
Weighted Logic

Alan Fern

February 8, 2010

1 Problems with Inconsistency and Monotonicity

While logic provides an appealing formalism for knowledge representation and reasoning, it is not
without drawbacks. There are many aspects of human reasoning that are not adequately handled
by pure logic. (Of course there are also many aspects that we would rather avoid capturing.)

For example, suppose a human is told that “all aliens are blue”. Later, however, the human
also learns the fact that “aliens of type Klingon are not blue”. While this new fact is contradictory
to the original statement, a human would have no difficulty resolving the conflict. Most humans
would treat aliens of type Klingon as a special case, and otherwise all other aliens will be believed
to be blue.

Now consider how an automated reasoning system would handle this same situation. Suppose
that the KB already has knowledge that no alien can be both blue and green, i.e.

∀x alien(x)⇒ (blue(x)⇔ ¬green(x))

. We now give the system the formula,

∀x alien(x)⇒ blue(x)

and then give the system the formulas,

∀x klingon(x)⇒ alien(x)
∀x klingon(x) ∧ alien(x)⇒ green(x)

klingon(Orf)

The result is a set of inconsistent formulas, which is very bad news for a logical reasoning systems
as it will now all formulas. The reasoning system has become completely useless with the addition
of a single inconsistent statement.

The above behavior is known as the monotonicity property of logical systems. In particular, we
have that whenever we add formulas to a KB all previously entailed formulas will still be entailed.
That is,

∀KB,φ, α If KB |= α then KB ∧ φ |= α

In other words we have no way of giving a logic-based reasoning system a statement that will make
it stop believing in a fact that is currently entailed. The only way to correct the system is to actually

1

dig into the knowledge base and perform “brain surgery”. In the above example, we change the
knowledge base by replacing the first rule with,

∀x (alien(x) ∧ ¬klingon(x))⇒ blue(x)

but this is not a very elegant solution, as it could lead to very complicated knowledge bases, as we
would need multiple versions of each formula, one for each possible exception. The fundamental
problem above is that logical systems completely break in the face of inconsistency, yet in most
real-world domains they will likely encounter contradictory bits of knowledge.

Intuitively the above problem could be avoided if the system could somehow treat the original
statement about aliens as a rule-of-thumb or default rule. That is, by default we believe an alien
is blue, unless some other bit of knowledge tells us otherwise. However, the semantics of pure
logic do not explicitly allow us to incorporate such knowledge. AI researchers have studied such
dilemmas for over 40 years now, offering many different approaches to dealing with inconsistency.
One formalism is known as non-monotonic reasoning, where defaults are explicitly represented and
reasoned about using non-monotonic rules of inference based on well-defined semantics.

Another approach to dealing with inconsistency is to use probabilistic knowledge representations.
Here there is no notion of logical inconsistency, rather “contradictory” knowledge will interact
to assign probabilities to potential queries. In your introductory AI course you learned about
Bayesian networks, which are one such representation for propositional knowledge. These models
are the analog of propositional logic and have some of the same limitations in expressive power with
respect to representing objects and relations. These models have been extended in various ways to
the first-order, or relational, case and this is a rapidly developing line of research. While we will
not talk about these model in this course, I will likely be giving a lecture in this quarter’s Bayes
Net class on the topic. Further the weighted logic representation that we describe in this class for
handling uncertainty, has immediate extensions to the probabilistic cast, which we will allude to at
the appropriate time.

We now describe a simple approach to extending a logic to handle inconsistency and non-
monotonic inference patterns. The idea is to attach a weight to each logical formulas, which is
interpreted as the “cost” of violating the formula. Below we introduce this idea and discuss basic
approaches to the reasoning and learning problems.

2 Weighted Propositional Logic

We first consider the propositional case. Later we will extend to the first-order case via proposi-
tionalization.

A weighted propositional knowledge base (WPKB) is a set of weighted formulas,

{〈φ1, w1〉, 〈φ2, w2〉, . . . , 〈φn, wn〉}

where each φj is a propositional formula and each weight wj is an integer. We say that a WPKB
is in clausal form if each formula is a single clause.

The weight associated with a formula is interpreted as the cost of violating the formula, or
equivalently the degree of preference for satisfying the formula. In this sense, larger weights should
be associated with formulas that we are more certain of.

