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GraphPlan 
http://www.cs.cmu.edu/~avrim/graphplan.html 

 Many planning systems use ideas from Graphplan: 

 IPP, STAN, SGP, Blackbox, Medic 

 History 

 Before GraphPlan appeared in 1995, most planning researchers were 

working under the framework of “plan-space search” (we will not cover 

this topic) 

 GraphPlan outperformed those prior planners by orders of magnitude 

 GraphPlan started researchers thinking about fundamentally different 

frameworks 

 Recent planning algorithms run much faster than GraphPlan 

 However, many have been influenced by GraphPlan 
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Big Picture 

 A big source of inefficiency in search algorithms is the large 
branching factor 

 GraphPlan reduces the branching factor by searching in a  
special data structure 

 

 Phase 1 – Create a Planning Graph   
 built from initial state 

 contains actions and propositions that are possibly reachable from 
initial state 

 does not include unreachable actions or propositions  

 Phase 2 - Solution Extraction 

Backward search for the solution in the planning graph 

 backward from goal 
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Layered Plans 

 Graphplan searches for layered plans (often called parallel plans) 

 

 A layered plan is a sequence of sets of actions 

 actions in the same set must be compatible 

 a1 and a2 are compatible iff  a1 does not delete preconditions or 

positive effects of a2 (and vice versa)  

 all sequential orderings of compatible actions gives same result 

? 

D 
A 
B 

C D 
A 
B 

C 

move(A,B,TABLE) 

move(C,D,TABLE) 

move(B,TABLE,A) 

move(D,TABLE,C) 
; 

Layered Plan: (a two layer plan) 
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Executing a Layered Plans 

A set of actions is applicable in a state if all the 

actions are applicable.  

Executing an applicable set of actions yields a new 

state that results from executing each individual 

action (order does not matter) 

D 
A 
B 

C 
move(A,B,TABLE) 

move(C,D,TABLE) 
move(B,TABLE,A) 

move(D,TABLE,C) 

D 
A 
B 

C D A B C 
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Planning Graph 

 A planning graph has a sequence of levels that 

correspond to time-steps in the plan: 

 Each level contains a set of literals and a set of actions 

 Literals are those that could possibly be true at the time step 

 Actions are those that their preconditions could be satisfied 

at the time step. 

 Idea: construct superset of literals that could be 

possibly achieved after an n-level layered plan 

 Gives a compact (but approximate) representation of states 

that are reachable by n level plans 

A literal is just a positive or negative propositon 
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Planning Graph 

… 

… 

… 

s0 sn 

… 

… 

… 

an Sn+1 

propositions 

actions 

state-level 0:  

propositions true  

in s0 

state-level n: literals that 

may possibly be true after 

some n level plan 

action-level n: actions that 

may possibly be applicable 

after some n level plan 
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Planning Graph 

… 

… 

… 

… 

… 

… 

propositions 

actions 

 maintenance action (persistence actions) 

 represents what happens if no action affects the literal 

 include action with precondition c and effect c, for each literal c 



9 

Graph expansion 

 Initial proposition layer 
 Just the propositions in the initial state 

 Action layer n 
 If all of an action’s preconditions are in proposition layer n, 

then add action to layer n 

 Proposition layer n+1 
 For each action at layer n (including persistence actions) 

 Add all its effects (both positive and negative) at layer n+1 

    (Also allow propositions at layer n to persist to n+1) 

 Propagate mutex information  
(we’ll talk about this in a moment) 
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Example  

holding(A) 

clear(B) 

holding(A) 

~holding(A) 

 clear(B) 

on(A,B) 

handempty 

 ~clear(B) 

stack(A,B) 

stack(A,B) 

 precondition:   holding(A), clear(B) 

 effect:   ~holding(A), ~clear(B), on(A,B),  clear(B),  handempty 

s0 a0 s1 
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Example  

holding(A) 

clear(B) 

holding(A) 

