Monte-Carlo Planning: Introduction and Bandit Basics

Alan Fern
Large Worlds

- We have considered basic model-based planning algorithms

- **Model-based planning**: assumes MDP model is available
 - Methods we learned so far are at least poly-time in the number of states and actions
 - Difficult to apply to large state and action spaces (though this is a rich research area)

- We will consider various methods for overcoming this issue
Approaches for Large Worlds

• **Planning with compact MDP representations**
 1. Define a language for *compactly* describing an MDP
 - MDP is exponentially larger than description
 - E.g. via Dynamic Bayesian Networks
 2. Design a planning algorithm that directly works with that language

• Scalability is still an issue

• Can be difficult to encode the problem you care about in a given language

• Study in last part of course
Approaches for Large Worlds

- **Reinforcement learning w/ function approx.**
 1. Have a learning agent directly interact with environment
 2. Learn a compact description of policy or value function

- Often works quite well for large problems
- Doesn’t fully exploit a simulator of the environment when available
- We will study reinforcement learning later in the course
Approaches for Large Worlds: Monte-Carlo Planning

- Often a simulator of a planning domain is available or can be learned/estimated from data

Klondike Solitaire

Fire & Emergency Response
Large Worlds: Monte-Carlo Approach

- Often a simulator of a planning domain is available or can be learned from data.

Monte-Carlo Planning: compute a good policy for an MDP by interacting with an MDP simulator.
Example Domains with Simulators

- Traffic simulators
- Robotics simulators
- Military campaign simulators
- Computer network simulators
- Emergency planning simulators
 - large-scale disaster and municipal
- Forest Fire Simulator
- Board games / Video games
 - Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art performance. Even in domains where exact MDP models are available.
MDP: Simulation-Based Representation

- A simulation-based representation gives: S, A, R, T, I:
 - finite state set S \(||S||=n\) and is generally very large
 - finite action set A \(||A||=m\) and will assume is of reasonable size

- \(|S|| is too large to provide a matrix representation of R, T, and I
 (see next slide for I)

- A simulation based representation provides us with callable functions for R, T, and I.
 - Think of these as any other library function that you might call

- Our planning algorithms will operate by repeatedly calling those functions in an intelligent way
MDP: Simulation-Based Representation

- A simulation-based representation gives: S, A, R, T, I:
 - finite state set S (|S|=n and is generally very large)
 - finite action set A (|A|=m and will assume is of reasonable size)
 - Stochastic, real-valued, bounded reward function R(s,a) = r
 - Stochastically returns a reward r given input s and a
 (note: here rewards can depend on actions and can be stochastic)
 - Stochastic transition function T(s,a) = s’ (i.e. a simulator)
 - Stochastically returns a state s’ given input s and a
 - Probability of returning s’ is dictated by Pr(s’ | s,a) of MDP
 - Stochastic initial state function I.
 - Stochastically returns a state according to an initial state distribution

These stochastic functions can be implemented in any language!
Monte-Carlo Planning Outline

• Single State Case (multi-armed bandits)
 ▲ A basic tool for other algorithms

• Monte-Carlo Policy Improvement
 ▲ Policy rollout
 ▲ Policy Switching
 ▲ Approximate Policy Iteration

• Monte-Carlo Tree Search
 ▲ Sparse Sampling
 ▲ UCT and variants
Single State Monte-Carlo Planning

• Suppose MDP has a single state and k actions
 ▲ Can sample rewards of actions using calls to simulator
 ▲ Sampling action a is like pulling slot machine arm with random payoff function $R(s,a)$

Multi-Armed Bandit Problem
Single State Monte-Carlo Planning

• Bandit problems arise in many situations
 ▲ Clinical trials (arms correspond to treatments)
 ▲ Ad placement (arms correspond to ad selections)

\[R(s,a_1) \quad R(s,a_2) \quad \cdots \quad R(s,a_k) \]

Multi-Armed Bandit Problem
Single State Monte-Carlo Planning

- We will consider three possible bandit objectives
 - **PAC Objective**: find a near optimal arm w/ high probability
 - **Cumulative Regret**: achieve near optimal cumulative reward over lifetime of pulling (in expectation)
 - **Simple Regret**: quickly identify arm with high reward (in expectation)

\[
\begin{align*}
R(s,a_1) & \quad R(s,a_2) & \quad \cdots & \quad R(s,a_k)
\end{align*}
\]

Multi-Armed Bandit Problem
Multi-Armed Bandits

• Bandit algorithms are not just useful as components for multi-state Monte-Carlo planning