Given a propositional model M (i.e. a truth assignment to the propositions) and a WPKB
KB = {〈φi, wi〉}, we define the “weight of a model wrt KB” as the sum of the weights associated

2

with any formula that is satisfied in the model. More formally,

WEIGHT (M,KB) =
∑

i

wi · I[φi true in M]

where I is the indicator function defined such that I[true] = 1 and I[false] = 0. Given a WPKB
we say that a model is a “maximal model” iff there is no other model that achieves a larger weight.
Note that a particular WPKB can have multiple maximal models. (Try to construct some examples
on your own.)

A number of researchers have studied various ways of defining entailment for WPKBs along
with corresponding inference procedures. For example, one approach is to say that KB |= α iff
α is true in all maximal models of KB. In this course, we will not focus on a particular notion
of entailment. Instead, below we will focus on the inference problem of finding a minimum-cost
model, which is useful across a wide array of applications.

3 Weighted Maximum Satisfiability

Given a clausal WPKB the problem of finding a maximal model is often called the “weighted max-
imum satisfiability” problem, which we will abbreviate as MAX-SAT. This problem is a generaliza-
tion of the satisfiability problem, or SAT, which asks for a model that satisfies all of the formulas.
Rather MAX-SAT asks for a model that satisfies a set of formulas of largest possible weight. Thus,
unlike SAT, MAX-SAT always returns a model, even when the clauses are inconsistent with one
another. Consider the following example, where we are given the WPKB,

〈JonIsRepublican⇒ ¬JonIsPacifist, 10〉
〈JonIsQuaker ⇒ JonIsPacifist, 20〉

〈JonIsQuaker, 1000〉
〈JonIsRepublican, 1000〉

The first two weighted clauses state preferences for believing that Jon is a pacifist based on whether
or not he is a republican or quaker. The third and fourth clauses assert facts about Jon. Since the
weight on these clauses is so large compared to the first two, the clauses are forced to be true in any
maximal model. Notice that since Jon cannot be both a pacifist and “not a pacifist”, the clauses
in the WPKB have no satisfying assignment. However, the MAX-SAT solution will find the model
that maximizes the stated preferences,

JonIsRepublican = true

JonIsQuaker = true

JonIsPacifist = true

which has a weight of 2020. Here the WPKB has a stronger preference for believing that quakers
are pacifists, compared to believing that republicans are not pacifists and hence the maximal model
asserts that Jon is a pacifist.

3

This toy example shows the potential usefulness of being able to assert rules-of-thumb such as
the first two clauses, even if they may not always be true, or consistent with one another. Humans
are often able to write down many such rules for a particular domain, and weighted logic provides
a simple formalism for encoding such knowledge. Humans, however, are not so good at assigning
weights to the various formulas, in order to accurately reflect preferences. We will ignore this issue
for now, and come back to it later when we discuss an approach to learning weights from training
data.

4 Solving MAX-SAT

In general MAX-SAT is a hard problem. Notice that any instance of SAT can be encoded as a
MAX-SAT problem (this will be a homework problem), so it is at least NP-Hard. Also MAX-SAT
remains hard, even for special cases where SAT becomes efficiently solvable. For example, SAT
can be solved in polynomial time when the input clauses are all Horn. However, MAX-SAT is still
NP-Hard for Horn theories. This means that in the worst case it is likely impossible to do better
than simply enumerate all possible models and returning the maximal one.

Nevertheless, many algorithms have been developed for exactly and approximately solving MAX-
SAT. (A google search will attest to this.) Here we will review a simple approximate solution algo-
rithm called MaxWalkSat that is based on the WalkSAT algorithm for satisfiability. This algorithm
often works quite well and code is freely available on the web at,

http://www.cs.washington.edu/homes/kautz/walksat/Maxwalksat20.tgz

The algorithm is describe in detail in the following paper,

http://www.cs.washington.edu/homes/kautz/papers/maxsatDIMACSfinal.ps

Here I outline the main steps:

1) The algorithm initializes the search to a random truth assignment.

2) An unsatisfied clause c is selected at random. Note that since the clause is unsatisfied, we
know that each of its literals is unsatisfied by the current model. Hence flipping the truth value of
any proposition appearing in the clause will cause the clause to be satisfied. However, this flip may
cause other clauses to become unsatisfied.

