
1

GraphPlan

Alan Fern *

* Based in part on slides by Daniel Weld and José Luis Ambite

2

GraphPlan
http://www.cs.cmu.edu/~avrim/graphplan.html

 Many planning systems use ideas from Graphplan:

 IPP, STAN, SGP, Blackbox, Medic

 History

 Before GraphPlan appeared in 1995, most planning researchers were

working under the framework of “plan-space search” (we will not cover

this topic)

 GraphPlan outperformed those prior planners by orders of magnitude

 GraphPlan started researchers thinking about fundamentally different

frameworks

 Recent planning algorithms run much faster than GraphPlan

 However, many have been influenced by GraphPlan

3

Big Picture

 A big source of inefficiency in search algorithms is the large
branching factor

 GraphPlan reduces the branching factor by searching in a
special data structure

 Phase 1 – Create a Planning Graph
 built from initial state

 contains actions and propositions that are possibly reachable from
initial state

 does not include unreachable actions or propositions

 Phase 2 - Solution Extraction

Backward search for the solution in the planning graph

 backward from goal

4

Layered Plans

 Graphplan searches for layered plans (often called parallel plans)

 A layered plan is a sequence of sets of actions

 actions in the same set must be compatible

 a1 and a2 are compatible iff a1 does not delete preconditions or

positive effects of a2 (and vice versa)

 all sequential orderings of compatible actions gives same result

?

D
A
B

C D
A
B

C

move(A,B,TABLE)

move(C,D,TABLE)

move(B,TABLE,A)

move(D,TABLE,C)
;

Layered Plan: (a two layer plan)

5

Executing a Layered Plans

A set of actions is applicable in a state if all the

actions are applicable.

Executing an applicable set of actions yields a new

state that results from executing each individual

action (order does not matter)

D
A
B

C
move(A,B,TABLE)

move(C,D,TABLE)
move(B,TABLE,A)

move(D,TABLE,C)

D
A
B

C D A B C

6

Planning Graph

 A planning graph has a sequence of levels that

correspond to time-steps in the plan:

 Each level contains a set of literals and a set of actions

 Literals are those that could possibly be true at the time step

 Actions are those that their preconditions could be satisfied

at the time step.

 Idea: construct superset of literals that could be

possibly achieved after an n-level layered plan

 Gives a compact (but approximate) representation of states

that are reachable by n level plans

A literal is just a positive or negative propositon

7

Planning Graph

…

…

…

s0 sn

…

…

…

an Sn+1

propositions

actions

state-level 0:

propositions true

in s0

state-level n: literals that

may possibly be true after

some n level plan

action-level n: actions that

may possibly be applicable

after some n level plan

8

Planning Graph

…

…

…

…

…

…

propositions

actions

 maintenance action (persistence actions)

 represents what happens if no action affects the literal

 include action with precondition c and effect c, for each literal c

9

Graph expansion

 Initial proposition layer
 Just the propositions in the initial state

 Action layer n
 If all of an action’s preconditions are in proposition layer n,

then add action to layer n

 Proposition layer n+1
 For each action at layer n (including persistence actions)

 Add all its effects (both positive and negative) at layer n+1

 (Also allow propositions at layer n to persist to n+1)

 Propagate mutex information
(we’ll talk about this in a moment)

10

Example

holding(A)

clear(B)

holding(A)

~holding(A)

 clear(B)

on(A,B)

handempty

 ~clear(B)

stack(A,B)

stack(A,B)

 precondition: holding(A), clear(B)

 effect: ~holding(A), ~clear(B), on(A,B), clear(B), handempty

s0 a0 s1

11

Example

holding(A)

clear(B)

holding(A)

~holding(A)

 clear(B)

on(A,B)

handempty

 ~clear(B)

stack(A,B)

stack(A,B)

 precondition: holding(A), clear(B)

 effect: ~holding(A), ~clear(B), on(A,B), clear(B), handempty

s0 a0 s1

Notice that not all literals in s1 can be made true simultaneously after 1 level:

 e.g. holding(A), ~holding(A) and on(A,B), clear(B)

12

Mutual Exclusion (Mutex)

Mutex between pairs of actions at layer n means

 no valid plan could contain both actions at layer n

E.g., stack(a,b), unstack(a,b)

Mutex between pairs of literals at layer n means

 no valid plan could produce both at layer n

 E.g., clear(a), ~clear(a)

 on(a,b), clear(b)

 GraphPlan checks pairs only

mutex relationships can help rule out possibilities

during search in phase 2 of Graphplan

13

Action Mutex: condition 1

Inconsistent effects
 an effect of one negates an effect of the

other

E.g., stack(a,b) & unstack(a,b)

 add handempty delete handempty
 (add ~handempty)