• Pure bandit problems arise in many applications

• Applicable whenever:
 ▲ We have a set of independent options with unknown utilities
 ▲ There is a cost for sampling options or a limit on total samples
 ▲ Want to find the best option or maximize utility of our samples
Multi-Armed Bandits: Examples

• **Clinical Trials**
 - Arms = possible treatments
 - Arm Pulls = application of treatment to individual
 - Rewards = outcome of treatment
 - Objective = maximize cumulative reward = maximize benefit to trial population (or find best treatment quickly)

• **Online Advertising**
 - Arms = different ads/ad-types for a web page
 - Arm Pulls = displaying an ad upon a page access
 - Rewards = click through
 - Objective = maximize cumulative reward = maximum clicks (or find best add quickly)
PAC Bandit Objective: Informal

- **Probably Approximately Correct (PAC)**
 - Select an arm that *probably* (w/ high probability) has *approximately* the best expected reward
 - Design an algorithm that uses as few simulator calls (or pulls) as possible to guarantee this

![Diagram of Multi-Armed Bandit Problem]

\[s \]

\[a_1 \quad a_2 \quad a_k \]

\[R(s,a_1) \quad R(s,a_2) \quad \ldots \quad R(s,a_k) \]

Multi-Armed Bandit Problem
PAC Bandit Algorithms

- Let \(k \) be the number of arms, \(R_{\text{max}} \) be an upper bound on reward, and \(R^* = \max_i E[R(s, a_i)] \) (i.e. \(R^* \) is the best arm reward in expectation)

Definition (Efficient PAC Bandit Algorithm): An algorithm \(\text{ALG} \) is an efficient PAC bandit algorithm iff for any multi-armed bandit problem, for any \(0 < \delta < 1 \) and any \(0 < \varepsilon < 1 \) (these are inputs to \(\text{ALG} \)), \(\text{ALG} \) pulls a number of arms that is polynomial in \(1/\varepsilon, 1/\delta, k, \) and \(R_{\text{max}} \) and returns an arm index \(j \) such that with probability at least \(1 - \delta \)

\[
R^* - E[R(s, a_j)] \leq \varepsilon
\]

- Such an algorithm is efficient in terms of \# of arm pulls, and is probably (with probability \(1 - \delta \)) approximately correct (picks an arm with expected reward within \(\varepsilon \) of optimal).
UniformBandit Algorithm

1. Pull each arm w times (uniform pulling).
2. Return arm with best average reward.

Can we make this an efficient PAC bandit algorithm?

Aside: Additive Chernoff Bound

Let R be a random variable with maximum absolute value Z. An let $r_i, i=1,\ldots, w$ be i.i.d. samples of R.

The **Chernoff bound** gives a bound on the probability that the average of the r_i are far from $E[R]$

\[\Pr\left(E[R] - \frac{1}{w} \sum_{i=1}^{w} r_i \geq \varepsilon \right) \leq \exp\left(-\left(\frac{\varepsilon}{Z} \right)^2 w \right) \]

Equivalent Statement:

With probability at least $1 - \delta$ we have that,

\[\left| E[R] - \frac{1}{w} \sum_{i=1}^{w} r_i \right| \leq Z \sqrt{\frac{1}{w} \ln \frac{1}{\delta}} \]
Aside: Coin Flip Example

• Suppose we have a coin with probability of heads equal to p.

• Let X be a random variable where $X=1$ if the coin flip gives heads and zero otherwise. (so Z from bound is 1)

\[
E[X] = 1 \cdot p + 0 \cdot (1-p) = p
\]

• After flipping a coin w times we can estimate the heads prob. by average of x_i.

• The Chernoff bound tells us that this estimate converges exponentially fast to the true mean (coin bias) p.

\[
Pr\left(\left| p - \frac{1}{w} \sum_{i=1}^{w} x_i \right| \geq \varepsilon \right) \leq \exp\left(-\varepsilon^2 w\right)
\]
UniformBandit Algorithm

1. Pull each arm w times (uniform pulling).
2. Return arm with best average reward.

Can we make this an efficient PAC bandit algorithm?