3) With probability p we select a random literal in c and flip the value of its proposition, else
with probability (1-p) we flip the proposition in c that minimizes the weight of clauses that would
become unsatisfied after the flip.

4) Loop back to 2 until either a maximum number of iterations is reached or a weight bound
is exceeded.

In step three, the probability p is known as the “noise parameter” and is simply the probabil-
ity that a random non-greedy step is selected on each search step. The idea of occasionally taking
non-greedy steps is intended to help prevent the algorithm from staying in local maxima. In ad-

4

dition, the MaxWalkSat algorithm allows for a specified number of random restarts, which further
helps to deal with local maxima.

5 Converting to Clausal Form

MAX-SAT is typically formulated for weighted clausal theories rather than for arbitrary WPKBs.
In particular, most software and algorithms for MAX-SAT only accept clausal theories as input.
Thus, it is important to know how to convert an arbitrary WPKB to clausal form.

Our goal here is to take as input a WPKB KB and return a WPKB CLAUSAL(KB) that is in
clausal form and whose maximal models correspond to maximal models of KB. A naive approach
to computing CLAUSAL(KB) is to convert each formula in KB to a logically equivalent set of
clauses and then assign the weight of each clause to be the weight of the original formula. It turns
out that this conversion can produce a very different WPKB with very different maximal models.
Make sure that you understand why.

It turns out that there is a relatively simple procedure for computing CLAUSAL(KB) assuming
that we are willing to introduce new dummy propositions. GivenKB = {〈φ1, w1〉, 〈φ2, w2〉, . . . , 〈φn, wn〉},
we introduce a new propositional symbol Pi for each φi in KB. Also let w+ be 1 plus the sum of
all positive weights in KB and CNF (φ) denote a CNF formula that is logically equivalent to φ.
We construct CLAUSAL(KB) by adding for each φi the following weighted clauses,

〈Pi, wi〉, 〈c1, w+〉, 〈c2, w+〉, . . . , 〈cm, w+〉

where {c1, ..., cm} is the set of clauses in CNF (Pi ⇔ φi). That is we add the proposition Pi with
the weight of wi, and then add all of the clauses in the CNF of the double implication Pi ⇔ φi, with
weight w+. This conversion provides a correspondence between maximal models of the resulting
WPKB and the original. In particular, let M be any maximal model of CLAUSAL(KB), and let
M ′ be identical to M only it does not include truth assignments for P1, . . . , Pn. We have then that
M ′ is a maximal model of KB. Likewise for any maximal model M of KB, there is a corresponding
maximal model of CLAUSAL(KB) that is identical to M ignoring P1, . . . , Pn.

You will be asked to give a proof of the above correspondence in your homework. A rough
sketch is as follows, for which you will need to fill in the details. First, note that the w+ weights
act as hard constraints, forcing the each formula Pi ⇔ φi to be satisfied in any maximal model of
CLAUSAL(KB). This means that Pi will be true in a maximal model of CLAUSAL(KB) exactly
when φi is also satisfied in the model. This can be used to yield the desired relationship between
KB and CLAUSAL(KB).

One interesting aspect of this conversion is that it produces a WPKB such that the only non-
hard constraints are those involving unit propositions. An unfortunate aspect of this conversion is
that it can dramatically increase the number of propositional symbols, as it adds a new symbol for
each formula in the original WPKB.

6 Weight Learning

As mentioned above, humans are often quite good at providing rules of thumb in the form of
logical rules or formulas. But they are not so good at assigning appropriate weights to formulas,
representing the relative preferences. Here we will describe an approach to learning appropriate
weights given a set of formulas and training examples.

5

In order to define our learning task we will first introduce the concept of “maximal model
completion”. Let KB be a WPKB over the set of propositions {p1, . . . , pn}, and P ′ be a partial
truth assignment, which assigns a truth value to a subset of the propositions. A “maximal model
completion” relative to KB and P ′ is a model that is consistent with P ′ and has maximum weight
compared to all other such models. We will denote the maximal model completion as MAX −
SAT (KB|P ′). When P ′ is empty then the result is simply a MAX-SAT solution. If there are
multiple maximal model completions, then we assume that MAX − SAT (KB|P ′) returns one of
them according to a lexicographical ordering. As an example, consider the KB

〈p⇒ q, 10〉
〈u⇒ ¬q, 5〉

and the partial truth assignment,

P ′ = {p = true, u = true}

In this case, we have

MAX-SAT(KB|P ′) = {p = true, u = true, q = true}

which has a weight of 10. Note, that for this example MAX-SAT solutions have a weight of 15,
e.g. the model where all propositions are false. This shows that maximal model completions can
have lower weight than a MAX-SAT solution, which makes sense since a maximal model completion
must satisfy more constraints.

