GraphPlan

Alan Fern *

* Based in part on slides by Daniel Weld and José Luis Ambite

GraphPlan

http://www.cs.cmu.edu/~avrim/graphplan.htmi

° Many planning systems use ideas from Graphplan:
-~ |IPP, STAN, SGP, Blackbox, Medic

° History

~ Before GraphPlan appeared in 1995, most planning researchers were
working under the framework of “plan-space search” (we will not cover
this topic)

~ GraphPlan outperformed those prior planners by orders of magnitude

~ GraphPlan started researchers thinking about fundamentally different
frameworks

* Recent planning algorithms run much faster than GraphPlan
-~ However, many have been influenced by GraphPlan

Big Picture

A big source of inefficiency in search algorithms is the large
branching factor

GraphPlan reduces the branching factor by searching in a
special data structure

Phase 1 — Create a Planning Graph
~ built from initial state

- contains actions and propositions that are possibly reachable from
Initial state

~ does not include unreachable actions or propositions

Phase 2 - Solution Extraction

~ Backward search for the solution in the planning graph
= backward from goal

Layered Plans
* Graphplan searches for layered plans (often called parallel plans)

* A layered plan is a sequence of sets of actions
~ actions in the same set must be compatible

= al and a2 are compatible iff al does not delete preconditions or
positive effects of a2 (and vice versa)

~ all sequential orderings of compatible actions gives same result

gl B A B
Layered Plan: (a two layer plan)
{ move(A,B,TABLE)} : { move(B,TABLE,A) }

move(C,D,TABLE)| ' | move(D,TABLE,C)

Executing a Layered Plans

* A set of actions Is applicable in a state if all the
actions are applicable.

* Executing an applicable set of actions yields a new
state that results from executing each individual
action (order does not matter)

-~ ~N ~N

>0

o>

> >
& {move(A,B,TABLE)} D] [C] {move(B,TABLE,A)} @

move(C,D, TABLE) move(D,TABLE,C)

Planning Graph

A literal is just a positive or negative propositon

* A planning graph has a sequence of levels that
correspond to time-steps In the plan:
~ Each level contains a set of literals and a set of actions
~ Literals are those that could possibly be true at the time step

- Actions are those that their preconditions could be satisfied
at the time step.

* ldea: construct superset of literals that could be
possibly achieved after an n-level layered plan

- Gives a compact (but approximate) representation of states
that are reachable by n level plans

Planning Graph

state-level O: state-level n: literals that action-level n: actions that
propositions true may possibly be true after may possibly be applicable
in s, some n level plan after some n level plan

>S5

Planning Graph

° maintenance action (persistence actions)
~ represents what happens if no action affects the literal
~ Include action with precondition ¢ and effect c, for each literal c

propositions

e
o~

actions

Graph expansion

Initial proposition layer
~ Just the propositions in the initial state

Action layer n

~ If all of an action’s preconditions are in proposition layer n,
then add action to layer n

Proposition layer n+1
~ For each action at layer n (including persistence actions)
~ Add all its effects (both positive and negative) at layer n+1
(Also allow propositions at layer n to persist to n+1)

Propagate mutex information
(we'll talk about this in a moment)

Example

stack(A,B)
precondition: holding(A), clear(B)
effect. ~holding(A), ~clear(B), on(A,B), clear(B), handempty

sO a0 sl
holding(A) holding(A)
~holding(A)
stack(A,B) handempty

\clear(B)
on(A,B)

clear(B) clear(B)

10

Example

stack(A,B)
precondition: holding(A), clear(B)
effect. ~holding(A), ~clear(B), on(A,B), clear(B), handempty

sO a0 sl
holding(A) holding(A)
~holding(A)
stack(A,B handempty
_— \clear(B)
on(A,B)
clear(B) clear(B)

Notice that not all literals in s1 can be made true simultaneously after 1 level:
e.g. holding(A), ~holding(A) and on(A,B), clear(B)

Mutual Exclusion (Mutex)