14

Action Mutex: condition 2

Interference :
 one deletes a precondition of the other

E.g., stack(a,b) & putdown(a)

 deletes holdindg(a) needs holding(a)

15

Action Mutex: condition 3

Competing needs:
 they have mutually exclusive preconditions

 Their preconditions can’t be true at the same

time

16

Literal Mutex: two conditions

Inconsistent support :
 one is the negation of the other

 E.g., handempty and ~handempty

 or all ways of achieving them via actions are

are pairwise mutex

17

Example – Dinner Date

Suppose you want to prepare dinner as a surprise
for your sweetheart (who is asleep)
 Initial State: {cleanHands, quiet, garbage}

Goal: {dinner, present, ~garbage}

Action Preconditions Effects

 cook cleanHands dinner

 wrap quiet present

 carry none ~garbage, ~cleanHands

 dolly none ~garbage, ~quiet

 Also have the “maintenance actions”

18

Example – Plan Graph Construction

s0 a0

garbage

cleanhands

 quiet

carry

dolly

cook

wrap

Add the actions that can be

executed in initial state

19

Example - continued

s0 a0 s1

garbage

 ~garbage

cleanhands

 ~cleanhands

 quiet

 ~quiet

 dinner

 present

garbage

cleanhands

 quiet

carry

dolly

cook

wrap

Add the literals that can be

achieved in first step

20

Example - continued

Carry, dolly is mutex with maintenance actions

(inconsistent effects)

dolly is mutex with wrap

Interference (about quiet)

Cook is mutex with carry

about cleanhands

s0 a0 s1

garbage

~garbage

cleanhands

 ~cleanhands

 quiet

 ~quiet

 dinner

 present

garbage

cleanhands

 quiet

carry

dolly

cook

wrap

~quiet is mutex with present,

~cleanhands is mutex with dinner

inconsistent support

21

Do we have a solution?

garbage

 ~garbage

cleanhands

 ~cleanhands

 quiet

 ~quiet

 dinner

 present

garbage

cleanhands

 quiet

carry

dolly

cook

wrap

The goal is: {dinner, present,~garbage}

All are possible in layer s1

None are mutex with each other

There is a chance that a plan exists

Now try to find it – solution extraction

22

Solution Extraction: Backward Search

Repeat until goal set is empty

 If goals are present & non-mutex:
 1) Choose set of non-mutex actions

 to achieve each goal

 2) Add preconditions to next goal set

23

Searching for a solution plan

 Backward chain on the planning graph

 Achieve goals level by level

 At level k, pick a subset of non-mutex actions to

achieve current goals. Their preconditions become

the goals for k-1 level.

 Build goal subset by picking each goal and choosing

an action to add. Use one already selected if possible

(backtrack if can’t pick non-mutex action)

 If we reach the initial proposition level and the current

goals are in that level (i.e. they are true in the initial

state) then we have found a successful layered plan

24

Possible Solutions

garbage

 ~garbage

cleanhands

 ~cleanhands

 quiet

 ~quiet

 dinner

 present

garbage

cleanhands

 quiet

carry

dolly

cook

wrap

• Two possible sets of actions for the goals at layer s1:

 {wrap, cook, dolly} and {wrap, cook, carry}

• Neither set works -- both sets contain actions that are mutex

25

Add new layer…

Adding a layer provided new ways to achieve propositions

This may allow goals to be achieved with non-mutex actions

26

Do we have a solution?

Several action sets look OK at layer 2

Here’s one of them

We now need to satisfy their preconditions

27

Do we have a solution?

The action set {cook, quite} at layer 1 supports preconditions

Their preconditions are satisfied in initial state

So we have found a solution:

 {cook} ; {carry, wrap}

28

Another solution:

{cook,wrap} ; {carry}

29

GraphPlan algorithm

 Grow the planning graph (PG) to a level n such that all
goals are reachable and not mutex
 necessary but insufficient condition for the existence of an n

level plan that achieves the goals

 if PG levels off before non-mutex goals are achieved then fail

 Search the PG for a valid plan

 If none found, add a level to the PG and try again

 If the PG levels off and still no valid plan found, then
return failure

Termination is guaranteed by PG properties

This termination condition does not guarantee completeness. Why?

A more complex termination condition exists that does, but we won’t
cover in class (see book material on termination)

30

Propery 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

31

Property 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

32

Properties 3

• Proposition mutex relationships monotonically decrease

• Specifically, if p and q are in layer n and are not mutex then

 they will not be mutex in future layers.

p

q

r

…

A

p

q

r

…

p

q

r

…

33

Properties 4

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

34

Properties 5

Planning Graph ‘levels off’.