Note that it is straightforward to use a MAX-SAT solver to compute MAX-SAT(KB|P ′). One
can simply augment KB with literals that have very large weights (essentially infinite) that force
the truth values specified in P ′. Using the above example, we could form a new WPKB KB′,

〈p⇒ q, 10〉
〈u⇒ ¬q, 5〉

〈p, 16〉
〈u, 16〉

for which all MAX-SAT solutions must set p = true and u = true and hence will correspond to
possible solutions to MAX-SAT(KB|P ′). (Make sure you understand why this works.)

We now define our learning problem formulation. We will divide the set of propositions into an
input set X = {x1, . . . , xn} and an output set Y = {y1, . . . , ym}. Intuitively, we would like to learn
a set of weighted formulas KB over X and Y such that given a truth assignment X ′ for the input
propositions, MAX-SAT(KB,X ′) assigns the “correct” values to the output propositions.

As an example, consider the problem of selecting agent actions in a multi-agent real-time strategy
(RTS) game. Here, X might correspond to a set of propositions that describe the current state
of the game (giving e.g. the position of all agents, the health, etc.), and Y might correspond to a
set of propositions that assign actions to each agent (e.g. “agent1 should attack enemy1”). Given
an assignment X ′ to the state propositions, we would like a WPKB KB such MAX-SAT(KB,X ′)
returns an assignment Y ′ to the set of action propositions that lead to good performance.

6

The input to our learning problem is a set of propositional formulas {phi1, . . . , phiv} over X
and Y , and a set of training examples, {〈X1, Y1〉, . . . , 〈XN , YN 〉} where each Xi is an input with
desired output Yi. Our goal is to learn a set of weights {w1, ..., wv} giving us a WPKB KB =
{〈phi1, w1〉, . . . , 〈phiv, wv〉} such that, for each training example, MAX-SAT(KB,Xi) is consistent
with Yi. In our RTS example, we might obtain the 〈Xi, Yi〉 pairs by observing a human expert
play the game, or alternatively via “reinforcement learning” (reinforcement learning is an area of
AI taught in CS533).

To learn weights we can use the generalized perceptron algorithm (Collins, 2002). Below we will
introduce a feature function fi for each formula φi. The value of fi given a model (X,Y) is,

fi (X,Y) = 1, if phii is true in (X,Y)
0, otherwise

You should verify that WEIGHT ((X,Y),KB) =
∑

i wi ∗ fi(X,Y).
The generalized perceptron algorithm iterates through training examples 〈Xi, Yi〉 and adjusts

weights until either all training examples are correctly predicted, or a maximum number of iterations
is met. For each example, the algorithm computes the

〈Xi, Y
′〉 = MAX-SAT(KB,Xi)

using the current weights to define KB. Here Y ′ is the current prediction that the KB makes for
the input Xi. If the prediction is correct, then we do not change the weights. Otherwise we change
the weights so that the correct model 〈Xi, Yi〉 gets more weight and the incorrect model 〈Xi, Y

′〉
gets less weight. By repeating this process the hope is that the correct models will eventually have
higher weight than all other alternatives, making 〈Xi, Yi〉 = MAX-SAT(KB,Xi) as desired. The
pseudo-code is given below:

for i = 1 to v do
wi = 0

end for
repeat

for i = 1 to n do
KB = {〈φ1, w1〉, 〈φ2, w2〉, . . . , 〈φn, wn〉}
〈Xi, Y

′〉 = MAX-SAT(KB|Xi) {compute the best Y
′

according to the current weights}
if Y ′ 6= Yi then

for j = 1 to v do
wj = wj + α · [fj(Xi, Yi)− fj(Xi, Y

′)]
end for

end if
end for

until some number of iterations

The critical step is the weight update,

wj = wj + α · [fj(Xi, Yi)− fj(Xi, Y
′)]

that occurs after an incorrect prediction. If the formula φi is true in the correct model (Xi, Yi)
but false in the incorrect model (Xi, Y

′) then the update will increase the weight for φi which will

7

increase the weight on the correct model as desired. If φi is false in the correct model and true
in the incorrect model then we decrease the weight for φi which will decrease the weight on the
incorrect model as desired. Finally if φi is the same in both the incorrect and correct model we do
not adjust the weight. The single parameter α is the “learning rate”. Often α is set to 1.