~holding(A) 

 clear(B) 

on(A,B) 

handempty 

 ~clear(B) 

stack(A,B) 

stack(A,B) 

 precondition:   holding(A), clear(B) 

 effect:   ~holding(A), ~clear(B), on(A,B),  clear(B),  handempty 

s0 a0 s1 

Notice that not all literals in s1 can be made true simultaneously after 1 level: 

   e.g. holding(A), ~holding(A)   and   on(A,B), clear(B) 
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Mutual Exclusion (Mutex) 

Mutex between pairs of actions at layer n means 

  no valid plan could contain both actions at layer n 

E.g., stack(a,b), unstack(a,b) 

Mutex between pairs of literals at layer n means 

  no valid plan could produce both at layer n 

  E.g., clear(a), ~clear(a)  

          on(a,b), clear(b)  

  GraphPlan checks pairs only  

mutex relationships can help rule out possibilities 

during search in phase 2 of Graphplan 
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Action Mutex: condition 1 

Inconsistent effects 
 an effect of one negates an effect of the 

other 

 

E.g., stack(a,b) & unstack(a,b) 

 add handempty        delete handempty 
          (add ~handempty) 
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Action Mutex: condition 2 

Interference :  
 one deletes a precondition of the other 

 

E.g., stack(a,b) & putdown(a) 

 deletes holdindg(a)      needs holding(a)  
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Action Mutex: condition 3 

Competing needs:  
 they have mutually exclusive preconditions 

 Their preconditions can’t be true at the same 

time 
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Literal Mutex: two conditions 

Inconsistent support :  
 one is the negation of the other 

 E.g., handempty and ~handempty 

 

 or all ways of achieving them via actions are 

are pairwise mutex 
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Example – Dinner Date 

 
 

 

 

Suppose you want to prepare dinner as a surprise 
for your sweetheart (who is asleep) 
 Initial State: {cleanHands, quiet, garbage} 

Goal: {dinner, present, ~garbage}  

Action Preconditions  Effects  

     cook   cleanHands dinner 

     wrap   quiet  present 

     carry   none  ~garbage, ~cleanHands 

     dolly  none   ~garbage, ~quiet 

     Also have the “maintenance actions” 
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Example – Plan Graph Construction 

s0 a0 

 

garbage 

 

  

 

cleanhands 

 

 

 

 quiet 

 

 

  

 

 

    

 

carry 

 

 

 

dolly 

 

 

cook 

 

 

wrap 

 
Add the actions that can be  

executed in initial state 
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Example - continued 

s0 a0 s1 

garbage 

 

 ~garbage 

 

cleanhands 

 

 ~cleanhands 

 

  quiet 

 

 ~quiet 

 

 dinner 

 

 present 

 

 

garbage  

 

  

 

cleanhands 

 

 

 

 quiet 

 

 

  

 

 

    

 

carry 

 

 

 

dolly 

 

 

cook 

 

 

wrap 

 

Add the literals that can be  

achieved in first step  
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Example - continued 

Carry, dolly is mutex with maintenance actions 

(inconsistent effects) 

dolly is mutex with wrap  

Interference (about quiet) 

Cook is mutex with carry 

about cleanhands 

s0 a0 s1 

garbage 

 

~garbage 

 

cleanhands 

 

 ~cleanhands 

 

  quiet 

 

 ~quiet 

 

 dinner 

 

 present 

 

  

garbage 

 

  

 

cleanhands 

 

 

 

 quiet 

 

 

  

 

 

    

 

carry 

 

 

 

dolly 

 

 

cook 

 

 

wrap 

 
~quiet is mutex with present, 

~cleanhands is mutex with dinner 

inconsistent support 
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Do we have a solution? 

garbage 

 

 ~garbage 

 

cleanhands 

 

 ~cleanhands 

 

  quiet 

 

 ~quiet 

 

 dinner 

 

 present 

 

  

garbage 

 

  

 

cleanhands 

 

 

 

 quiet 

 

 

  

 

 

    

 

carry 

 

 

 

dolly 

 

 

cook 

 

 

wrap 

 

The goal is: {dinner, present,~garbage} 

All are possible in layer s1 

None are mutex with each other 

There is a chance that a plan exists 

Now try to find it – solution extraction 
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Solution Extraction: Backward Search 

Repeat until goal set is empty 

   If goals are present & non-mutex: 
  1) Choose set of non-mutex actions 

       to  achieve each goal 

  2) Add preconditions to next goal set 



23 

Searching for a solution plan 

 Backward chain on the planning graph 

 Achieve goals level by level 

 At level k, pick a subset of non-mutex actions to 

achieve current goals. Their preconditions become 

the goals for k-1 level. 