* Mutex between pairs of actions at layer n means
~ no valid plan could contain both actions at layer n
~ E.g., stack(a,b), unstack(a,b)

* Mutex between pairs of literals at layer n means
~ no valid plan could produce both at layer n

-~ E.g., clear(a), ~clear(a)
on(a,b), clear(b)

* GraphPlan checks pairs only

~ mutex relationships can help rule out possibilities
during search in phase 2 of Graphplan

12

Action Mutex: condition 1

* Inconsistent effects a o
+ an effect of one negates an effect of the QE.—Q
other 0 \D
o) C
* E.g., stack(a,b) & unstack(a,b) °_ -0
)]) D D
l l Inconsistent
Effects
add handempty delete handempty

(add ~handempty)

Action Mutex: condition 2

° Interference :

~ one deletes a precondition of the other

* E.g., stack(a,b) & putdown(a)

| |

deletes holdindg(a) needs holding(a)

0

-

XIS

wd ol

Interference

oo O 0 O

14

Action Mutex: condition 3

* Competing needs:

~ they have mutually exclusive preconditions) O
~ Their preconditions can't be true at the same GR.?D
time

| @

H
A
—
) i

Competing
Needs

Literal Mutex: two conditions

* Inconsistent support :

~ one is the negation of the other
E.g., handempty and ~handempty

~ or all ways of achieving them via actions are
are pairwise mutex

Inconsistent
Support

16

Example — Dinner Date

° Suppose you want to prepare dinner as a surprise
for your sweetheart (who Is asleep)

~ Initial State: {cleanHands, quiet, garbage}
~ Goal: {dinner, present, ~garbage}

~ Action Preconditions Effects
cook cleanHands dinner
wrap quiet present
carry none ~garbage, ~cleanHands
dolly none ~garbage, ~quiet

Also have the “maintenance actions”

17

Example — Plan Graph Construction

sO

garbage

cleanhands

quiet

a0

carry

dolly

COOK

wrap

Add the actions that can be
executed In initial state

18

Example - continued

sO 30 sl
garbage » garbage
carry » ~garbage
cleanhands cleanhands
dolly ~cleanhands
quiet , Quiet
COOK = ~quiet
\ dinner
wrap |
—, Present

Add the literals that can be
achieved in first step

19

Example - continued

sO 20 sl
Carry, dolly is mutex with maintenance actions
(inconsistent effects)
AN
garbage K(» garbage]
ﬁ carry > ~garbage
cleanhands A cleanhands 7
@N dolly ~cleanhands,
quiet » Quiet
\jQ COOK « _
~qul
~,_ dinner ’
dolly is mutex with wrap wrap | __
Interference (about quiet) — : — esent
Cook is mutex with carry ~quiet is mutex with present,
about cleanhands ~cleanhands is mutex with dinner
inconsistent support

20

Do we have a solution?

The goal is: {dinner, present,~garbage}
All are possible in layer s1
None are mutex with each other

garbage /'c » garbage
L tarry < ~garbage]
cleanhands [cleanhands 7
Sr dolly ~cleanhands,
quiet [» Quiet
\jQ COOK = _ J
\ ~quiet”
dinner ’
s wrap
— present J

There is a chance that a plan exists
Now try to find it — solution extraction

21

Solution Extraction: Backward Search

Repeat until goal set is empty
If goals are present & non-mutex:
1) Choose set of non-mutex actions
to achieve each goal
2) Add preconditions to next goal set

Searching for a solution plan
* Backward chain on the planning graph
* Achieve goals level by level

* At level k, pick a subset of non-mutex actions to
achieve current goals. Their preconditions become
the goals for k-1 level.

