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We now know the syntax and semantics of first-order logic. However, a logic is only as useful
as the conclusions we can deduce from it. Here we will discuss approaches to first-order deductive
inference. The inference algorithms we consider can all be viewed as “first-order upgrades” of the
propositional algorithms. The process of creating such an upgrade is often referred to lifting.

Below we will define several subclasses of first-order logic, discuss inference techniques for these
classes, as well as inference for full first-order logic. Finally, we will cover the basic idea behind
Göedel’s incompleteness theorem which highlights some fundamental limitations of first-order logic.
These notes, are not complete, and are intended to supplement your text, which you should also
study.

1 Types of First-Order Theories

For computational reasons it is common to develop algorithms for particular subclasses of first-order
logic, where the subclasses are defined by placing syntactic restrictions on the allowed formulas. In
this Section, we define several classes of logic that we will consider in this course.

1.1 First-Order Ground Theories

Recall that a first-order ground formula is a first-order formula without variables. A first-order
ground theory is simply a set of ground formulas.

1.2 First-Order Clausal Theories

One of the most common types of first-order theories are clausal theories, which are sets of first-
order clauses. We will see later that any first-order theory can be translated to a clausal theory
that is equivalent in certain important ways. A first order clause is defined as follows.

An atom is simply a predicate symbol applied to the appropriate number of terms such as
TallerThan(Bob, FatherOf(Bob)). A literal is either an atom or the negation of an atom. A
clause is simply a disjunction of literals where all variables are universally quantified. An example
of a clause is

∀x, y, z¬TallerThan(x, y) ∨ ¬TallerThan(y, z) ∨ TallerThan(x, z)
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Typically, we do not actually write the universal quantifier, so the above would just be written as

¬TallerThan(x, y) ∨ ¬TallerThan(y, z) ∨ TallerThan(x, z)

It is convention to interpret any free variables as universally quantified.

1.3 Definite Clausal Theories

Definite clauses are clauses that have exactly one positive literal. The above clause is a definite
clause.

Note that a definite clause is equivalent to an implication whose antecedent (or body) is the
conjunction of negative literals and the consequent (or head) is the single positive literal. You
should varify this yourself.1 So the above definite clause is equivalent to the more intuitive,

(TallerThan(x, y) ∧ TallerThan(y, z))⇒ TallerThan(x, z)

which asserts that TallerThan is a transitive relation.
A definite clausal theory is a set of definite clauses. An example of a definite clausal theory

might be,

TallerThan(x, y) ∧ TallerThan(y, z)⇒ TallerThan(x, z)
TallerThan(Bob,FatherOf(Bob))
TallerThan(FatherOf(Bob),FatherOf(FatherOf(Bob)))
TallerThan(Jon, x)

The second and third clauses are called ground unit clauses (or ground atoms) and are best thought
of as stating facts in a database. The fourth unit clause contains a variable x. Recalling that x is
universally quantified, the clause should be interpreted as stating that Jon is taller than all other
objects (including himself, so TallerThan is not a strict “inequality”). It should be obvious that
the atom TallerThan(Bob,FatherOf(FatherOf(Bob))) is entailed by this theory.

Definite clausal theories are important because for many applications they provide enough ex-
pressive power to get the job done, and there a a number of highly optimized approaches to inference
with such theories. Also definite clauses are quite intuitive to write down as they can be thought
of as “if/then” rules. However, it is important to realize that definite clausal theories are strictly
less expressive than full first-order logic.

1.4 Horn Theories

A Horn clause is a clause that contain at most one positive literal. A Horn theory is a set of horn
clauses. Thus Horn theories are a superset of definite clauses/theories that allow for clauses with
zero positive literals. We will not discuss Horn theories in this course, but they are an important
subclass that are often used in practice, and share many of the computational advantages of definite
theories.

1This can be easily shown by noticing that ¬P ∨Q is logically equivalent to P → Q.
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1.5 Datalog Theories

Finally there is a distinguished subset of definite clausal theories that has nice computational
properties. A datalog theory is a definite clausal theories that contains no function symbols. The
above theory is not a Datalog theory because the second and third clauses contains the FatherOf
function.