 Build goal subset by picking each goal and choosing 

an action to add. Use one already selected if possible 

(backtrack if can’t pick non-mutex action) 

 If we reach the initial proposition level and the current 

goals are in that level (i.e. they are true in the initial 

state) then we have found a successful layered plan 
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Possible Solutions 

garbage 

 

 ~garbage 

 

cleanhands 

 

 ~cleanhands 

 

  quiet 

 

 ~quiet 

 

 dinner 

 

 present 

 

  

garbage 

 

  

 

cleanhands 

 

 

 

 quiet 

 

 

  

 

 

    

 

carry 

 

 

 

dolly 

 

 

cook 

 

 

wrap 

 

• Two possible sets of actions for the goals at layer s1: 

        {wrap, cook, dolly}   and   {wrap, cook, carry} 

• Neither set works -- both sets contain actions that are mutex 
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Add new layer… 

Adding a layer provided new ways to achieve propositions 

This may allow goals to be achieved with non-mutex actions  
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Do we have a solution? 

Several action sets look OK at layer 2 

Here’s one of them 

We now need to satisfy their preconditions 
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Do we have a solution? 

The action set {cook, quite} at layer 1 supports preconditions 

Their preconditions are satisfied in initial state 

So we have found a solution: 

        {cook} ; {carry, wrap} 
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Another solution: 

{cook,wrap} ; {carry} 
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GraphPlan algorithm 

 Grow the planning graph (PG) to a level n such that all 
goals are reachable and not mutex  
 necessary but insufficient condition for the existence of an n 

level plan that achieves the goals 

 if PG levels off before non-mutex goals are achieved then fail 

 Search the PG for a valid plan 

 If none found, add a level to the PG and try again 

 If the PG levels off and still no valid plan found, then 
return failure 

 

Termination is guaranteed by PG properties 

This termination condition does not guarantee completeness. Why? 

A more complex termination condition exists that does, but we won’t 
cover in class (see book material on termination) 
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Propery 1 

Propositions monotonically increase 
(always carried forward by no-ops) 

p 

 

¬q 

 

¬r 

p 

 

q 

 

¬q 

 

¬r 

p 

 

q 

 

¬q 

 

r 

 

¬r 

p 

 

q 

 

¬q 

 

r 

 

¬r 

A A 

B 

A 

B 



31 

Property 2 

Actions monotonically increase 

p 
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Properties 3 

•  Proposition mutex relationships monotonically decrease 

•  Specifically, if p and q are in layer n and are not mutex then  

    they will not be mutex in future layers.  

p 

 

q 

 

r 

 

… 

A 

p 

 

q 
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… 

p 

 

q 

 

r 

 

… 
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Properties 4 

Action mutex relationships monotonically decrease 

p 

 

q 
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Properties 5 

Planning Graph ‘levels off’.  

After some time k all levels are identical 

 In terms of propositions, actions 

This is because there are a finite number of 

propositions and actions, the set of literals 

never decreases and mutexes don’t 

reappear. 
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Important Ideas 

 Plan graph construction is polynomial time 

 Though construction can be expensive when there are many 
“objects” and hence many propositions  

 The plan graph captures important properties of the planning 
problem 

 Necessarily unreachable literals and actions 

 Possibly reachable literals and actions 

 Mutually exclusive literals and actions 

 Significantly prunes search space compared to previously 
considered planners 

 Plan graphs can also be used for deriving admissible (and good 
non-admissible) heuristics 



36 

Planning Graphs for Heuristic Search 

After GraphPlan was introduced, researchers 

found other uses for planning graphs. 

 

One use was to compute heuristic functions for 

guiding a search from the initial state to goal 

Sect. 10.3.1 of book discusses some approaches 

 

First lets review the basic idea behind heuristic 

search 
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Planning as heuristic search 

Use standard search techniques, e.g. A*, 

best-first, hill-climbing etc. 

