of the system that generates the output signals. Here, we will be using a general-
ization of hybrid automata [Alur et al. 1995] as a basic modeling language for CPS. We remark that
our formalism resembles more hierarchical hybrid systems [Alur et al. 2003]

Definition4.3 (Hybrid System). A hybrid systemH consists of components〈H , H0, Y , O, →,
Gt, R, D, U〉, wherein,

— H = L × X is the state space of the system andL is a finite set of locations (modesor control
locations),

— H0 ⊆ H represents the set of initial conditions,
— Y = L× Z is the output space, where(Z, d) is a metric space
— O : X → Z is an output map,
— →⊆ L×L is a set of (discrete) transitions such that for each〈ℓ1, ℓ2〉 ∈→, the system moves from

ℓ1 ∈ L to ℓ2 ∈ L if the output statez = O(x) of the system before the transition is in the set
G(ℓ1, ℓ2, x) and after the transition is at the pointz′ = O(x′) wherex′ = R〈ℓ1,ℓ2〉(x),

— G : L× L×X → P(Z) is the guard set for the transitions between control locations,
— R : (L × L) → (X → X) is the reset function for the transitions between control locations,
— D : L → (X × R × U → XR) is a mapping of each control locationℓ ∈ L to a deterministic

subsystem, which given an initial conditionx0, an initial timet0 and an input signalu, returns the
unique state trajectory of the subsystemxℓ = Dℓ(x0, t0, u), and, finally,

— U is the set of possible input signals.

We remark that our definition of a hybrid system allows each control location to be any arbitrary
subsystem as long as it is deterministic and its state can be fully described by the functionDℓ. For
example, each control location can be a hybrid system as well. The reason behind utilizing such a
general model is that we are not necessarily interested in the whole structure of the hybrid system,
but only on its part that is directly related to the functional specification that we are trying to falsify.

Example4.4. The Simulink/Stateflow model in Example 2.1 has state-space

{first, second, third, fourth} × {steady state, upshifting, downshifting} × R
2.

In Example 4.1, the specification requirements focus only onthe state chartselection state.
Therefore, our hybrid system will have the following components of interest:

— L = {steady state, upshifting, downshifting} and→ as defined in Fig. 2.
— X = {first, second, third, fourth} × R

2, Z = R
2 andO is the projection ofX onR2.

The reset functionR changes the state of the state chartgear state and the guardG is com-
puted by theThresholdCalculation block in the Simulink model in Fig. 1. However, we are not
interested in the componentsR andG in this example. ⋄

A timed traceof a hybrid automaton is afinite2 sequence of states〈t, ℓ, x〉 ∈ R × L ×Xof the
form 〈t0, ℓ0, x0〉, 〈t1, ℓ1, x1〉, 〈t2, ℓ2, x2〉, . . ., such thatinitially , at timet0, we have〈ℓ0, x0〉 ∈ H0,
and for each consecutive state pair〈ti, ℓi, xi〉, we

2Again, we implicitly assume that the system does not exhibitZeno behaviors [Lygeros et al. 2003].
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— either make discrete transition fromℓi to ℓi+1 and setxi+1 = R〈ℓi,ℓi+1〉(xi)
— or we evolve under the subsystemDℓi from xi to xi+1, i.e.,xi+1 = Dℓi(xi, ti, u)(ti + 1).

A hybrid systemH is deterministiciff starting from some initial state〈t0, ℓ0, x0〉 there exists a
unique timed trace. Given a timed trace, we can construct a hybrid system trajectoryy : R → Y
by settingy(t) = 〈l(t), z(t)〉 for t ∈ [ti, ti+1), wherel(t) = ℓi andz(t) = O(x(t)) with x(t) =
Dℓi(xi, ti, u)(t). Therefore, again, we may view a hybrid system as a function∆H from the set of
initial conditionsH0 and the input signalsU to output signalsY R.

Let ∆̃H(h0, ũ) represent the approximate simulation function for a deterministic hybrid system
H. We assume that̃∆H(h0, ũ) approximates the time trajectories with some given tolerance bound
ǫ by adjusting the integration method. In practice, this may be harder to achieve for hybrid systems
than for purely continuous systems due to the problem of robust event detection [Esposito and
Kumar 2004]. However, assuming that such a simulator is available (see [Sanfelice and Teel 2010]
for conditions), we may translate the trace fitness functiondefined for continuous simulations to
hybrid simulations with discrete transitions.

Specifications for hybrid automata involve a sequence of locations of the discrete subsystem. The
simplest such property being the (un)reachability of a given “error” location. As a result, continuous
state distance based on a norm (or a metric distance) does not, in general, provide a true notion of
distance between the specification and the trace. This is especially true in the presence of discrete
transitions with reset maps. For the case of hybrid systems with reset maps, the robustness met-
rics used in Section 3 cannot be used to compare the hybrid states (ℓ, z) and(ℓ′, z′) in terms of
some norm distance betweenz andz′. Therefore, structural considerations based on the graph that
connects the different modes of the hybrid automata have to be considered while designing fitness
functions. We now consider (generalized quasi-) metrics for hybrid automata.