2 Propositional Inference for Ground Theories

We now show that first-order ground theories are essentially equivalent in expressive power to
propositional theories. This means that we can easily perform inference on ground theories using
propositional methods.

Given a first-order ground theory KB, the follow steps can be used create a corresponding
propositional theory Prop(KB):

1. Assign a unique propositional symbol to each ground atom that appears in KB,

2. Create a propositional theory by replacing each ground atom in KB with its assigned propo-
sition.

For example, the ground theory

ThrillSeeker(Bob)⇒ [Owns(Bob,Car) ∧ Fast(Car)]
ThrillSeeker(Bob)

where Bob and Car are constants, corresponds to the propositional theory

P1 ⇒ [P2 ∧ P3]
P1

where P1, P2, and P3 correspond to the first-order atoms ThrillSeeker(Bob), Owns(Bob,Car), and
Fast(Car). It is a simple matter to argue that a first-order ground theory KB is satisfiable (i.e.
has a first-order model) iff Prop(KB) is satisfiable (i.e. has a propositional model). You should
convince yourself of this.

Given the equivalence between KB and Prop(KB), one can perform inference for KB by applying
propositional inference algorithms to Prop(KB). This approach to inference is sound and complete
as long as the propositional algorithm is sound and complete. Thus, in a strong sense, ground first-
order theories are inherently propositional. The fact that they contain relations and structured
terms serves no purpose other than providing a convenient way of naming propositions (syntactic
sugar).

This shows, the perhaps obvious fact, that fundamentally first-order ground theories are no
more expressive than propositional logic.

3 Substitutions and Unification

In order to ”lift” propositional inference techniques to the case of non-ground first-order theories,
we will utilize the concepts of variable substitution and unification.
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3.1 Variable Substitution

A variable substitution θ is simply an ordered set (i.e. list) of pairs

θ = {v1/t1, · · · , vn/tn}

where each pair vi/ti contains a variable vi along with a term ti that will replace (be substituted
for) vi. Two example substitutions are

θ1 = {x/Bob, y/FatherOf(Bob)}

meaning replace x with Bob and then replace y with FatherOf(Bob)), and

θ2 = {x/y, y/FatherOf(z)}

meaning replace x with y, and then replace y with FatherOf(z).
Given a formula φ and a substitution involving free variables in φ we define

Subst(θ, φ)

to be a new formula that results by starting with φ and then sequentially replacing the variables of
φ with the corresponding terms in the substitution.

So for example if
φ = TallerThan(x, y) ∧ TallerThan(y, z)

then

Subst(θ1, φ) = TallerThan(Bob,FatherOf(Bob)) ∧ TallerThan(FatherOf(Bob), z)
Subst(θ2, φ) = TallerThan(FatherOf(z),FatherOf(z)) ∧ TallerThan(FatherOf(z), z)

Sometimes substituting a term for a variable is referred to as instantiating the variable with the
term.

3.2 Variable Unification

The second concept we will use for dealing with variables is unification. A unification of two
formulas φ1 and φ2 is a substitution θ such that,

Subst(θ, φ1) = Subst(θ, φ2) .

That is, a unification is a substitution that makes two formulas syntactically equivalent.
Note that there can be many possible unifications between two formulas. For example, the

formulas P (x) and P (f(y)) have an infinite number of unifications including θ1 = {x/f(y)} and
θ2 = {x/f(f(z)), y/f(z)}. Notice that after applying θ1 to these formulas resulting in P (f(y)) it is
possible to apply another substitution θ3 = {y/f(z)} in order to obtain the result of applying θ2.
More formally, given two formulas φ1 and φ2 we say that a unifier θ1 is ”more general” than θ2,
whenever a θ3 exists such that,

Subst(θ3,Subst(θ1, φ1)) = Subst(θ2, φ1)
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or equivalently
Subst(θ3,Subst(θ1, φ2)) = Subst(θ2, φ2)

Intuitively, this means that the set of formulas that can be obtained by substitutions after applying
θ1 are a superset of those that could be obtained by substitutions after applying θ2. Notice that
θ2 is not more general than θ1, since there is no substitution θ such that Subst(θ3, P (f(f(z)))) =
P (f(y)).