Find a path from the initial state to a goal 

Performance depends very much on the quality of 

the “heuristic” state evaluator 

Attempt to extract heuristic state evaluator 

automatically from the Strips encoding of the 

domain 

 

The planning graph has inspired a number of 

such heuristics 
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Review: Heuristic Search 

A* search is a best-first search using  

node evaluation 

  f(s) = g(s) + h(s) 

 where 

  g(s) = accumulated cost/number of actions 

  h(s) = estimate of future cost/distance to goal 

h(s) is admissible if it does not overestimate the 

cost to goal 

For admissible h(s), A* returns optimal solutions 
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Simple Planning Graph Heuristics 

Given a state s, we want to compute a heuristic h(s).  

Approach 1: Build planning graph from s until all 

goal facts are present w/o mutexes between them 

Return the # of graph levels as h(s) 

 Admissible. Why? 

 Can sometimes grossly underestimate distance to goal  

Approach 2: Repeat above but for a “sequential 

planning graph” where only one action is allowed to 

be taken at any time 

 Implement by including mutexes between all actions 

Still admissible, but more accurate.  
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Relaxed Plan Heuristics 

Computing those heuristics requires “only” 

polynomial time, but must be done many times 

during search (think millions) 

Mutex computation is quite expensive and adds up 

Limits how many states can be searched  

A very popular approach is to ignore mutexes 

Compute heuristics based on relaxed problem by 

assuming no delete effects 

Much more efficient computaiton 

This is the idea behind the very well-known 

planner FF (for FastForward) 

Many state-of-the-art planners derive from FF 
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Heuristic from Relaxed Problem 

Relaxed problem ignores delete lists on actions 

 

 

 

 

 

 

The length of optimal solution for the relaxed problem 

is admissible heuristic for original problem. Why? 

PutDown(A,B): 

     PRE: { holding(A), clear(B) } 

     ADD: { on(A,B), handEmpty, clear(A)} 

     DEL:  { holding(A), clear(B) } 

PutDown(B,A): 

     PRE: { holding(B), clear(A) } 

     ADD: { on(B,A), handEmpty, clear(B) } 

     DEL:  { holding(B), clear(A) } 

PutDown(A,B): 

     PRE: { holding(A), clear(B) } 

     ADD: { on(A,B), handEmpty, clear(A)} 

     DEL:  { } 

PutDown(B,A): 

     PRE: { holding(B), clear(A) } 

     ADD: { on(B,A), handEmpty, clear(B) } 

     DEL:  { } 

Problem Relaxation 
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Heuristic from Relaxed Problem 
 

BUT – still finding optimal solution to relaxed problem 

is NP-hard 

So we will approximate it  

…. and do so very quickly 

 

One way is to explicitly search for a relaxed plan 

Finding a relaxed plan can be done in polynomial time 

using a planning graph 

Take relaxed-plan length to be the heuristic value 

FF (for FastForward) uses this approach 
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FF Planner: finding relaxed plans 

Consider running Graphplan while ignoring the 

delete lists 

No mutexes (avoid computing these altogether) 

 Implies no backtracking during solution extraction search! 

So we can find a relaxed solutions efficiently 

After running the “no-delete-list Graphplan” then the 

# of actions in layered plan is the heuristic value 

Different choices in solution extraction can lead to 

different heuristic values 

The planner FastForward (FF) uses this heuristic in 

forward state-space best-first search 

Also includes several improvements over this 
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Example: Finding Relaxed Plans 

Heuristic value = 3 Heuristic value = 4 

Relaxed plan graph 

(no mutexes) 

The value returned  

depends on particular 

choices made in the  

backward extraction 
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Summary 
Many of the state-of-the-art planners today are based 

on heuristic search 

Popularized by FF, which computed relaxed plans with 

blazing speed 

 

Lots of work on make heuristics more accurate 

without increasing the computation time too much 

Trade-off between heuristic computation time vs. heuristic 

accuracy 

 

Most of these planners are not optimal 

The most effective optimal planners tend to use different 

techniques (e.g. SatPlan, our next framework) 