First, we have to define what is the distance between two modesof the hybrid automaton. We
claim that a reasonable metric is theshortest path distancebetween two locations. A similar metric
was used for guiding the exploration in a model checker for hybrid systems in [Alur et al. 2003].
Intuitively, the shortest path distance provides us with a measure of how close we are to a desirable
or undesirable operating mode of the automaton. Such information is especially useful in the class
of falsification algorithms that we consider in this paper.

In the following, given hybrid automatonH, we letΓ(H) = (L,→) represent the directed graph
formed by its discrete modes and transitions. The shortest path distance from nodeℓ to nodeℓ′ in
the graphΓ(H) will be denoted byπ(ℓ, ℓ′). Note thatπ(ℓ, ℓ′) = ∞ iff there is no path fromℓ to ℓ′

in the graphΓ(H). It is well known (and it is easy to verify) that the shortest path distance satisfies
all the criteria for a quasi-metric.

The shortest path metric can be computed on-the-fly by running a Breadth First Search (BFS)
[Cormen et al. 2001] algorithm on the graph. It is well known that BFS runs in linear time on the size
of the input graph. However, it is preferable to use an all-pairs shortest path algorithm [Cormen et al.
2001] to precompute the distances between all pairs of control locations of the hybrid automaton. In
our implementation, we are using the Floyd-Warshall algorithm which has running timeΘ(|L|3).

In order to reason over output trajectoriesy in the hybrid state spaceY , we need to introduce a
generalized distance function [Seda and Hitzler 2008]. In the following, we will denote the hybrid
spaceL×Z byH to indicate that a metric is defined over a particular space. Letdh : H×H → V

∞
+ ,

whereV∞
+ = V+ ∪ 〈+∞,+∞〉 andV+ = N × R+, with definition forh = 〈ℓ, z〉 ∈ H and

h′ = 〈ℓ′, z′〉 ∈ H,

dh(h, h
′) =

{

〈0, d(z, z′)〉 if ℓ = ℓ′
〈

π(ℓ, ℓ′),minℓ′′∈∂Nπ(ℓ,ℓ′) distd(z,G
t(ℓ, ℓ′′))

〉

otherwise

whereπ is the shortest path metric,d is a metric onZ and∂Nπ(ℓ, ℓ
′) = Nxt(ℓ)∩Nπ(ℓ

′, π(ℓ, ℓ′)).
Here,Nxt(ℓ) = {ℓ′ ∈ L | ℓ → ℓ′} andGt denotes that the guard set may be changing with
respect to time. Informally,∂Nπ(ℓ, ℓ

′) is the “boundary” of all locations which are closer toℓ′ than
ℓ and may be visited fromℓ within one transition. Therefore, when the two pointsh, h′ are in the
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same control location, then the distance computation reduces to the distance computation between
the points in the continuous state space. When the two pointsh, h′ are in different control locations,
then the distance is the path distance between the two control locations “weighted” by the distance
to the closest guard that will enable the transition to the next control location that reduces the path
distance. Essentially, the last condition is a heuristic that gives preference to shortest paths.

Next, we need to define an appropriate addition+ and a partial order� such that the triplet
(V+,+,�) is a positively ordered commutative monoid. First, the addition is defined component-
wise, that is, for〈k, r〉 , 〈k′, r′〉 ∈ V+, we define

〈k, r〉 + 〈k′, r′〉 = 〈k + k′, r + r′〉

The commutativity property is immediately satisfied. Second, we order the set using the dictionary
order. Given〈k, r〉, 〈k′, r′〉 ∈ Z∞ × R, we define the order relation≺ as

〈k, r〉 ≺ 〈k′, r′〉 iff

{

k < k′ if k 6= k′

r < r′ if k = k′

It is easy to verify that the dictionary order is compatible with the addition as defined forV+.
Hence,V+ has a smallest element, namely0 = 〈0, 0〉, andV∞

+ has an absorbing element, namely
+∞ = 〈+∞,+∞〉, which is also the least upper bound. Finlay, Proposition A.1 in the Appendix
demonstrates that the generalized distancedh satisfies the identity and triangle inequality properties.
In other words,dh is a generalized quasi-metric onH.

The generalized distance functiondh requires computations of a point to each guard set in
a control location. This may potentially increase the computational load or it could be the case
that the computation of the distance to the guard might not bepossible (for example, in cer-
tain Simulink/Stateflow models). Therefore, we also introduce the generalized distance function
d0
h : H×H → V

∞
+ with definition

d0
h(h, h

′) =

{

〈0, d(z, z′)〉 if ℓ = ℓ′

〈π(ℓ, ℓ′), 0〉 if ℓ 6= ℓ′ andπ(ℓ, ℓ′) < +∞
〈+∞,+∞〉 otherwise

In this case, the distance function ignores the guard sets and simply checks whether the 2 points are
in the same control location or not. The distance functiond0

h is a generalized quasi-metric as well.
Therefore, we are in position to reason about hybrid system trajectories by utilizing the MTL

robustness Definition 2.6 and Theorem 4.2. Now the atomic propositions can map to subsets of
H placing, thus, requirements not only on the continuous state-space, but also on the mode of the
hybrid system. Informally, a robustness value of〈k, r〉 will mean the following:

— If k = 0 andr 6= 0, then we can place a tube of radius|r| around the continuous part of the
trajectory which will guarantee equivalence under the MTL formula. Moreover, it is required that
at each point in timet, the locations are the same for all such trajectories.