In our inference algorithms we will only be interested in computing a most general unifier of
two formulas. That is, a unifier such that no other unifier is more general. It turns out that there
is always a most general unifier when a unifier exists. Your book gives an algorithm for computing
a most general unifier that makes φ1 identical to φ2. We will denote this unifier by Unify(φ1, φ2).

4 Inference for Definite Clausal Theories

Given a definite clausal theory KB and a query atom α, our goal is to determine whether or not
KB |= alpha. Recalling that definite theories can be viewed as if/then rules with variables, it
is relatively straightforward to construct forward and backward chaining techniques for inference.
Both forward and backward chaining will make use of an inference rule known as generalized modus
ponens:

a′1, a
′
2, · · · , a′n, (a1 ∧ a2 ∧ · · · ∧ an ⇒ q)

Subst(θ, q)

where the a′i and ai are atoms such that

∀ i Subst(θ, p′i) = Subst(θ, pi) .

So, for example, given the rule

TallerThan(x, y) ∧ TallerThan(y, z)⇒ TallerThan(x, z)

along with the atoms

TallerThan(Jon,Bob) and TallerThan(Bob,FatherOf(Bob)) ,

we can conclude TallerThan(Jon,FatherOf(Bob)), where θ here is

{x/Jon, y/Bob, z/FatherOf(Bob)} .

In other words, generalized modus ponens says that if we can find a substitution so that the premise
of a rule (here a1 ∧ · · · ∧ an) is satisfied by a given set of facts (here a′1, · · · , a′n) then we can derive
the rule’s conclusion under the substitution.

It turns out that for definite clausal theories, generalized modus ponens is the only inference
rule we will require.

4.1 Forward Chaining

We first consider forward-chaining inference, which uses modus ponens to iteratively enumerate the
entailed facts of the definite theory.
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Denote by Fi the set of facts that can be derived from the theory using i or fewer applications
of generalized modus ponens. Forward chaining begins with the empty set of facts F0 and on the
ith iteration computes Fi = Fi−1 ∪ F ′, where F ′ is the set of all facts that can be derived via any
application of generalized modus ponens to the facts in Fi−1 and the rules in our theory. Your book
gives more formal pseudo-code for this procedure. The iteration ends when Fi contains the query
or Fi = Fi−1 (i.e. we reached a fixed point).

For example, given the KB

TallerThan(x, y) ∧ TallerThan(y, z)⇒ TallerThan(x, z)
TallerThan(Jon,Bob)
TallerThan(Bob,FatherOf(Bob))
TallerThan(FatherOf(Bob),FatherOf(FatherOf(Bob)))

and the query TallerThan(Jon, FatherOf(FatherOf(Bob))), forward chaining starts with C0 =
{} and computes

F1 = { TallerThan(Jon,Bob)
TallerThan(Bob,FatherOf(Bob))
TallerThan(FatherOf(Bob),FatherOf(FatherOf(Bob)))
TallerThan(Jon,FatherOf(Bob))
TallerThan(Bob,FatherOf(FatherOf(Bob))) }

then given F1 we see that we can derive TallerThan(Jon,FatherOf(FatherOf(Bob)) which would
appear in F2, ending the forward chaining process and proving that the query is entailed by the
KB.

The main complexity of forward chaining is in searching for possible rule applications on each
iteration. Your book discusses a number of approaches for speeding up this process.

4.1.1 Forward Chaining: Datalog

As briefly mentioned in your book, forward chaining is sound and complete for Datalog theories.
This is because for Datalog theories, the lack of function symbols allows us to put a finite bound on
the number of possible ground terms (the only ground terms are constants) and hence the number of
possible atoms that can be derived is bounded. Thus, forward chaining is guaranteed to terminate
in a finite number of iterations at a fixed point. In addition, it can be shown that the fixed point
contains exactly the entailed facts.

