Markov Decision Processes
Finite Horizon Problems

Alan Fern *

* Based in part on slides by Craig Boutilier and Daniel Weld
Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model

Goal
maximize expected reward over lifetime

Probabilistic state transition (depends on action)

Action from finite set

World State
Example MDP

State describes all known info about cards

Action are the different legal card movements

Goal

win the game or play max # of cards
Markov Decision Processes

- An MDP has four components: S, A, R, T:
 - finite state set S (|S| = n)
 - finite action set A (|A| = m)
 - transition function T(s,a,s’) = Pr(s’ | s,a)
 - Probability of going to state s’ after taking action a in state s
 - How many parameters does it take to represent?
 \[m \cdot n \cdot (n - 1) = O(mn^2) \]
 - bounded, real-valued reward function R(s)
 - Immediate reward we get for being in state s
 - Roughly speaking the objective is to select actions in order to maximize total reward
 - For example in a goal-based domain R(s) may equal 1 for reaching goal states and 0 otherwise (or -1 reward for non-goal states)
Graphical View of MDP
Assumptions

- **First-Order Markovian dynamics** (history independence)
 - $\Pr(S_{t+1}|A_t, S_t, A_{t-1}, S_{t-1}, \ldots, S_0) = \Pr(S_{t+1}|A_t, S_t)$
 - Next state only depends on current state and current action

- **State-Dependent Reward**
 - $R_t = R(S_t)$
 - Reward is a deterministic function of current state and action

- **Stationary dynamics**
 - $\Pr(S_{t+1}|A_t, S_t) = \Pr(S_{k+1}|A_k, S_k)$ for all t, k
 - The world dynamics and reward function do not depend on absolute time

- **Full observability**
 - Though we can’t predict exactly which state we will reach when we execute an action, after the action is executed, we know the new state
Define an MDP that represents the game of Tetris.
What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: ????

- Should the solution to an MDP be just a sequence of actions such as \((a_1,a_2,a_3, \ldots)\) ?
 - Consider a single player card game like Blackjack/Solitaire.

- No! In general an action sequence is not sufficient
 - Actions have stochastic effects, so the state we end up in is uncertain
 - This means that we might end up in states where the remainder of the action sequence doesn’t apply or is a bad choice
 - A solution should tell us what the best action is for any possible situation/state that might arise
Policies (“plans” for MDPs)

• A solution to an MDP is a policy
 ▲ Two types of policies: nonstationary and stationary

• Nonstationary policies are used when we are given a finite planning horizon H
 ▲ I.e. we are told how many actions we will be allowed to take

• Nonstationary policies are functions from states and times to actions
 ▲ $\pi : S \times T \rightarrow A$, where T is the non-negative integers
 ▲ $\pi(s,t)$ tells us what action to take at state s when there are t stages-to-go (note that we are using the convention that t represents stages/decisions to go, rather than the time step)
Policies (“plans” for MDPs)

- What if we want to continue taking actions indefinitely?
 - Use stationary policies

- A Stationary policy is a mapping from states to actions
 - \(\pi: S \rightarrow A \)
 - \(\pi(s) \) is action to do at state \(s \) (regardless of time)
 - specifies a continuously reactive controller

- Note that both nonstationary and stationary policies assume or have these properties:
 - full observability of the state
 - history-independence
 - deterministic action choice
What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)
Output: a policy such that ????

- We don’t want to output just any policy
- We want to output a “good” policy
- One that accumulates lots of reward
Value of a Policy

• How good is a policy π?
 ▲ How do we measure reward “accumulated” by π?