— If k > 0, then the specification is satisfied and, moreover, the trajectory isk discrete transitions
away from being falsified.

— If k < 0, then the specification is falsified and, moreover, the trajectory isk discrete transitions
away from being satisfied.

Remark4.5. Note that both functionsDistdh
andDistd0

h

never evaluate to some value of the
form 〈k,±∞〉 with k ∈ Z (see Proposition A.3). This is important because the temporal logic
robustness value is now going to be a member of the setV

∞ = V ∪ {±∞} whereV = Z × R. In
order for the triplet(V,+,�) to be an ordered Abelian group and, thus, the robust MTL semantics
to have a proper definition of negation, each member ofV must have an inverse. The negation for
the MTL robust semantics induced by the aforementioned metrics is simply the pairwise negation.
In Proposition A.3, we also demonstrate how the distance functionsDistdh

andDistd0

h

can be
computed based on the well known understood distance functionsDistπ andDistd.
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ALGORITHM 2: Parallel Monte-Carlo sampling algorithm.

Input: H0 × Λ×Rm: Input Space,f(·): Robustness Function,ε: Robustness Threshold,
PS(·): Proposal Scheme
Output: 〈h, λ, τ 〉 ∈ H0 × Λ×Rm

begin
1 Choose some initial input〈h, λ, τ 〉 ∈ H0 × Λ×Rm;
2 while (f(h, λ, τ ) ≥ ε) do

/ * Select 〈h′, λ′, τ ′〉 using the Proposal Scheme * /
3 〈h′, λ′, τ ′〉 ← PS(〈h, λ, τ 〉) ;
4 α1 ← exp(−β1(f1(h

′, λ′, τ ′)− f1(h, λ, τ )));
5 α2 ← exp(−β2(f2(h

′, λ′, τ ′)− f2(h, λ, τ )));
6 r ← UniformRandomReal(0, 1) ;
7 if (((f1(h

′, λ′, τ ′) = f1(h, λ, τ ))∧ (r ≤ α2))∨ ((f1(h
′, λ′, τ ′) 6= f1(h, λ, τ ))∧ (r ≤ α1))) then

8 〈h, λ, τ 〉 ← 〈h′, λ′, τ ′〉 ;
end

end

4.3. Monte Carlo Sampling

One of the issues that arise when giving generalized (or “hybrid”) robust semantics to MTL formulas
is how to sample over the spaceH0 × Λ × Rm. Recall thatΛ × Rm is the space of parameters
that parameterize the input signals. In other words, what isthe probability distribution induced by
the robustness functionf? In general, this issue can only be addressed in a case-by-case scenario
depending on the generalized metricd that is utilized.

In this work, for the generalized quasi-metricdh, we propose to use a Parallel Metropolis coupled
Markov chain Monte Carlo algorithm (see Algorithm 2). For a point 〈h0, λ, τ〉 ∈ H0 × Λ × Rm,
the robustness function is nowf(h0, λ, τ) = D̃ϕ(∆̃H(h0, Ũ(λ, τ))). If f(h0, λ, τ) = 〈k, r〉 ∈ V

∞,
then we definef1(h0, λ, τ) = k ∈ Z∞ andf2(h0, λ, τ) = r ∈ R. In brief, in Algorithm 2, an input
〈h1, λ1, τ1〉 will be more likely sampled over an input〈h1, λ1, τ1〉, if f1(h1, λ1, τ1) = f1(h2, λ2, τ2)
andf2(h1, λ1, τ1) << f2(h2, λ2, τ2), or, if f1(h1, λ1, τ1) 6= f1(h2, λ2, τ2) andf1(h1, λ1, τ1) <<
f1(h2, λ2, τ2). The discussion in Section 3.2 on the importance ofβ and the proposal schemes still
applies. Similarly, we can define a sampling algorithm for the metricd0

h.

5. EXPERIMENTS

We have implemented our techniques and, in particular, the new metrics inside our Matlab tool-
box S-TAL IRO [Annapureddy et al. 2011]. Our toolbox is general enough to interact with vari-
ous means for modeling CPS including Simulink/Stateflow models. We currently support full time
bounded MTL for continuous as well as hybrid time trajectories. We remark that all the bench-
mark problems are distributed with S-TAL IRO at https://sites.google.com/a/asu.
edu/s-taliro/ which also includes all the MTL specifications used in this section.

We performed a comparison of our implementation (MC) against a simple uniform random (UR)
exploration of the state-space. Both MC and UR are each run for a maximum number of 1000 tests,
terminating early if a falsifying trajectory is found. Since these techniques are randomized, each
experiment was repeated 100 times (runs) under different seeds in order to obtain statistically sig-
nificant results. Uniform random exploration provides an ideal measure of the difficulty of falsifying
a property over a given input. Its rate of success empirically quantifies the difficulty of falsifying a
given property. Finally, we have already argued about the importance of obtaining the least robust
trajectory where falsification cannot be achieved. To this end, we compare the set of minima found
using MC as well as that using UR and the corresponding running times.