4.1.2 Forward Chaining: General Definite Theories

When we allow function symbols the story changes. Forward chaining may not always return an
answer for general definite theories. To see this, note that when function symbols are allowed, there
can be an infinite number of terms (by nesting of function symbols), yielding an infinite number of
possible atoms. This means that forward chaining can possibly iterate forever, producing new facts
and never reaching a finite fixed point.

For example, consider the theory,

TallerThan(Bob,FatherOf(Bob))
TallerThan(x,FatherOf(x))⇒ TallerThan(FatherOf(x),FatherOf(FatherOf(x)))
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and the query TallerThan(Bob,Bob). When we run forward chaining on this theory each iteration
produces a new fact. In particular, iteration i produces the fact

TallerThan(FatherOf i(x),FatherOf i+1(x)) .

where FatherOf i is used to denote i applications of FatherOf. Since TallerThan(Bob,Bob) is not
entailed, it will never be generated by the forward chaining process; hence, the algorithm will never
halt, and it will not answer the query.

This shows that forward chaining is not guaranteed to produce answers for queries that are not
entailed by KB; however, it is guaranteed to correctly answer any query that is entailed, because
forward chaining is guaranteed to eventually generate any atom that is entailed by the KB.

4.2 Definite Theories are Semi-Decidable

We saw that forward chaining correctly handles entailed queries but may not correctly handle
unentailed queries. This is not just a property of forward chaining, rather it can be shown that
the problem of deciding whether KB |= α is semi-decidable for a definite KB, meaning that there
are algorithms that can answer “yes” whenever KB |= α, but there is no algorithm that can also
correctly produce a “no” answer when ¬(KB |= α).

4.3 Backward Chaining of Definite Theories

Forward chaining can be viewed as searching for a sequence of modus ponens applications that
derive the query. Naturally, we can also search for such a sequence backward from the query, which
is known as backward-chaining inference.

Roughly speaking, backward chaining maintains a goal set that contains a set of facts that
if proven true would imply the query. The goal set is initially set to be the query atom. Next,
the procedure finds a rule/clause that allows for the query to be inferred, and then adds the
antecedents to the goal set. This process of selecting a member of a goal set and adding antecedent
facts continues until the goal set is empty (or – equivalently – when the goal set only contains facts
that are in our KB). You should refer to your book for the details of this procedure.

As an example consider the following definite theory

Person(x) ∧ Tall(x)⇒ TallerThan(x,Bob)
Tall(Jon)
TallerThan(x, y)⇒ Heavier(x, y)
Person(Jon)

and the query Heavier(Jon,Bob).
Given the initial goal Heavier(Jon,Bob), backward chaining will see that clause 2 is the only

way to derive Heavier(x, y) and will add a new goal TallerThan(Jon,Bob) which is the antecedent of
clause 2 after applying the substitution {x/Jon, y/Bob}. Likewise this goal can only be satisfied by
clause 1 under the substitution {x/Jon} and will result in a new goal set {Person(Jon),Tall(Jon)}.
Both of these correspond to ground facts in the KB, indicating that we have successful proven/derived
the query.

Your book has a more detailed treatment of backward chaining inference. Depending on the
search strategy, backward chaining is complete for definite clausal theories (in the sense that any
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entailed query will be answered correctly). Backward chaining methods have been highly optimized
and are the computational core of the Prolog programming language. Prolog defines programs
using definite clausal theories, and it performs computation using backward chaining inference.

5 Resolution for Full First-Order Logic

There are many first-order theories that can’t be represented as definite clausal theories. In these
cases, we need more powerful inference mechanisms than just forward and backward chaining.

First-order resolution is a widely used first-order inference method. The basic procedure is very
simple. To decide whether KB |= α, first convert the formula KB ∧ ¬α to first-order clausal form.
Next, apply the resolution inference rule until arriving at a contradiction, which indicates that
KB |= α. We outline these steps below, noting that your book also gives some concrete examples.

5.1 Conversion to Clausal Form

1. Eliminate all implication connectives, replacing them by disjunctions. So P ⇒ Q becomes
¬P ∨Q. This transformation preserves equivalence.