* Build goal subset by picking each goal and choosing
an action to add. Use one already selected if possible
(backtrack if can’t pick non-mutex action)

° If we reach the initial proposition level and the current
goals are in that level (i.e. they are true Iin the initial
state) then we have found a successful layered plan

23

Possible Solutions

» Two possible sets of actions for the goals at layer s1.
{wrap, cook, dolly} and {wrap, cook, carry}

* Neither set works -- both sets contain actions that are mutex

garbage /(» garbage]

carry » ~garbage

T
cleanhands cleanhands 7

&- dolly ~cleanhandss

» Quiet

COOK « : J

\ ~quiet
dinner ’

S wrap

quiet

—p present J

Add new layer...

Adding a layer provided new ways to achieve propositions
This may allow goals to be achieved with non-mutex actions

garb garb garb
carr \ carry w
—1garb T1garb
dolly, dolly
cleanH cleanH cleanH \
“1cleanH ~1cleanH
COOK CookK
quiet quiet \ quiet
wrap wrap \
“1quiet \ \\ 1quiet

,,f’”

f::linm:;r)ﬂ dinner
present/ \ present

Do we have a solution?

Several action sets look OK at layer 2
Here’'s one of them
We now need to satisfy their preconditions

garb

cleanH

n:|l..|iE~t—=_HHEH

26

Do we have a solution?

The action set {cook, quite} at layer 1 supports preconditions
Their preconditions are satisfied in initial state
So we have found a solution:

{cook} ; {carry, wrap}

garb garh\ garb
cleanH \
—1cleanH
quiet \
T1quiet

ldinner \

preaent/

27

Another solution:

{cook,wrap} ; {carry}

garb
-::arr

‘:{ dolly]

IL':DDH

\

—1garb

garb

garb
Y ek

l@’ e

CENETTNN LY
“cleanHit " cleanH

quiet==="

“1quiet

.l-‘

‘

i
\\ [{oook), -
BNl

IﬁﬂEf

- present

28

GraphPlan algorithm

Grow the planning graph (PG) to a level n such that all
goals are reachable and not mutex

~ necessary but insufficient condition for the existence of an n
level plan that achieves the goals

~ If PG levels off before non-mutex goals are achieved then fall

Search the PG for a valid plan

If none found, add a level to the PG and try again

If the PG levels off and still no valid plan found, then
return failure

Termination is guaranteed by PG properties
This termination condition does not guarantee completeness. Why?

A more complex termination condition exists that does, but we won'’t
cover in class (see book material on termination)

29

Propery 1

>
e
—

Propositions monotonically increase
(always carried forward by no-ops)

30

Property 2

Pk P P P
—q \ 9 ~“ ——— q ><, — q
! \ _Iq \ _Iq _Iq
r Q ' A8 I~ r

=l / =l

Actions monotonically increase

31

Properties 3

P) P P
Q/A/Iq q
r r r

* Proposition mutex relationships monotonically decrease
« Specifically, if p and g are in layer n and are not mutex then
they will not be mutex in future layers.

32

Properties 4

O T

Ouw/v
/Q
ved
/Q
7
/Q

Action mutex relationships monotonically decrease

Properties 5

Planning Graph ‘levels off'.

* After some time k all levels are identical
~ In terms of propositions, actions

°* This Is because there are a finite number of
propositions and actions, the set of literals
never decreases and mutexes don't
reappear.

34

Important ldeas

* Plan graph construction is polynomial time

~ Though construction can be expensive when there are many
“objects” and hence many propositions

* The plan graph captures important properties of the planning
problem

~ Necessarily unreachable literals and actions
~ Possibly reachable literals and actions
~ Mutually exclusive literals and actions

* Significantly prunes search space compared to previously
considered planners

* Plan graphs can also be used for deriving admissible (and good
non-admissible) heuristics

35

Planning Graphs for Heuristic Search

* After GraphPlan was introduced, researchers
found other uses for planning graphs.