Table I reports on the results of our comparison on two benchmark problems using different MTL
properties or problem instances. The first benchmark problem is the Automatic Transmission (AT)
model considered in Example 2.1. We consider a number of MTL specifications of increasing diffi-
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Table I. Experimental Comparison of Monte-Carlo (MC) vs. Uniform Random (UR) falsification on benchmark
problems with Euclidean output spaces. Each instance was run for 100 times and each run was executed for
a maximum of 1000 tests. Legend: #Fals. : the number of runs falsified, Robustness : 〈min, average, variance〉
of the runs that were not falsified, Time: 〈min, average, max〉 time in seconds per run.

Problem ψ #Fals. Robustness Time (sec)
MC UR MC UR MC UR

AT φAT
1 97 100

〈2.54, 7,
48.5〉

- 〈0.2, 11, 92〉 〈0.2, 3, 16〉

AT φAT
2 96 100

〈3.03, 137,
6.6 · 104〉

- 〈0.2, 16, 94〉 〈0.2, 10, 48〉

AT φAT
3 51 0

〈8 · 10−4, 0.42,
1.2〉

〈0.04, 0.96,
0.35〉

〈7, 61, 94〉 〈93, 94, 99〉

AT φAT
4 0 0

〈5.86, 5.95,
0.02〉

〈5.91, 6.06,
0.01〉

〈92, 93, 93〉 〈92, 92, 93〉

AT φAT
5 0 0

〈0.15, 0.41,
2.55〉

〈0.25, 0.57,
0.06〉

〈93, 93, 94〉 〈92, 93, 94〉

P∆−Σ
[−0.45,0.45]

φ∆−Σ 84 81
〈0.00, 0.04,
4.6 · 10−4〉

〈0.00, 0.01,
1.2 · 10−4〉

〈0.2, 19, 41〉 〈0.2, 19, 43〉

P∆−Σ
[−0.4,0.4]

φ∆−Σ 58 40
〈0.00, 0.06,
7.9 · 10−4〉

〈0.00, 0.03,
2.2 · 10−4〉

〈0.7, 26, 39〉 〈0.3, 30, 38〉

P∆−Σ
[−0.35,0.35]

φ∆−Σ 21 1
〈0.00, 0.07
2.1 · 10−3〉

〈0.01, 0.06
7.9 · 10−4〉

〈4.1, 35, 49〉 〈5.4, 37, 44〉

Table II. Experimental Comparison of Monte-Carlo (MC) vs. Uniform Random (UR) falsification on bench-
mark problems with hybrid output spaces. Each instance was run for 100 times and each run was executed
for a maximum of 1000 tests. Legend: #Fals. : the number of runs falsified, Time: 〈min, average, max〉
time in seconds per run, MC-H: MC with metric dh, MC-H0: MC with metric d0

h
.

Problem ψ #Fals. Time
MC-H MC-H0 UR MC-H MC-H0 UR

AT φAT
6 - 93 86 - 〈0.4, 24, 138〉 〈0.4, 56, 139〉

AT φAT
7 - 94 55 - 〈0.1, 25, 128〉 〈0.6, 81, 127〉

AT φAT
8 - 0 0 - 〈110, 115, 139〉 〈109, 111, 115〉

NV[0,25] φNV
1 63 68 34 〈4.2, 542, 831〉 〈34, 545, 865〉 〈44, 623, 817〉

NV[0,12] φNV
2 100 100 100 〈1.1, 24, 140〉 〈1.7, 25, 168〉 〈0.9, 22, 108〉

NV[0,12] φNV
3 100 100 100 〈0.8, 8.7, 62〉 〈0.8, 17, 503〉 〈0.7, 4.0, 22〉

NV[0,12] φNV
4 100 100 100 〈1.2, 18, 85〉 〈1.4, 26, 66〉 〈0.8, 35, 427〉

NV[0,12] φNV
5 38 47 5 〈21.0, 419, 595〉 〈15, 390, 584〉 〈9.4, 404, 437〉

culty to falsify. As an example, formulaφAT
1 is described in Example 2.7. The second benchmark

is a Simulink model of a 3rd order∆−Σ modulator whose description can be found in [Dang et al.
2004]. The 3rd order∆− Σ modulator has unknown initial conditions in the set[−0.1, 0.1]3 and a
one dimensional input signal that takes values in a set[um, uM ]. The problem instances in Table I
indicate the bounds on the input signal[um, uM ]. The specification for the∆−Σ modulator is that
the state of the system should always remain in the set[−1, 1]3.

We find that the performance varies depending on the ease withwhich the property can be violated
by means of uniformly sampling the input space. If the property can be easily falsified, then it is
advantageous to utilize uniform random search. MC for easy problem instances seems to converge
and get trapped at local minima. In practice, we may periodically reset the MC simulation using
random restarts. However, such restarts were not used in ourexperimental comparison. The use of
MC is clearly advantageous when the problem is challenging.In hard problem instances, MC can
falsify the specification when UR fails to falsify. Moreover, even when falsification fails, MC still
computes lower minimum and average robustness values with the same computational cost. Further
experimental results that attest the same conclusions can be found in [Nghiem et al. 2010].