2. Push negation symbols “in” so that negations are only on individual atoms. This can be done
using Demorgan’s laws and also the first-order equivalents:

¬∀ x φ = ∃ x ¬φ and ¬∃ x φ = ∀ x ¬φ

This operation preserves equivalence.

3. Standardize variables apart. Rename all variables so that each quantifier has its own unique
variable name. Obviously, this preserves equivalence.

4. Eliminate existential quantification (Skolemization). This is done by replacing existentially
quantified variables by Skolem constants or Skolem functions. For example, convert ∃xP (x)
to P (C) where C is a (Skolem) constant that does not appear anywhere in the original theory.

If the existential quantifier is within the scope of a universal quantified variable, the situation
is a bit more complicated. For example, consider ∀ x ∃ y P (x, y). It would not be correct
to convert this to ∀ x P (x,C). This is because the resulting sentence says that the same
object (represented by C) must satisfy P (x,C) for all x. Rather the original sentence only
requires that for each x there exist some object (possibly different for different x’s) that
satisfies P (x, y). For this reason we will introduce a Skolem function, rather than constant.
In this case we would get, ∀ x P (x, F (x)) where F is a new function symbol that does not
appear in the original theory.

As another example we would convert

∀ x ∀ y ∃ z P (x, y) ∧ P (y, z) to ∀ x ∀ y P (x, y) ∧ P (y, F (x, y))

here the Skolem function F must depend on both x and y since z was in their scope.

Intuitively we can think of existential quantifiers as stating that there exists some object
with certain properties. Skolem constants and functions simply give concrete names for these
objects that can be directly reasoned with. Since the Skolem symbols do not appear elsewhere
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in the theory, the only properties stated for these symbols are those that were stated for the
existential variable, which is what we want.

Skolemization preserves equivalence relative to satisfiability. That is, the resulting theory is
satisfiable iff the original theory was.

5. Remove universal quantifiers. This operation preserves equivalence given the previous opera-
tions.

6. Distribute ∧ over ∨ to get a conjunction of disjunctions called conjunctive normal form (CNF).
Convert (P ∧ Q) ∨ R to (P ∨ R) ∧ (Q ∨ R), and convert (P ∨ Q) ∨ R to (P ∨ Q ∨ R). This
gives a conjunction of clauses which continue to preserve equivalence.

7. Standardize variables in different clauses apart.

5.1.1 Example Conversion

Here is an example of the conversion process. Given the formula

∀ x ¬ [∀ y (Q(x, y)⇒ P (y))]

we first eliminate the implication

∀ x ¬ [∀ y (¬Q(x, y) ∨ P (y))] .

Next, we push negation in

∀ x ∃ y ¬(¬Q(x, y) ∨ P (y)) followed by
∀ x ∃ y (Q(x, y) ∧ ¬P (y)) .

Then, we eliminate the existential quantifier by adding a Skolem function

∀ x (Q(x, F (x)) ∧ ¬P (F (x)))

and then drop universal quantifiers

Q(x, F (x)) ∧ ¬P (F (x)) .

The result is already in conjunctive normal form we just need to standardize apart variables in
different clauses giving,

Q(x, F (x))
¬P (y, F (y))

5.2 First-Order Resolution Rule

The first-order resolution rule is just like the propositional version, only we use unification to match
complementary literals in clauses, as follows.

P1 ∨ · · · ∨ Pn, Q1 ∨ · · · ∨Qm

Subst (θ, P1 ∨ ... ∨ Pj−1 ∨ Pj+1 ∨ ... ∨ Pn ∨Q1 ∨ ...Qk−1 ∨Qk+1 ∨ ... ∨Qm)

where Pj and Qk are such that Unify(Pj ,¬Qk) = θ.
Resolution proofs continue to apply the first-order resolution rule until reaching a contradiction

(i.e. an empty clause).
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5.2.1 FO Resolution Example

Given the two clauses

P (x) ∨Q(x) and ¬Q(y) ∨ P (y) ,

we see that there is a unifier for the complementary literals Q(x) and Q(y):

Unify(Q(x), Q(y)) = {x/y} = θ .