Uniform Bandit PAC Bound

• For a single bandit arm the Chernoff bound says:

With probability at least $1 - \delta'$ we have that,

$$\left| E[R(s, a_i)] - \frac{1}{w} \sum_{j=1}^{w} r_{ij} \right| \leq R_{\text{max}} \sqrt{\frac{1}{w} \ln \frac{1}{\delta'}}$$

• Bounding the error by ε gives:

$$R_{\text{max}} \sqrt{\frac{1}{w} \ln \frac{1}{\delta'}} \leq \varepsilon \quad \text{or equivalently} \quad w \geq \left(\frac{R_{\text{max}}}{\varepsilon} \right)^2 \ln \frac{1}{\delta'}$$

• Thus, using this many samples for a single arm will guarantee an ε-accurate estimate with probability at least $1 - \delta'$
Uniform Bandit PAC Bound

- So we see that with \(w \geq \left(\frac{R_{\text{max}}}{\varepsilon} \right)^2 \ln \frac{1}{\delta} \) samples per arm, there is no more than a \(\delta' \) probability that an individual arm’s estimate will not be \(\varepsilon \)-accurate.

- But we want to bound the probability of any arm being inaccurate.

The **union bound** says that for \(k \) events, the probability that at least one event occurs is bounded by the sum of individual probabilities:

\[
\Pr(A_1 \text{ or } A_2 \text{ or } \cdots \text{ or } A_k) \leq \sum_{i=1}^{k} \Pr(A_k)
\]

- Using the above # samples per arm and the union bound (with events being “arm \(i \) is not \(\varepsilon \)-accurate”) there is no more than \(k\delta' \) probability of any arm not being \(\varepsilon \)-accurate.

- Setting \(\delta' = \frac{\delta}{k} \) all arms are \(\varepsilon \)-accurate with prob. at least \(1 - \delta \).
Uniform Bandit PAC Bound

Putting everything together we get:

\[
if \quad w \geq \left(\frac{R_{\text{max}}}{\varepsilon} \right)^2 \ln \frac{k}{\delta} \quad \text{then for all arms simultaneously}
\]

\[
\left| E[R(s, a_i)] - \frac{1}{w} \sum_{j=1}^{w} r_{ij} \right| \leq \varepsilon
\]

with probability at least \(1 - \delta \)

- That is, estimates of all actions are \(\varepsilon \)-accurate with probability at least \(1 - \delta \)

- Thus selecting estimate with highest value is approximately optimal with high probability, or PAC
Simulator Calls for UniformBandit

- Total simulator calls for PAC:
 - So we have an **efficient** PAC algorithm
 - Can we do better than this?
Non-Uniform Sampling

If an arm is really bad, we should be able to eliminate it from consideration early on.

Idea: try to allocate more pulls to arms that appear more promising.
Median Elimination Algorithm

Median Elimination

$A = \text{set of all arms}$

For $i = 1$ to …..

- Pull each arm in A w_i times
- $m = \text{median of the average rewards of the arms in } A$
- $A = A - \{\text{arms with average reward less than } m\}$
- If $|A| = 1$ then return the arm in A

Eliminates half of the arms each round.

How to set the w_i to get PAC guarantee?
Median Elimination (proof not covered)

- Theoretical values used by Median Elimination:
 \[w_i = \frac{4}{\epsilon_i^2} \ln \frac{3}{\delta_i} \quad \epsilon_i = \left(\frac{3}{4} \right)^{i-1} \cdot \frac{\epsilon}{4} \quad \delta_i = \frac{\delta}{2^i} \]

Theorem: Median Elimination is a PAC algorithm and uses a number of pulls that is at most
\[O\left(\frac{k}{\epsilon^2} \ln \frac{1}{\delta} \right) \]

Compare to \[O\left(\frac{k}{\epsilon^2} \ln \frac{k}{\delta} \right) \] for UniformBandit
PAC Summary

- Median Elimination uses $O(\log(k))$ fewer pulls than Uniform
 - Known to be asymptotically optimal (no PAC algorithm can use fewer pulls in worst case)
- PAC objective is sometimes awkward in practice
 - Sometimes we don’t know how many pulls we will have
 - Sometimes we can’t control how many pulls we get
 - Selecting ϵ and δ can be quite arbitrary
- Cumulative & simple regret partly address this
Cumulative Regret Objective

- **Problem**: find arm-pulling strategy such that the expected total reward at time n is close to the best possible (one pull per time step)
 - Optimal (in expectation) is to pull optimal arm n times
 - UniformBandit is poor choice --- waste time on bad arms
 - Must balance **exploring** machines to find good payoffs and **exploiting** current knowledge
Cumulative Regret Objective

- Theoretical results are often about “expected cumulative regret” of an arm pulling strategy.