Table II compares the performance of the falsification algorithm on benchmark problems with
hybrid output space. We compared UR with MC on two benchmark problems on various temporal
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logic formulas of increasing difficulty to falsify. The firstbenchmark problem was AT. As opposed
to the previous experiments, the specifications now not onlyplace conditions on the continuous
state of the system, but also on the discrete locations. As anexample, formulaφAT

6 is informally
described in Example 4.1. Since S-TAL IRO does not support yet automatic extraction of guard
conditions, we compared only UR with MC using the metricd0

h for the distance computations.
The second example that we consider is the Navigation (NV) benchmark problem from [Fehnker

and Ivančić 2004]. This is a hybrid automaton benchmark problem and both the control locations
and the guards of the transitions are available to us. Thus, we compared the performance of the
Monte Carlo sampling algorithm under the metricsdh andd0

h with the performance of Uniform
Random sampling under thedh metric. The problem instance that is used in our experimentsis
presented in [Nghiem et al. 2010].

First, we observe that on easy problem instances, i.e.,φNV
2 -φNV

4 , the performance of all algo-
rithms is comparable in terms of computation time. On hard problem instances, both MC-H and
MC-H0 outperform UR in terms of numbers of falsifications.

The experimental results indicate that the best way to approach hybrid system falsification / verifi-
cation is with a layered approach. Assuming that at the initial design stages the errors are abundant,
then it is preferable to run random sampling for the falsification process. As the system design
becomes more mature, then Monte Carlo sampling with the new metrics introduced in this paper
can be utilized for the falsification. When the level of confidence in the system design has increased
and potentially the system design is robust enough, then thedesigner may use a reachability analysis
algorithm (for example SpaceEx [Frehse et al. 2011]). However, we remark that currently reachabil-
ity analysis tools cannot handle arbitrary MTL specifications. A more detailed discussion on system
verification that compares the advantages/disadvantages of falsification and reachability methods
can be found in [Abbas and Fainekos 2011a; 2011b].

6. RELATED WORK

Due to the known undecidability results in the analysis of hybrid systems [Alur et al. 1995] and
the state explosion problem of the reachability computation algorithms (see [Julius et al. 2007] for
some related references), a lot of recent research activityhas concentrated on testing approaches to
the verification of continuous and hybrid systems [Kapinskiet al. 2003; Zhao et al. 2003].

The use of Monte Carlo techniques for model checking has beenconsidered previously by Grosu
and Smolka [Grosu and Smolka 2005]. Whereas Grosu and Smolkaconsider random walks over
the automaton defined by the system itself, our technique defines random walks over the input state
space. These are, in general, distinct approaches to the problem. In practice, our approach does
not have the limitation of being restricted by the topology of the system’s state transition graph.
Depending on this topology, the probability of visiting states deeper in the graph can sometimes be
quite small in pathological cases. On the other hand, Grosu et al.’s technique can be extended readily
to the case of systems with control inputs without requiringa finite parameterization of the control.
We are currently investigating the possibility of combining both types of random walks in a single
framework. Previous work by some of the authors in this work considered Monte-Carlo techniques
for finding bugs in programs [Sankaranarayanan et al. 2007].However, our previous efforts did not
have the systematic definition of robustness that we employ here.

There exist two main approaches to the testing problem of hybrid systems. The first approach
is focused on choosing inputs and/or parameters in a systematic fashion so as to cover the state-
space of the system [Esposito et al. 2004; Bhatia and Frazzoli 2004; Branicky et al. 2006; Nahhal
and Dang 2007; Plaku et al. 2007]. These approaches are mainly based on the theory of rapidly
exploring random trees (RRTs). The other approach is based on the notion of robust simulation
trajectory [Donzé and Maler 2007; Girard and Pappas 2006; Julius et al. 2007; Lerda et al. 2008]. In
robust testing, a simulation trajectory can represent a neighborhood of trajectories achieving, thus,
better coverage guarantees. Recently, the authors in [Danget al. 2008] have made the first steps in
bridging these two aforementioned approaches.
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On the research front of falsification/verification of temporal logic properties through testing, the
results are limited [Plaku et al. 2009; Rizk et al. 2008; Fainekos et al. 2006]. The work that is the
closest to ours appears in [Rizk et al. 2008]. The authors of that work develop a different notion of
robustness for temporal logic specifications, which is alsoused as a fitness function for optimization
problems. Besides the differences in the application domain, i.e., [Rizk et al. 2008] focuses on
parameter estimation for biological systems, whereas our paper deals with the falsification of hybrid
systems, the two works have also several differences at the theoretical and computational levels. At
the theoretical level, we have introduced a new metric for hybrid spaces which enables reasoning
over hybrid trajectories, while at the computational levelour approach avoids set operations, e.g.,
union, complementation etc, which, in general, increase the computational load.