After some time k all levels are identical

 In terms of propositions, actions

This is because there are a finite number of

propositions and actions, the set of literals

never decreases and mutexes don’t

reappear.

35

Important Ideas

 Plan graph construction is polynomial time

 Though construction can be expensive when there are many
“objects” and hence many propositions

 The plan graph captures important properties of the planning
problem

 Necessarily unreachable literals and actions

 Possibly reachable literals and actions

 Mutually exclusive literals and actions

 Significantly prunes search space compared to previously
considered planners

 Plan graphs can also be used for deriving admissible (and good
non-admissible) heuristics

36

Planning Graphs for Heuristic Search

After GraphPlan was introduced, researchers

found other uses for planning graphs.

One use was to compute heuristic functions for

guiding a search from the initial state to goal

Sect. 10.3.1 of book discusses some approaches

First lets review the basic idea behind heuristic

search

37

Planning as heuristic search

Use standard search techniques, e.g. A*,

best-first, hill-climbing etc.

Find a path from the initial state to a goal

Performance depends very much on the quality of

the “heuristic” state evaluator

Attempt to extract heuristic state evaluator

automatically from the Strips encoding of the

domain

The planning graph has inspired a number of

such heuristics

38

Review: Heuristic Search

A* search is a best-first search using

node evaluation

 f(s) = g(s) + h(s)

 where

 g(s) = accumulated cost/number of actions

 h(s) = estimate of future cost/distance to goal

h(s) is admissible if it does not overestimate the

cost to goal

For admissible h(s), A* returns optimal solutions

39

Simple Planning Graph Heuristics

Given a state s, we want to compute a heuristic h(s).

Approach 1: Build planning graph from s until all

goal facts are present w/o mutexes between them

Return the # of graph levels as h(s)

 Admissible. Why?

 Can sometimes grossly underestimate distance to goal

Approach 2: Repeat above but for a “sequential

planning graph” where only one action is allowed to

be taken at any time

 Implement by including mutexes between all actions

Still admissible, but more accurate.

40

Relaxed Plan Heuristics

Computing those heuristics requires “only”

polynomial time, but must be done many times

during search (think millions)

Mutex computation is quite expensive and adds up

Limits how many states can be searched

A very popular approach is to ignore mutexes

Compute heuristics based on relaxed problem by

assuming no delete effects

Much more efficient computaiton

This is the idea behind the very well-known

planner FF (for FastForward)

Many state-of-the-art planners derive from FF

41

Heuristic from Relaxed Problem

Relaxed problem ignores delete lists on actions

The length of optimal solution for the relaxed problem

is admissible heuristic for original problem. Why?

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A)}

 DEL: { holding(A), clear(B) }

PutDown(B,A):

 PRE: { holding(B), clear(A) }

 ADD: { on(B,A), handEmpty, clear(B) }

 DEL: { holding(B), clear(A) }

PutDown(A,B):

 PRE: { holding(A), clear(B) }

 ADD: { on(A,B), handEmpty, clear(A)}

 DEL: { }

PutDown(B,A):

 PRE: { holding(B), clear(A) }

 ADD: { on(B,A), handEmpty, clear(B) }

 DEL: { }

Problem Relaxation

42

Heuristic from Relaxed Problem

BUT – still finding optimal solution to relaxed problem

is NP-hard

So we will approximate it

…. and do so very quickly

One way is to explicitly search for a relaxed plan

Finding a relaxed plan can be done in polynomial time

using a planning graph

Take relaxed-plan length to be the heuristic value

FF (for FastForward) uses this approach

43

FF Planner: finding relaxed plans

Consider running Graphplan while ignoring the

delete lists

No mutexes (avoid computing these altogether)

 Implies no backtracking during solution extraction search!

So we can find a relaxed solutions efficiently

After running the “no-delete-list Graphplan” then the

of actions in layered plan is the heuristic value

Different choices in solution extraction can lead to

different heuristic values

The planner FastForward (FF) uses this heuristic in

forward state-space best-first search

Also includes several improvements over this

44

Example: Finding Relaxed Plans

Heuristic value = 3 Heuristic value = 4

Relaxed plan graph

(no mutexes)

The value returned

depends on particular

choices made in the

backward extraction

45

Summary
Many of the state-of-the-art planners today are based

on heuristic search

Popularized by FF, which computed relaxed plans with

blazing speed

Lots of work on make heuristics more accurate

without increasing the computation time too much

Trade-off between heuristic computation time vs. heuristic

accuracy

Most of these planners are not optimal

The most effective optimal planners tend to use different

techniques (e.g. SatPlan, our next framework)