While it is not obvious, it can be shown that if there exists a set of weights such that 〈Xi, Yi〉 =
MAX-SAT(KB,Xi) for all training examples, then the above algorithm with α = 1 will eventually
find such a set of weights.

The primary computational bottleneck of the above algorithm is the MAX-SAT calculation for
each training example in each iteration. As we noted earlier, MAX-SAT is computationally hard
in the worst case. One solution to dealing with this problem is to use fast approximate MAX-SAT
solvers.

The above formulation assumed that we were given an initial set of formulas with no weights.
Clearly it would be desirable to develop algorithms that can also induce new formulas. There are
a number of heuristic approaches that could be tried for this purpose, though we will not discuss
them in this course.

As an important side note, the above algorithm is straightforward to generalize to any type of
weighted constraints. That is, instead of using propositional formulas as constraints on models,
we can consider arbitrary constraint languages on arbitrary structures. For any such language we
can attach weights to those constraints and provide an algorithm for the corresponding MAX-SAT
problem—i.e. an algorithm that finds a structure that maximizes the weight of satisfied constraints.
With the MAX-SAT solver in hand, the above algorithm can be applied directly.

7 Weighted First-Order Logic: A Template-based Approach

You have now seen approaches to inference and learning for propositional weighted logic. The key
idea was to use WPKBs to assign a weights to models that represent a preference relationship over
models. Here we would like to extend that idea to first-order models. This will provide us with the
ability to compactly specify preference knowledge that generalizes over objects.

Let begin with an example of what we might like to represent, but can’t easily represent with
WPKBs. Recall our “pacifist example” from above. In that case we used the propositions Jon-
IsPacifist, JonIsQuaker, and JonIsRepublican. If we wanted to have the same rules of thumb for
another individual, e.g. Nixon, we would need to explicitly add three additional propositions, and
add the corresponding propositional formulas. Rather, it would be more convenient if we could
simply write down weighted formula template that could be instantiated for any individual. For
example,

〈Republican(x)⇒ ¬Pacifist(x), 10〉
〈Quaker(x)⇒ Pacifist(x), 20〉

are weighted formula templates where x is a free variable that serves as the template parameter.
We can instantiate these templates for any number of individuals, yielding a set of ground or
propositional weighted formulas. For example, if we are interested in Jon and Nixon, we would get

8

the WPKB,

〈Republican(x)⇒ ¬Pacifist(x), 10〉
〈Quaker(x)⇒ Pacifist(x), 20〉

〈Republican(Nixon)⇒ ¬Pacifist(Nixon), 10〉
〈Quaker(Nixon)⇒ Pacifist(Nixon), 20〉

which can be used to reason about Jon and Nixon, e.g. via a MAX-SAT solver. Intuitively the
weight associated with each template can be viewed as a cost that must be paid for each instantiation
of the template that is not satisfied. Thus, if a particular model violates both ground instances of
the first template (one for Jon and one for Nixon) then the weight of that model will be 20 = 2×10
less than if the instances were satisfied.

7.1 Fixed-Domain Semantics

Before we define the syntax of weighted templates and how they are used to assign weights to
first-order models, we first introduce the idea of “fixed-domain semantics”, which will serve as our
formalism for upgrading from propositional to first-order models.

Recall that for a given set of propositions there are a finite number of propositional models.
This made it straightforward to define the notion of model weight and maximal model. The general
first-order case is not so simple as there are an infinite number of first-order models, some of which
have an infinite number of domain objects. This makes defining the weight of a model with respect
to a set of weighted templates problematic. For example, we must worry about the possibility of
models with infinite weight and the possibility of non-existence of maximal models.