Younes and Simmons, and more recently, Clarke et al. have proposed the technique ofStatistical
Model Checking(SMC). SMC targets stochastic system models such as continuous-time Markov
chains [Younes and Simmons 2006] or Stochastic Hybrid Automata (SHA) [Clarke et al. 2009].
For example, in order to model imperfect sensors in Example 2.1, we may add Gaussian noise to
the sensor that reads the engine speed. Then, the resulting system would be a SHA. The goal of
SMC is to asses the probability that a system satisfies a givenprobabilistictemporal logic property
ϕ. This probability can be safely approximated using Wald’s probabilistic ratio test. SMC, like our
technique, requires a simulator to be available for the system, but not a transition relation repre-
sentation. In contrast to SMC, our approach is guided by a robustness metric towards less robust
trajectories. On the other hand, the complex nature of the system and the robustness metrics im-
ply that we cannot yet provide guarantees on whether our algorithm has converged to the global
minimum of the temporal logic robustness function. However, this is an on-going endeavor.

Remark6.1. Our method does not try to assess the probability of failure, but to detect a failure.
That is, our goal is to provide the engineer with tools in order to detect design problems in the
system rather than perform a failure analysis. In our framework, if a failure is detected, then the
designer has a counterexample to work with in order to “debug” the system. Moreover, if a failure
is not detected, then the designer is still provided with theleast robust behavior found. The fact that
the system might be correct with probability one does not imply that the system isrobustlycorrect.
Therefore, we view SMC and our approach as complementary. Inan MBD cycle, the model should
be first assessed for its robustly correct behavior, and, then, a failure analysis should be performed
under various failure models and requirements.

7. CONCLUSIONS

Embedded systems require the verification of elaborate specifications such as those that can be
expressed in MTL. The undecidability of the MTL verificationproblem over such complex contin-
uous systems mandates the use of lightweight formal methodsthat usually involve testing. In this
paper, we have presented a testing framework for the Metric Temporal Logic (MTL) falsification
of hybrid systems using Monte-Carlo optimization techniques. The use of hit-and-run Monte-Carlo
optimization is required in order to overcome the difficulties in handling the complex system dy-
namics as well as the nonlinearities in the objective function. Moreover, in order to enable more
efficient search in hybrid state-spaces, a generalized distance function was introduced.

Experimental results indicate the superiority of our testing framework over random search on the
hard benchmark examples. The advantages of our approach arenot limited only to the fact that we
can falsify arbitrary systems, but also that we can provide robustness guarantees even to systems
that have been proven correct. The techniques and the methods that were introduced in this paper
have been implemented in our Matlab toolbox S-TAL IRO [Annapureddy et al. 2011].
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APPENDIX

PROOF OFTHEOREM 4.2. The proof is by induction on the structure of the formula.

(1) We will present only the base cases, since the other casesare identical with those in the proofs
in [Fainekos and Pappas 2009] and [Fainekos and Pappas 2006].
— If [[p,O]]d(y, t) ≻ 0, then by definitionDistd(y(t),O(p)) ≻ 0, which implies thaty(t) ∈

O(p) and, thus, that(y, t,O) |= p.
— If (y, t,O) |= p, then by definitiony(t) ∈ O(p), which implies thatdepthd(y(t),O(p)) =

Distd(y(t),O(p)) � 0, and, thus, that[[φ,O]]d(y, t) � 0.
Note that the equality in the first case fails when the signal valuey(t) is right on the boundary
of the setO(p), i.e.,y(t) ∈ ∂O(p). If [[p,O]]d(y, t) = 0, then we cannot distinguish whether
(y, t,O) |= p or (y, t,O) 6|= p.

(2) Similar to the previous proof.
(3) We will present the base case and the negation (the other cases are based on the definition of

supremum and infimum over the partial order� of d and are similar to the negation).
— Base case:

— If [[p,O]]d(y, t) = ε ≻ 0, then(y, t,O) |= p and by definitiondepthd(y(t),O(p)) =
ε ≻ 0, which implies thatBd(y(t), ε) ⊆ O(p). Sincey′ ∈ Bρd

(y, ε), we have
ρd(y,y

′) = supt∈R d(y(t),y′(t)) ≺ ε. That is,d(y(t),y′(t)) ≺ ε and, thus,y′(t) ∈
Bd(y(t), ε) ⊆ O(p). Hence,(y′, t,O) |= p.

— Similar to the previous case.
— Negation:

— Positive case: If[[¬φ,O]]d(y, t) = ε ≻ 0, then (i)(y, t,O) |= ¬φ, i.e.,(y, t,O) 6|= φ, and
(ii) [[φ,O]]d(y, t) = −ε ≺ 0. Then, by (ii) and the induction hypothesis we have that for
all y′ ∈ Bρd

(y, ε), (y′, t,O) 6|= φ.
— Negative case: Similar to the previous case.

We chose to present negation in order to demonstrate the properties that the negation must sat-
isfy.

PROPOSITION A.1. The generalized distance functiondh is a quasi-metric.

PROOF. We will need to demonstrate that the identity property and the triangle inequality hold.
In the following, we lethi = (ℓi, zi) ∈ H with i = 1, 2, 3.

Identity: Sinceπ is a quasi-metric, we haveπ(ℓ1, ℓ2) = 0 iff ℓ1 = ℓ2. Sinced is a metric, we
haved(z1, z2) = 0 iff z1 = z2. Hence,dh(h1, h2) = 〈0, 0〉 iff h1 = h2.

