GraphPlan

Alan Fern *

* Based in part on slides by Daniel Weld and José Luis Ambite
GraphPlan
http://www.cs.cmu.edu/~avrim/graphplan.html

• Many planning systems use ideas from Graphplan:
 ▶ IPP, STAN, SGP, Blackbox, Medic

• History
 ▶ Before GraphPlan appeared in 1995, most planning researchers were working under the framework of “plan-space search” (we will not cover this topic)
 ▶ GraphPlan outperformed those prior planners by orders of magnitude
 ▶ GraphPlan started researchers thinking about fundamentally different frameworks

• Recent planning algorithms run much faster than GraphPlan
 ▶ However, many have been influenced by GraphPlan
Big Picture

- A big source of inefficiency in search algorithms is the large branching factor
- GraphPlan reduces the branching factor by searching in a special data structure

Phase 1 – Create a Planning Graph
- built from initial state
- contains actions and propositions that are possibly reachable from initial state
- does not include unreachable actions or propositions

Phase 2 - Solution Extraction
- Backward search for the solution in the planning graph
 - backward from goal
Layered Plans

- Graphplan searches for **layered plans** (often called parallel plans)

- A layered plan is a sequence of **sets** of actions
 - actions in the same set must be **compatible**
 - a_1 and a_2 are compatible iff a_1 does not delete preconditions or positive effects of a_2 (and vice versa)
 - all sequential orderings of compatible actions gives same result

Layered Plan: (a two layer plan)

$$\begin{align*}
\{ & \text{move}(A,B,\text{TABLE}) \} \quad \cdot \quad \{ & \text{move}(B,\text{TABLE},A) \} \\
\{ & \text{move}(C,D,\text{TABLE}) \} \quad ' \quad \{ & \text{move}(D,\text{TABLE},C) \}
\end{align*}$$
Executing a Layered Plans

• A set of actions is applicable in a state if all the actions are applicable.

• Executing an applicable set of actions yields a new state that results from executing each individual action (order does not matter)
A planning graph has a sequence of levels that correspond to time-steps in the plan:

- Each level contains a set of literals and a set of actions
- Literals are those that could possibly be true at the time step
- Actions are those that their preconditions could be satisfied at the time step.

Idea: construct superset of literals that could be possibly achieved after an n-level layered plan

- Gives a compact (but approximate) representation of states that are reachable by n level plans
Planning Graph

- **state-level 0**: propositions true in s_0
- **state-level n**: literals that may possibly be true after some n level plan
- **action-level n**: actions that may possibly be applicable after some n level plan

Diagram of a planning graph with states s_0, s_n, a_n, S_{n+1}, propositions, and actions connecting them.
• maintenance action (persistence actions)
 ▲ represents what happens if no action affects the literal
 ▲ include action with precondition c and effect c, for each literal c
Graph expansion

- **Initial proposition layer**
 - Just the propositions in the initial state

- **Action layer n**
 - If all of an action’s preconditions are in proposition layer n, then add action to layer n

- **Proposition layer n+1**
 - For each action at layer n (including persistence actions)
 - Add all its effects (both positive and negative) at layer n+1
 (Also allow propositions at layer n to persist to n+1)

- **Propagate mutex information**
 (we’ll talk about this in a moment)
Example

stack(A,B)

precondition: holding(A), clear(B)
effect: ~holding(A), ~clear(B), on(A,B), clear(B), handempty

s0
holding(A) a0 s1
holding(A)

~holding(A)
~clear(B)
on(A,B)
handempty

~clear(B)
clear(B)
clear(B)
Example

stack(A,B)

precondition: holding(A), clear(B)
effect: ~holding(A), ~clear(B), on(A,B), clear(B), handempty

Notice that not all literals in s1 can be made true simultaneously after 1 level:
e.g. holding(A), ~holding(A) and on(A,B), clear(B)
Mutual Exclusion (Mutex)

• Mutex between pairs of actions at layer n means
 ▶ no valid plan could contain both actions at layer n
 ▶ E.g., stack(a,b), unstack(a,b)

• Mutex between pairs of literals at layer n means
 ▶ no valid plan could produce both at layer n
 ▶ E.g., clear(a), ~clear(a)
 on(a,b), clear(b)

• GraphPlan checks pairs only
 ▶ mutex relationships can help rule out possibilities during search in phase 2 of Graphplan
Action Mutex: condition 1

- Inconsistent effects
 - an effect of one negates an effect of the other

- E.g., stack(a,b) & unstack(a,b)

 add handempty delete handempty (add ~handempty)
Action Mutex: condition 2

- **Interference**:
 - one deletes a precondition of the other

- E.g., `stack(a,b)` & `putdown(a)`
 - deletes `holding(a)`
 - needs `holding(a)`
Action Mutex: condition 3