We will avoid the above difficulties by stepping back from the full generality of first-order logic
and restrict our attention to finite sets of objects. We will refer to this restriction as the “finite-
domain semantics”. The idea is that at any moment in time we will only be concerned with a finite
set of “objects of interest” and will only consider models over those objects. Since there are only
a finite number of such models (assuming a fixed set of predicates), we will see below that it is
relatively straightforward to define the semantics.

Indeed, the finite-domain semantics typically correspond well with application goals. For ex-
ample, in the RTS domain described above, at any point in the game there will only be a finite
number of objects (e.g. friendly/enemy units, buildings, gold mines, etc). Our system need only
be concerned with models involving those objects. e.g. to select the “MAX-SAT” actions for the
friendly troops. However, over time the set of game objects will change and we would like our
knowledge base to naturally generalize to these new situations. The ability to generalize in this
way is the primary advantage of using a first-order rather than propositional formalism.

More formally, given a finite set of constants C (representing our objects) and a set of pred-
icate symbols P , we define MODELS(P,C) as the set of all first-order models with domain
C (i.e. an object for every constant) involving only predicates in P . Note that we can view
MODELS(P,C) as specifying a set of propositional models where the propositions correspond to
all possible ground atoms constructed from P and C. For example, consider C = {Jon,Nixon}
and P = {Republican, Pacifist,Quaker}. Here each model in MODELS(P,C) will specify a truth
assignment to the following propositions,

{Republican(Jon), Republican(Nixon), Pacifist(Jon), Pacifist(Nixon), Quaker(Jon), Quaker(Nixon)}

9

there are a total of 26 such models. In general, there will be on the order of |C|v propositions in
MODELS(P,C) where v is the maximum arity of any predicate in P . This means that in general
MODELS(P,C) will contain on the order of 2|C|

v

models.
The idea of defining semantics relative to a given finite domain of objects is quite common. For

example, as we will see later in the course, this idea is the essence behind most work on probabilistic
relational modeling.

7.2 Weighted Formula Templates

A “formula template” is simply a first-order logic formula with free variables. Free variables in a
formula template should not be treated as universally quantified, as in first-order logic. Rather, we
will think of the variables as template parameters. We will use these parameters in order to compile
a template to a set of ground formulas relative to a set of constants. Given a set of constants C and
a formula template T we define the “compilation of T relative to C”, denoted by COMPILE(T |C),
as the set of ground formulas that results from the following steps:

Let C = c1, ..., cn

1) For each universally quantified subformula (∀x φ(x)) in T replace it by the conjunction (φ(c1)∧
φ(c2) ∧ · · · ∧ φ(cn)). This yields a new formula template T ′.

2) Starting from T ′, replace each existentially quantified subformula (∃x φ(x)) by the disjunction
(φ(c1) ∨ φ(c2) ∨ · · · ∨ φ(cn)). This yields a new formula template T ′′.

3) Return the set of all ground formulas that are a result of any way of substituting the free vari-
ables of T ′′ with constants from C. If there are m free variables in T ′′, then we will return |C|m
formulas.

Essentially the above procedure assumes that the only objects in the world are those that will be
denoted by the constants. The procedure then replaces universal quantification by explicit conjunc-
tions, and existential quantification with explicit disjunctions. Consider the following example.

C = {A,B}
T = [∃z (R(x, z) ∧R(z, y))]⇒ (∀w Q(x, y, w))

where T is a formula template with free variables x and y (note that z is existentially quantified
and hence is not free). The steps for computing COMPILE(S|C) are as follows:

1) T ′ = [∃z (R(x, z) ∧R(z, y))]⇒ [Q(x, y,A) ∧Q(x, y,B)]

2) T ′′ = [(R(x,A) ∧R(A, y)) ∨ (R(x,B) ∧R(B, y)]⇒ [Q(x, y,A) ∧Q(x, y,B)]

3) { SUBST (S′′, x/A, y/A)
SUBST (S′′, x/A, y/B)
SUBST (S′′, x/B, y/A)
SUBST (S′′, x/B, y/B) }

10

So we see that COMPILE(T |C) results in a set of 4 ground formulas. Recall that we can think of
first-order ground formulas as equivalent to propositional formulas where the propositions are the
ones in MODELS(P,C) where P is the set of predicates in T . For example, the propositions in the
above formulas include the following set of 22 + 32 = 13 ground atoms.