Triangle Inequality: We need to show that for allh1, h2, h3 ∈ H, dh(h1, h2) ≤ dh(h1, h3) +
dh(h3, h2). We proceed by case by case analysis:
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(1) Case ℓ1 = ℓ2 = ℓ3: Then,

dh(h1, h2) = 〈0, d(z1, z2)〉 ≤ 〈0, d(z1, z3) + d(z3, z2)〉

= 〈0, d(z1, z3)〉+ 〈0, d(z3, z2)〉 = dh(h1, h3) + dh(h3, h2)

(2) Case ℓ1 = ℓ2 6= ℓ3: Then,π(ℓ1, ℓ3) > 0 andπ(ℓ3, ℓ2) > 0 and

dh(h1, h2) = 〈0, d(z1, z2)〉 ≤ 〈π(ℓ1, ℓ3) + π(ℓ3, ℓ2), 0〉 ≤ 〈π(ℓ1, ℓ3), 0〉+ 〈π(ℓ3, ℓ2), 0〉

≤

〈

π(ℓ1, ℓ3), min
ℓ∈∂Nπ(ℓ1,ℓ3)

distd(z1,G
t(ℓ1, ℓ))

〉

+

〈

π(ℓ3, ℓ2), min
ℓ∈∂Nπ(ℓ3,ℓ2)

distd(z3,G
t(ℓ3, ℓ))

〉

= dh(h1, h3) + dh(h3, h2)

(3) Case ℓ1 6= ℓ2 and ℓ1 = ℓ3: Then,

dh(h1, h2) =

〈

π(ℓ1, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ))

〉

But,π(ℓ1, ℓ2) = 0 + π(ℓ3, ℓ2) = π(ℓ1, ℓ3) + π(ℓ3, ℓ2), and, also,

min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ)) = min

ℓ∈∂Nπ(ℓ1,ℓ2)
inf{d(z1, z) | z ∈ Gt(ℓ1, ℓ))}

≤ min
ℓ∈∂Nπ(ℓ1,ℓ2)

inf{d(z1, z3) + d(z3, z) | z ∈ Gt(ℓ1, ℓ)}

= d(z1, z3) + min
ℓ∈∂Nπ(ℓ1,ℓ2)

inf{d(z3, z) | z ∈ Gt(ℓ1, ℓ)}

(ℓ1=ℓ3)
= d(z1, z3) + min

ℓ∈∂Nπ(ℓ3,ℓ2)
distd(z3,G

t(ℓ3, ℓ))

Thus,dh(h1, h2) =

〈

π(ℓ1, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ))

〉

≤

〈

π(ℓ1, ℓ3) + π(ℓ3, ℓ2), d(z1, z3) + min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z3,G
t(ℓ3, ℓ))

〉

=

〈

✘
✘
✘
✘✘✿

0
π(ℓ1, ℓ3), d(z1, z3)

〉

+

〈

π(ℓ3, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z3,G
t(ℓ3, ℓ))

〉

= dh(h1, h3) + dh(h3, h2)

(4) Case ℓ1 6= ℓ2 and ℓ2 = ℓ3: Then,

dh(h1, h2) =

〈

π(ℓ1, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ))

〉

But,π(ℓ1, ℓ2) = π(ℓ1, ℓ3) + 0 = π(ℓ1, ℓ3) + π(ℓ3, ℓ2), and, also,

min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ))

(ℓ2=ℓ3)
= min

ℓ∈∂Nπ(ℓ1,ℓ3)
distd(z1,G

t(ℓ1, ℓ))

≤ min
ℓ∈∂Nπ(ℓ1,ℓ3)

distd(z1,G
t(ℓ1, ℓ)) + d(z3, z2)

sinced(z3, z2) ≥ 0. Thus,

dh(h1, h2) =

〈

π(ℓ1, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ))

〉

≤

〈

π(ℓ1, ℓ3) + π(ℓ3, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ3)

distd(z1,G
t(ℓ1, ℓ)) + d(z3, z2)

〉
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=

〈

π(ℓ1, ℓ3), min
ℓ∈∂Nπ(ℓ1,ℓ3)

distd(z1,G
t(ℓ1, ℓ))

〉

+

〈

✘
✘
✘
✘✘✿

0
π(ℓ3, ℓ2), d(z3, z2)

〉

= dh(h1, h3) + dh(h3, h2)

(5) Case ℓ1 6= ℓ2, ℓ1 6= ℓ3 and ℓ2 6= ℓ3: Then,π(ℓ1, ℓ2) ≤ π(ℓ1, ℓ3) + π(ℓ3, ℓ2), and

dh(h1, h2) =

〈

π(ℓ1, ℓ2), min
ℓ∈∂Nπ(ℓ1,ℓ2)

distd(z1,G
t(ℓ1, ℓ))

〉

≤ 〈π(ℓ1, ℓ3) + π(ℓ3, ℓ2), 0〉 = 〈π(ℓ1, ℓ3), 0〉+ 〈π(ℓ3, ℓ2), 0〉

≤

〈

π(ℓ1, ℓ3), min
ℓ∈∂Nπ(ℓ1,ℓ3)

distd(z1,G
t(ℓ1, ℓ))

〉

+

〈

π(ℓ3, ℓ2), min
ℓ∈∂Nπ(ℓ3,ℓ2)

distd(z3,G
t(ℓ3, ℓ))

〉

= dh(h1, h3) + dh(h3, h2)

PROPOSITION A.2. The generalized distance functiond0
h is a quasi-metric.