* One use was to compute heuristic functions for
guiding a search from the Initial state to goal

~ Sect. 10.3.1 of book discusses some approaches

* First lets review the basic idea behind heuristic
search

36

Planning as heuristic search

* Use standard search techniques, e.g. A*,
best-first, hill-climbing etc.
~ Find a path from the initial state to a goal

~ Performance depends very much on the quality of
the "heuristic” state evaluator

° Attempt to extract heuristic state evaluator
automatically from the Strips encoding of the
domain

° The planning graph has inspired a number of
such heuristics

37

Review: Heuristic Search

* A* search iIs a best-first search using
node evaluation

f(s) = g(s) + h(s)
where

g(s) = accumulated cost/number of actions
h(s) = estimate of future cost/distance to goal

* h(s) is admissible if it does not overestimate the
cost to goal

* For admissible h(s), A* returns optimal solutions

38

Simple Planning Graph Heuristics

° Glven a state s, we want to compute a heuristic h(s).

°* Approach 1: Build planning graph from s until all
goal facts are present w/o mutexes between them
~ Return the # of graph levels as h(s)
s Admissible. Why?
s Can sometimes grossly underestimate distance to goal

* Approach 2: Repeat above but for a “sequential
planning graph™ where only one action is allowed to
be taken at any time

~ Implement by including mutexes between all actions
~ Still admissible, but more accurate.

39

Relaxed Plan Heuristics

* Computing those heuristics requires “only”
polynomial time, but must be done many times
during search (think millions)

~ Mutex computation is quite expensive and adds up
- Limits how many states can be searched

* A very popular approach is to ignore mutexes

~ Compute heuristics based on relaxed problem by
assuming no delete effects

~ Much more efficient computaiton

° This Is the idea behind the very well-known
planner FF (for FastForward)

~ Many state-of-the-art planners derive from FF

40

Heuristic from Relaxed Problem
* Relaxed problem ignores delete lists on actions

PutDown(A,B): PutDown(B,A):
PRE: { holding(A), clear(B) } PRE: { holding(B), clear(A) }
ADD: { on(A,B), handEmpty, clear(A)} ADD: { on(B,A), handEmpty, clear(B) }
DEL: { holding(A), clear(B) } DEL: { holding(B), clear(A) }

@ Problem Relaxation

PutDown(A,B): PutDown(B,A):
PRE: { holding(A), clear(B) } PRE: { holding(B), clear(A) }
ADD: { on(A,B), handEmpty, clear(A)} ADD: { on(B,A), handEmpty, clear(B) }
DEL: {} DEL: {}

* The length of optimal solution for the relaxed problem
IS admissible heuristic for original problem. Why?

41

Heuristic from Relaxed Problem

* BUT - still finding optimal solution to relaxed problem
Is NP-hard
~ So we will approximate it
4and do so very quickly

* One way Is to explicitly search for a relaxed plan

~ Finding a relaxed plan can be done in polynomial time
using a planning graph

~ Take relaxed-plan length to be the heuristic value

~ FF (for FastForward) uses this approach

42

FF Planner: finding relaxed plans

* Consider running Graphplan while ignoring the
delete lists
-~ No mutexes (avoid computing these altogether)
~ Implies no backtracking during solution extraction search!
~ So we can find a relaxed solutions efficiently

 After running the “no-delete-list Graphplan” then the
of actions In layered plan is the heuristic value

- Different choices in solution extraction can lead to
different heuristic values

* The planner FastForward (FF) uses this heuristic in
forward state-space best-first search

~ Also includes several improvements over this

43

Example: Finding Relaxed Plans

747;_;% Relaxed plan graph
° \OFZ (no mutexes)
(o O g

The value returned
depends on particular
choices made In the

backward extraction § °§E °
:; ° \o?

(oL o\‘ g

zzéﬁ =
(o O g

Heuristic value = 3 Heuristic value = 4

44

Summary

* Many of the state-of-the-art planners today are based
on heuristic search

~ Popularized by FF, which computed relaxed plans with
blazing speed

° Lots of work on make heuristics more accurate
without increasing the computation time too much

~ Trade-off between heuristic computation time vs. heuristic
accuracy

* Most of these planners are not optimal

~ The most effective optimal planners tend to use different

techniques (e.g. SatPlan, our next framework)
45