- Competing needs:
 - they have mutually exclusive preconditions
 - Their preconditions can’t be true at the same time
Literal Mutex: two conditions

- **Inconsistent support:**
 - one is the negation of the other
 - E.g., handempty and ~handempty
 - or all ways of achieving them via actions are pairwise mutex
Example – Dinner Date

• Suppose you want to prepare dinner as a surprise for your sweetheart (who is asleep)
 ▲ Initial State: {cleanHands, quiet, garbage}
 ▲ Goal: {dinner, present, ~garbage}
 ▲ Action | Preconditions | Effects
 cook | cleanHands | dinner
 wrap | quiet | present
 carry | none | ~garbage, ~cleanHands
 dolly | none | ~garbage, ~quiet

Also have the “maintenance actions”
Add the actions that can be executed in initial state
Example - continued

s0 a0 s1

garbage carry garbage

cleanhands dolly cleanhands

quiet cook quiet

wrap dinner present

Add the literals that can be achieved in first step
Example - continued

Carry, dolly is mutex with maintenance actions (inconsistent effects)

\[s_0 \]
\[\text{garbage} \]
\[\text{cleanhands} \]
\[\text{quiet} \]

\[a_0 \]
\[\text{carry} \]
\[\text{dolly} \]
\[\text{cook} \]
\[\text{wrap} \]

\[s_1 \]
\[\text{garbage} \]
\[\neg\text{garbage} \]
\[\text{cleanhands} \]
\[\neg\text{cleanhands} \]
\[\text{quiet} \]
\[\neg\text{quiet} \]
\[\text{dinner} \]
\[\text{present} \]

\[\text{dolly} \text{ is mutex with } \text{wrap} \]
\[\text{Interference (about quiet)} \]
\[\text{Cook is mutex with carry about cleanhands} \]

\[\neg\text{quiet} \text{ is mutex with } \text{present,} \]
\[\neg\text{cleanhands} \text{ is mutex with dinner} \]
\[\text{inconsistent support} \]
Do we have a solution?

The goal is: \{dinner, present, \sim garbage\}
All are possible in layer s1
None are mutex with each other

There is a chance that a plan exists
Now try to find it – solution extraction
Solution Extraction: Backward Search

Repeat until goal set is empty
If goals are present & non-mutex:
1) Choose set of non-mutex actions to achieve each goal
2) Add preconditions to next goal set
Searching for a solution plan

- Backward chain on the planning graph
- Achieve goals level by level
- At level k, pick a subset of non-mutext actions to achieve current goals. Their preconditions become the goals for k-1 level.
- Build goal subset by picking each goal and choosing an action to add. Use one already selected if possible (backtrack if can’t pick non-mutext action)
- If we reach the initial proposition level and the current goals are in that level (i.e. they are true in the initial state) then we have found a successful layered plan
Possible Solutions

- Two possible sets of actions for the goals at layer s_1:
 \{wrap, cook, dolly\} and \{wrap, cook, carry\}

- Neither set works -- both sets contain actions that are mutex
Add new layer...

Adding a layer provided new ways to achieve propositions. This may allow goals to be achieved with non-mutex actions.
Do we have a solution?

Several action sets look OK at layer 2
Here’s one of them
We now need to satisfy their preconditions
Do we have a solution?

The action set \{cook, quite\} at layer 1 supports preconditions. Their preconditions are satisfied in initial state. So we have found a solution:

\{cook\} ; \{carry, wrap\}
Another solution:

\{cook, wrap\} ; \{carry\}
GraphPlan algorithm

- Grow the planning graph (PG) to a level n such that all goals are reachable and not mutex
 - necessary but *insufficient* condition for the existence of an n level plan that achieves the goals
 - if PG levels off before non-mutex goals are achieved then fail
- Search the PG for a valid plan
- If none found, add a level to the PG and try again
- If the PG levels off and still no valid plan found, then return failure

Termination is guaranteed by PG properties

This termination condition does not guarantee completeness. Why?

A more complex termination condition exists that does, but we won’t cover in class (see book material on termination)
Property 1

Propositions monotonically increase
(always carried forward by no-ops)
Property 2

Actions monotonically increase
Properties 3

- Proposition mutex relationships monotonically decrease
- Specifically, if p and q are in layer n and are not mutex then they will not be mutex in future layers.
Properties 4

Action mutex relationships monotonically decrease
Properties 5

Planning Graph ‘levels off’.

• After some time k all levels are identical
 ▲ In terms of propositions, actions

• This is because there are a finite number of propositions and actions, the set of literals never decreases and mutexes don’t reappear.
Important Ideas

• Plan graph construction is polynomial time
 ▲ Though construction can be expensive when there are many “objects” and hence many propositions

• The plan graph captures important properties of the planning problem
 ▲ Necessarily unreachable literals and actions
 ▲ Possibly reachable literals and actions
 ▲ Mutually exclusive literals and actions

• Significantly prunes search space compared to previously considered planners

• Plan graphs can also be used for deriving admissible (and good non-admissible) heuristics
After GraphPlan was introduced, researchers found other uses for planning graphs.