PROOF. The proof is similar to the proof of Proposition A.1.

PROPOSITION A.3. Let the current point beh = 〈ℓ, z〉 and O(p) = Lp × Zp, then
Distd0

h

(h,O(p)) 6= 〈k,±∞〉 for anyk ∈ Z. Similarly forDistdh
(h,O(p)).

PROOF. Actually, we will show thatDistd0

h

(h,O(p)) = 〈k,±∞〉 iff k = ±∞.

(1) h 6∈ O(p) and ℓ 6∈ Lp and if Lp is not reachable fromℓ, then for anyℓ′ ∈ Lp, we have
π(ℓ, ℓ′) = +∞. Thus,∂Nπ(ℓ, ℓ

′) = ∅ andminℓ′′∈∂Nπ(ℓ,ℓ′) distd(z,G
t(ℓ, ℓ′′)) = +∞. Hence,

Distdh
(h,O(p)) = −distdh

(h,O(p)) = 〈−∞,−∞〉. Also,Distd0

h

(h,O(p)) = 〈−∞,−∞〉
by definition.

(2) If h 6∈ O(p) andℓ 6∈ Lp and if Lp is reachable fromℓ, then∂Nπ(ℓ, ℓ
′) 6= ∅ since (i) at least

one of the neighbors ofℓ will have distance toLp less thandistπ(ℓ, Lp) and (ii) we have
assumed thatGt(ℓ, ℓ′) 6= ∅ for all ℓ′ ∈ Nxt(ℓ). Then,distd(z,Gt(ℓ, ℓ′′)) < +∞ for all
ℓ′′ ∈ ∂Nπ(ℓ, ℓ

′). Let ℓ∗ ∈ argmin{
〈

π(ℓ, ℓ′),minℓ′′∈∂Nπ(ℓ,ℓ′) distd(z,G
t(ℓ, ℓ′′))

〉

| ℓ′ ∈ Lp}
and setδ∗ = minℓ′′∈∂Nπ(ℓ,ℓ∗) distd(z,G

t(ℓ, ℓ′′)) < +∞. Therefore,Distdh
(h,O(p)) =

−distdh
(h,O(p)) = 〈−π(ℓ, ℓ∗),−δ∗〉. Finally, by definition, we haveDistd0

h

(h,O(p)) =

−distdh
(h,O(p)) = 〈−distπ(ℓ, Lp), 0〉.

(3) If h 6∈ O(p), but ℓ ∈ Lp, i.e., z ∈ Zp, thenDistdh
(h,O(p)) = −distdh

(h,O(p)) =
−distdh

(h, (Lp\{ℓ}×Zp)∪ ({ℓ}×Zp)) = −min{distdh
(h, Lp\{ℓ}×Zp),distdh

(h, {ℓ}×
Zp)} = −distdh

(h, {ℓ} × Zp)} = 〈0,−distd(z, Zp)〉. However,distd(z, Zp) < +∞ since
∅ ⊂ O(p) ⊂ Y by assumption. Similarly forDistd0

h

(h,O(p)).
(4) If h ∈ O(p) and Zp ⊂ Z, then Distdh

(h,O(p)) = depthdh
(h,O(p)) =

distdh
(h, Y \O(p)) = distdh

(h, ((L\Lp)×Z)∪ (L× (Z\Zp))) = min{distdh
(h, (L\Lp)×

Y ),distdh
(h, L × (Z\Zp))} = distdh

(h, L × (Z\Zp))} = 〈0,distd(z, Zp)〉 since ℓ ∈
Lp ⊆ L. However,distd(z, Zp) < +∞ since∅ ⊂ O(p) ⊂ Y by assumption. Similarly for
Distd0

h

(h,O(p)).
(5) If h ∈ O(p) andZp = Z, i.e., Lp ⊂ L, thenDistdh

(h,O(p)) = depthdh
(h,O(p)) =

distdh
(h, Y \O(p)) = distdh

(h, ((L\Lp)×Z)∪(L×(Z\Zp))) = distdh
(h, ((L\Lp)×Z)∪

(L× ∅)) = distdh
(h, (L\Lp)× Z)}. Now, we have two cases:

— if L\Lp is reachable fromℓ, then as in case (2), we haveDistdh
(h,O(p)) = 〈π(ℓ, ℓ∗), δ∗〉

with δ∗ < +∞.
— if L\Lp is not reachable fromℓ, thendistπ(ℓ, L\Lp) = +∞ and as in case (1), we also have

∂Nπ(ℓ, ℓ
′) = ∅ for all ℓ′ ∈ L\Lp. Thus,Distdh

(h,O(p)) = 〈+∞,+∞〉.
Similarly, we can derive the value ofDistd0

h

(h,O(p)).

This concludes the proof since we have considered all possible cases.
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