{R(A,A), R(A,B), R(B,A), R(B,B), Q(A,A,A), Q(A,A,B), Q(A,B,A), . . . , Q(B,B,B)}

Now that we have defined formula templates and compilation, it is straightforward to define
weighted formula templates. A “weighted formula template” is simply a pair of a formula tem-
plate and an integer weight. Given a weighted formula template 〈T,w〉 and a set of constants C,
we define compilation as follows,

COMPILE(< T,w >,C) = {〈φ,w〉|φ ∈ COMPILE(T,C)}

That is, COMPILE(〈T,w〉, C) is a WPKB whose formulas are those in COMPILE(S,C) and all
have the same weight w.

A “weighted template knowledge base” (WTKB) KB is a set of weighted formula templates.
The compilation of a WTKB KB relative to C is the union of weighted formulas that result from
compiling any template in KB relative to C. For example, consider the following WTKB KB,

〈Republican(x)⇒ ¬Pacifist(x), 10〉
〈Quaker(x)⇒ Pacifist(x), 20〉

〈(Friend(x, y) ∧Quaker(x))⇒ Quaker(y), 30〉

〈Quaker(Jon), 1000〉
〈Republican(Jon), 1000〉

〈Republican(Nixon), 1000〉
〈Friend(Nixon, Jon), 1000〉
〈Friend(Jon,Nixon), 1000〉

and constants C = {Jon,Nixon}. This is similar to our previous pacifist examples, only now we
have a new preference that the friend of a quaker is a quaker. The compilation of KB denoted by

11

COMPILE(KB,C) yields the following WPKB.

〈Republican(Jon)⇒ ¬Pacifist(Jon), 10〉
〈Republican(Nixon)⇒ ¬Pacifist(Nixon), 10〉

〈Quaker(Jon)⇒ Pacifist(Jon), 20〉
〈Quaker(Nixon)⇒ Pacifist(Nixon), 20〉

〈(Friend(Jon,Nixon) ∧Quaker(Jon))⇒ Quaker(Nixon), 30〉
〈(Friend(Jon, Jon) ∧Quaker(Jon))⇒ Quaker(Jon), 30〉

〈(Friend(Nixon, Jon) ∧Quaker(Nixon))⇒ Quaker(Jon), 30〉
〈(Friend(Nixon,Nixon) ∧Quaker(Nixon))⇒ Quaker(Nixon), 30〉

〈Quaker(Jon), 1000〉
〈Republican(Jon), 1000〉

〈Republican(Nixon), 1000〉
〈Friend(Nixon, Jon), 1000〉
〈Friend(Jon,Nixon), 1000〉

We can now use any propositional MAX-SAT solver to reason about the individuals in C. In general,
given a WPKB KB and a set of constants C we define the “maximal models relative to C” to be
the maximal models of COMPILE(KB,C). This model is guaranteed to be in MODELS(P,C) as
intended under our finite-domain semantics. It is conceptually straightforward to compute such a
maximal model by creating COMPILE(KB,C) and running a propositional MAX-SAT solver.

Continuing with the above example then, we see that a maximal model or MAX-SAT solution
of KB relative to C is,

Friend(Jon,Nixon) = true

Friend(Nixon, Jon) = false

Friend(Jon, Jon) = false

Friend(Nixon,Nixon) = false

Republican(Jon) = true

Quaker(Jon) = true

Pacifist(Jon) = true

Republican(Nixon) = true

Quaker(Nixon) = true

Pacifist(Nixon) = true

where in the above solution, Friend(Jon, Jon) and Friend(Nixon,Nixon) could both be true too.
This agrees with the preferences indicated in the above rules. If Nixon was not a friend of Jon

then the MAX-SAT solution would conclude that Nixon was not a pacifist since he is a republican.

12

But the fact that Jon is a friend of Nixon causes the MAX-SAT solution to conclude that Nixon
is a quaker and hence also a pacifist. Note that if the weight on rule 3 were less than that on rule
1, then the MAX-SAT would conclude that Nixon was not a quaker and also not a pacifist. (You
should verify this for yourself.)