One use was to compute heuristic functions for guiding a search from the initial state to goal.

First let's review the basic idea behind heuristic search.
Planning as heuristic search

- Use standard search techniques, e.g. A*, best-first, hill-climbing etc.
 - Find a path from the initial state to a goal
 - Performance depends very much on the quality of the “heuristic” state evaluator

- Attempt to extract heuristic state evaluator automatically from the Strips encoding of the domain

- The planning graph has inspired a number of such heuristics
• A* search is a best-first search using node evaluation
 \[f(s) = g(s) + h(s) \]
 where
 \[g(s) = \text{accumulated cost/number of actions} \]
 \[h(s) = \text{estimate of future cost/distance to goal} \]
• h(s) is **admissible** if it does not overestimate the cost to goal
• For admissible h(s), A* returns optimal solutions
Simple Planning Graph Heuristics

• Given a state s, we want to compute a heuristic $h(s)$.

• **Approach 1**: Build planning graph from s until all goal facts are present w/o mutexes between them

 - Return the # of graph levels as $h(s)$
 - Admissible. Why?
 - Can sometimes grossly underestimates distance to goal

• **Approach 2**: Repeat above but for a “sequential planning graph” where only one action is allowed to be taken at any time

 - Implement by including mutexes between all actions
 - Still admissible, but more accurate.
Relaxed Plan Heuristics

- Computing those heuristics requires “only” polynomial time, but must be done many times during search (think millions)
 - Mutex computation is quite expensive and adds up
 - Limits how many states can be searched

- A very popular approach is to ignore mutexes
 - Compute heuristics based on relaxed problem by assuming no delete effects
 - Much more efficient computation

- This is the idea behind the very well-known planner FF (for FastForward)
 - Many state-of-the-art planners derive from FF
Heuristic from Relaxed Problem

• Relaxed problem ignores delete lists on actions

<table>
<thead>
<tr>
<th>PutDown(A,B)</th>
<th>PutDown(B,A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE: { holding(A), clear(B) }</td>
<td>PRE: { holding(B), clear(A) }</td>
</tr>
<tr>
<td>ADD: { on(A,B), handEmpty, clear(A) }</td>
<td>ADD: { on(B,A), handEmpty, clear(B) }</td>
</tr>
<tr>
<td>DEL: { holding(A), clear(B) }</td>
<td>DEL: { holding(B), clear(A) }</td>
</tr>
</tbody>
</table>

Problem Relaxation

<table>
<thead>
<tr>
<th>PutDown(A,B)</th>
<th>PutDown(B,A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE: { holding(A), clear(B) }</td>
<td>PRE: { holding(B), clear(A) }</td>
</tr>
<tr>
<td>ADD: { on(A,B), handEmpty, clear(A) }</td>
<td>ADD: { on(B,A), handEmpty, clear(B) }</td>
</tr>
<tr>
<td>DEL: {}</td>
<td>DEL: {}</td>
</tr>
</tbody>
</table>

• The length of optimal solution for the relaxed problem is admissible heuristic for original problem. Why?
Heuristic from Relaxed Problem

• BUT – still finding optimal solution to relaxed problem is NP-hard
 ▲ So we will approximate it
 ▲ and do so very quickly

• One way is to explicitly search for a relaxed plan
 ▲ Finding a relaxed plan can be done in polynomial time using a planning graph
 ▲ Take relaxed-plan length to be the heuristic value
 ▲ FF (for FastForward) uses this approach
FF Planner: finding relaxed plans

• Consider running Graphplan while ignoring the delete lists
 ▲ No mutexes (avoid computing these altogether)
 ▲ Implies no backtracking during solution extraction search!
 ▲ So we can find a relaxed solutions efficiently

• After running the “no-delete-list Graphplan” then the # of actions in layered plan is the heuristic value
 ▲ Different choices in solution extraction can lead to different heuristic values

• The planner FastForward (FF) uses this heuristic in forward state-space best-first search
 ▲ Also includes several improvements over this
Example: Finding Relaxed Plans

Relaxed plan graph (no mutexes)

The value returned depends on particular choices made in the backward extraction.

Heuristic value = 3

Heuristic value = 4
Summary

• Many of the state-of-the-art planners today are based on heuristic search
 ▶ Popularized by FF, which computed relaxed plans with blazing speed

• Lots of work on make heuristics more accurate without increasing the computation time too much
 ▶ Trade-off between heuristic computation time vs. heuristic accuracy

• Most of these planners are not optimal
 ▶ The most effective optimal planners tend to use different techniques (e.g. SatPlan, our next framework)