- **Protocol:** At time step n the algorithm picks an arm a_n based on what it has seen so far and receives reward r_n (a_n and r_n are random variables).

- **Expected Cumulative Regret** ($E[Reg_n]$):
 difference between optimal expected cumulative reward and expected cumulative reward of our strategy at time n

$$E[Reg_n] = n \cdot R^* - \sum_{i=1}^{n} E[r_n]$$
UCB Algorithm for Minimizing Cumulative Regret

• \(Q(a)\) : average reward for trying action \(a\) (in our single state \(s\)) so far

• \(n(a)\) : number of pulls of arm \(a\) so far

• Action choice by UCB after \(n\) pulls:

\[
a_n = \arg \max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}
\]

• Assumes rewards in [0,1]. We can always normalize if we know max value.

\[a_n = \arg \max_a Q(a) + \sqrt{\frac{2 \ln n}{n(a)}} \]

Value Term:
favors actions that looked good historically

Exploration Term:
actions get an exploration bonus that grows with \(\ln(n)\)

Expected number of pulls of sub-optimal arm \(a\) is bounded by:

\[\frac{8}{\Delta_a^2} \ln n \]

where \(\Delta_a\) is the sub-optimality of arm \(a\)

 Doesn’t waste much time on sub-optimal arms, unlike uniform!
Theorem: The expected cumulative regret of UCB $E[Reg_n]$ after n arm pulls is bounded by $O(\log n)$

- Is this good?

Yes. The average per-step regret is $O\left(\frac{\log(n)}{n}\right)$

Theorem: No algorithm can achieve a better expected regret (up to constant factors)
What Else

- UCB is great when we care about cumulative regret
- But, sometimes all we care about is finding a good arm quickly
- This is similar to the PAC objective, but:
 - The PAC algorithms required precise knowledge of or control of # pulls
 - We would like to be able to stop at any time and get a good result with some guarantees on expected performance

- “Simple regret” is an appropriate objective in these cases
Simple Regret Objective

Protocol: At time step \(n \) the algorithm picks an “exploration” arm \(a_n \) to pull and observes reward \(r_n \) and also picks an arm index it thinks is best \(j_n \) (\(a_n, j_n \) and \(r_n \) are random variables).

- If interrupted at time \(n \) the algorithm returns \(j_n \).

Expected Simple Regret (\(E[SReg_n] \)): difference between \(R^* \) and expected reward of arm \(j_n \) selected by our strategy at time \(n \)

\[
E[SReg_n] = R^* - E[R(a_j_n)]
\]
Simple Regret Objective

- What about UCB for simple regret?
 - Intuitively we might think UCB puts too much emphasis on pulling the best arm
 - After an arm starts looking good, we might be better off trying figure out if there is indeed a better arm

Theorem: The expected simple regret of UCB after n arm pulls is upper bounded by $O(n^{-c})$ for a constant c.

Seems good, but we can do much better in theory.
Incremental Uniform (or Round Robin)

Algorithm:
- At round n pull arm with index \((k \mod n) + 1\)
- At round n return arm (if asked) with largest average reward

Theorem: The expected simple regret of Uniform after \(n\) arm pulls is upper bounded by \(O(e^{-cn})\) for a constant \(c\).

- This bound is exponentially decreasing in \(n\)!

Compared to polynomially for UCB \(O(n^{-c})\).
Can we do better?

Algorithm ϵ-Greedy : (parameter $0 < \epsilon < 1$)

- At round n, with probability ϵ pull arm with best average reward so far, otherwise pull one of the other arms at random.
- At round n return arm (if asked) with largest average reward

Theorem: The expected simple regret of ϵ-Greedy for $\epsilon = 0.5$ after n arm pulls is upper bounded by $O(e^{-cn})$ for a constant c that is larger than the constant for Uniform (this holds for “large enough” n).
Summary of Bandits in Theory

- **PAC Objective:**
 - **UniformBandit** is a simple PAC algorithm
 - **MedianElimination** improves by a factor of $\log(k)$ and is optimal up to constant factors

- **Cumulative Regret:**
 - **Uniform** is very bad!
 - **UCB** is optimal (up to constant factors)

- **Simple Regret:**
 - **UCB** shown to reduce regret at polynomial rate
 - **Uniform** reduces at an exponential rate
 - **0.5-Greedy** may have even better exponential rate
Theory vs. Practice

- The established theoretical relationships among bandit algorithms have often been useful in predicting empirical relationships.
- But not always
Theory vs. Practice

b. regret vs. number of samples