We see that the use of weighted templates can allow for knowledge to be expressed very com-
pactly. However, one practical concern with the general compilation approach is that it can result
in very large sets of weighted ground formulas. In general, the number of ground formulas will
be on the order of |C|v, where v is the maximum number of free variables in any template. In
practice, if an application is time critical, we can limit the number of free variables to help keep
the number of ground formulas under control. There are also various “partial compilation” tricks
that can sometimes be used that avoid creating the entire WPKB for COMPILE(KB|C) while
guaranteeing correct inference. We will not discuss such approaches in this course.

8 Learning the Weights of First-Order Templates

Suppose now that we are given a set of first-order templates, along with training data. We now
describe an approach to learning the weights. It turns out that we can use an algorithm that is
almost identical to the propositional case.

We define the learning problem as follows. The input is:

1) A set of first-order formula templates {φ1, . . . , φv} over a set of input predicates Px and output
predicates Py.

2) A set of training examples {〈C1, X1, Y1〉, . . . , 〈CN , XN , YN 〉} where each Ci is a set of constants,
and 〈Xi, Yi〉 is a model in MODELS(Ci, Px ∪Py). Here we think of Xi as listing truth assignments
to atoms involving input predicates, and Yi listing truth assignments for atoms involving output
predicates.

The output is a set of weights {w1, . . . , wv} giving a WTKB KB = {〈φ1, w1〉, . . . , 〈φv, wv〉}
such that, for each training example, MAX-SAT(KBi|Xi) is consistent with Yi, where KBi is the
WPKB COMPILE(KB|Ci). That is, our goal is to find a set of weights such that when the WTKB
is compiled relative to Ci for each example we are able to compute the target Yi facts using MAX-
SAT. Note that the set of constants Ci need not be the same across examples. In our RTS example,
this means that the training data can come from different situations involving a different sets of
game entities.

The main difference between the learning problem here versus the propositional case is that here
the Xi and Yi vary in size across the examples. Rather in the propositional setting the Xi and Yi

were truth assignments over a fixed set of propositions. Nevertheless we can adapt the generalized
perceptron algorithm to our new setting in a straightforward way.

To describe the learning algorithm we will redefine our previous notion of feature function. The
feature function fi for formula template φi assigns a positive integer to any given example (C,X, Y)
as follows:

fi(C,X, Y) = |{φ′truein(X,Y)|φ′ ∈ COMPILE(φi|C)}|

13

That is, fi(C,X, Y) is the count of how many formulas in COMPILE(φi|C) are true in the model
(X,Y). Thus fi will have a high value if the template φi is typically true in the example, and will
have a small value if the template is frequently violated in the model. This definition of feature
function has the property that,

WEIGHT ((X,Y), COMPILE(KB|C)) =
∑

i

wi ∗ fi(C,X, Y)

that is the weight of the model (X,Y) with respect to the compiled knowledge base is given by the
weighted sum of feature functions. Just as in the propositional case, we can now use the perceptron
algorithm to adjust the weights in a direction that increases the weight of the target models and
decreases the weight of incorrect models. The pseudo-code is below:

for i = 1 to v do
wi = 0

end for
repeat

for i = 1 to n do
KB = {〈φ1, w1〉, 〈φ2, w2〉, . . . , 〈φn, wn〉}
KB′ = COMPILE(KB|Ci) {WPKB relative to Ci}
〈Xi, Y

′〉 = MAX-SAT(KB′|Xi) {compute the best Y
′

according to the current weights}
if Y ′ 6= Yi then

for j = 1 to v do
wj = wj + α · [fj(Ci, Xi, Yi)− fj(Ci, Xi, Y

′)]
end for

end if
end for

until some number of iterations

Again the critical step here is the weight update,

wj = wj + α · [fj(Ci, Xi, Yi)− fj(Ci, Xi, Y
′)]

that occurs after an incorrect prediction. This update makes intuitive sense. If φi is satisfied
more frequently in the correct target Yi than in the incorrect prediction Y ′, then the weights are
increased. Otherwise if φi is violated more often in Yi than in Y ′, then the weights are decreased.

Despite the simplicity of this update rule, we again have the theoretical guarantee that the
algorithm will converge to weights that correctly classify all of the training data if such weights
exists.

Again here we have assumed that we are given formula templates. One can also consider learning
templates based on the training data. This is akin to the structure learning problem in graphical
models, or feature discovery in more traditional machine learning. FOIL-like techniques have been
used for this purpose with good results.

14