• **Value function** $V: S \rightarrow \mathbb{R}$ associates value with each state (or each state and time for non-stationary π)

• $V_\pi(s)$ denotes value of policy at state s
 ▲ Depends on immediate reward, but also what you achieve subsequently by following π
 ▲ An **optimal policy** is one that is no worse than any other policy at any state

• The goal of MDP planning is to compute an optimal policy
What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S, A, R, T)

Output: a policy that achieves an “optimal value”

- This depends on how we define the value of a policy
- There are several choices and the solution algorithms depend on the choice
- We will consider two common choices
 - Finite-Horizon Value
 - Infinite Horizon Discounted Value
Finite-Horizon Value Functions

- We first consider maximizing expected total reward over a finite horizon
- Assumes the agent has \(H \) time steps to live
- To act optimally, should the agent use a stationary or non-stationary policy?
 - I.e. Should the action it takes depend on absolute time?
- Put another way:
 - I.e. If you had only one week to live would you act the same way as if you had fifty years to live?
Finite Horizon Problems

- Value (utility) depends on stage-to-go
 - hence use a nonstationary policy

- $V_{\pi}^k(s)$ is k-stage-to-go value function for π
 - expected total reward for executing π starting in s for k time steps

\[
V_{\pi}^k(s) = E \left[\sum_{t=0}^{k} R^t \mid \pi, s \right]
\]

\[
= E \left[\sum_{t=0}^{k} R(s^t) \mid a^t = \pi(s^t, k-t), s^0 = s \right]
\]

- Here R^t and s^t are random variables denoting the reward received and state at time-step t when starting in s
 - These are random variables since the world is stochastic
Computational Problems

• There are two problems that we will be interested in solving

• Policy evaluation:
 ▲ Given an MDP and a nonstationary policy π
 ▲ Compute finite-horizon value function $V^k_{\pi}(s)$ for any k

• Policy optimization:
 ▲ Given an MDP and a horizon H
 ▲ Compute the optimal finite-horizon policy
 ▲ We will see this is equivalent to computing optimal value function

• How many finite horizon policies are there?
 ▲ $|A|^{H_n}$
 ▲ So can’t just enumerate policies for efficient optimization
Finite-Horizon Policy Evaluation

- Can use dynamic programming to compute $V^k_\pi(s)$
 - Markov property is critical for this

$V^0_\pi(s) = R(s), \quad \forall s \quad (k=0)$

$V^k_\pi(s) = R(s) + \sum_{s'} T(s, \pi(s, k), s') \cdot V^{k-1}_\pi(s'), \quad \forall s \quad (k>0)$

- Immediate reward
- Expected future payoff with $k-1$ stages to go

What is total time complexity?
\[O(Hn^2) \]
Policy Optimization: Bellman Backups

How can we compute the optimal $V^{t+1}(s)$ given optimal V^t?

$V^{t+1}(s) = R(s) + \max \{ 0.7 V^t(s1) + 0.3 V^t(s4), 0.4 V^t(s2) + 0.6 V^t(s3) \}$
Value Iteration: Finite Horizon Case

- Markov property allows exploitation of DP principle for optimal policy construction
 - no need to enumerate $|A|^Hn$ possible policies

- Value Iteration

\[
V^0(s) = R(s), \quad \forall s
\]

\[
V^k(s) = R(s) + \max_a \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')
\]

\[
\pi^*(s, k) = \arg \max_a \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')
\]

V^k is optimal k-stage-to-go value function

$\Pi^*(s, k)$ is optimal k-stage-to-go policy
Value Iteration

\[V^1(s4) = R(s4) + \max \{ 0.7 \, V^0(s1) + 0.3 \, V^0(s4), 0.4 \, V^0(s2) + 0.6 \, V^0(s3) \} \]
Value Iteration

\[\Pi^* (s_4, t) = \max \{ \text{red}, \text{yellow} \} \]
Value Iteration: Complexity

• Note how DP is used
 ▲ optimal soln to k-1 stage problem can be used without modification as part of optimal soln to k-stage problem

• What is the computational complexity?
 ▲ H iterations
 ▲ At each iteration, each of n states, computes expectation for m actions
 ▲ Each expectation takes $O(n)$ time

• Total time complexity: $O(Hmn^2)$
 ▲ Polynomial in number of states. Is this good?
Summary: Finite Horizon

• Resulting policy is optimal

\[V_{\pi^*}^k(s) \geq V_{\pi}^k(s), \quad \forall \pi, s, k \]

\[\text{^ convince yourself of this (use induction on } k \text{)} \]

• Note: optimal value function is unique, but optimal policy is not

\[\text{^ Why not?} \]

\[\text{^ Many policies can have same value (there can be ties among actions during Bellman backups).} \]