This allows us to apply the resolution rule, which produces the resolvent

Subst(θ, P (x) ∨ P (y)) = P (y) ∨ P (y) = P (y) .

The same idea applies to clauses with more complex terms; for example, the pair of clauses

P (f(f(x))) ∨Q(f(x)) and ¬Q(f(f(Bob)))

have
Unify(Q(f(x)), Q(f(f(Bob)))) = {x/f(Bob)}

and give the resolvent
Subst(θ, P (f(f(x)))) = P (f(f(f(Bob)))) .

5.3 Completeness of Resolution

First-order resolution is a refutation complete inference procedure. This caused a great deal of
excitement when this was discovered, as the simplicity of the single inference rule was a nice match
for fast implementations.

In this setting this means that it will produce a positive answer whenever KB∧¬α is unsatisfiable
(i.e. KB |= α); however, first-order resolution may not produce an answer in general, if KB∧¬α is
satisfiable (i.e. KB does not entail α).

We cannot expect any better, as the first-order entailment problem is semi-decidable.

6 Incompleteness of First-Order Logic

One of the great unsolved questions in mathematics in the early 1900s was whether or not mathe-
matics could be fully mechanized. That is, could we develop mechanical procedures (i.e. algorithms)
that could answer any mathematical question correctly in a finite amount of time. For example, is
there an algorithm that can answer any question about number theory, such as “Is Fermat’s last
theorem true?” or “Is there a largest prime number?”.

One way of addressing this question is via logic. Lets consider number theory as an important
example domain. Any formal statement about natural numbers is either true or false in the standard
model of natural numbers. We will call this model N . The domain of N is the natural numbers,
the functions include at least the successor function, and the relations include at least equality and
¡. Number theorists are interested in proving theorems that uncover interesting properties of the
model N . It is important to reiterate that any statement about natural numbers is either true or
false in this model.
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Suppose that we could write down a first-order theory KB of the natural numbers, such that
for any statement α about numbers we have

KB |= α ⇐⇒ α is true in N .

Given such a KB we can use resolution to correctly answer any query α. Recall, from Section 5.3
that resolution can be used to correctly answer a query alpha when KB |= α, but when α is not
entailed resolution will not necessarily produce an answer. So how can we guarantee that we get
an answer when α is not entailed?

The solution is to run two resolution proofs in parallel, one trying to prove α and the other
trying to prove ¬α. If KB satisfies the above property, then we know that – for any α – either
KB |= α or KB |= ¬α, and thus one of the resolution proofs is guaranteed to terminate in a finite
amount of time, producing the correct answer.

So with the above argument, the question of whether number theory can be mechanized can be
settled by finding a KB with the above property, showing that yes it can be mechanized. One of
the greatest mathematical discoveries in the 20th century was by Kurt Gödel, who gave a negative
answer to this question with his incompleteness theorem.

The incompleteness theorem showed that for any KB sufficiently powerful to represent the basic
axioms of number theory (including a principle of mathematical induction), there is always a formula
α such that,

¬(KB |= α) and ¬(KB |= ¬α)

This important result shows that no sound inference procedure will be able to derive either α or
¬α, yet we know that one of these must be true in N . So, in a precise sense, it is not possible to
write down a logical theory that completely captures the natural numbers—i.e. completely defines
the model N . Rather any such attempt produces a KB that is true in N but also in some other
unintended model N ′ that does not agree with N about all statements. If a formula is true in N
but not in N ′, then it will not be entailed by KB and hence not provable. Adding further axioms
to KB will not solve this problem, there will always be such unintended models.

The details and further consequences of this result can be found in any introductory text-
book on mathematical logic. One of the most interesting consequences is that for any sufficiently
powerful theory KB, it is not possible to prove the consistency of KB using just the axioms of
KB. Intuitively this says that any sufficiently expressive system cannot prove its own consistency,
rather consistency can only be proven by an outside system, which of course cannot prove its own
consistency. . . .
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