Monte-Carlo Planning: Policy Improvement

Alan Fern
Monte-Carlo Planning Outline

- Single State Case (multi-armed bandits)
 - A basic tool for other algorithms

- Monte-Carlo Policy Improvement
 - Policy rollout
 - Policy Switching

- Monte-Carlo Tree Search
 - Sparse Sampling
 - UCT and variants
Policy Improvement via Monte-Carlo

• Now consider a very large multi-state MDP.
• Suppose we have a simulator and a non-optimal policy
 • E.g. policy could be a standard heuristic or based on intuition
• Can we somehow compute an improved policy?

World Simulator

+ Base Policy

Real World

State + reward

action
Recall: Policy Improvement Theorem

\[Q_\pi(s, a) = R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V_\pi(s') \]

- The Q-value function of a policy gives expected discounted future reward of starting in state \(s \), taking action \(a \), and then following policy \(\pi \) thereafter.

- Define: \(\pi'(s) = \arg \max_a Q_\pi(s, a) \)

- **Theorem [Howard, 1960]**: For any non-optimal policy \(\pi \) the policy \(\pi' \) is a strict improvement over \(\pi \).

- Computing \(\pi' \) amounts to finding the action that maximizes the Q-function of \(\pi \)
 - Can we use the bandit idea to solve this?
Policy Improvement via Bandits

- **Idea**: define a stochastic function $\text{SimQ}(s, a, \pi)$ that we can implement and whose expected value is $Q_\pi(s, a)$

- Then use Bandit algorithm to select (approx) best action

How to implement SimQ?
Q-value Estimation

- SimQ might be implemented by simulating the execution of action \(a \) in state \(s \) and then following \(\pi \) thereafter
 - But for infinite horizon problems this would never finish
 - So we will approximate via finite horizon

- The \(h \)-horizon Q-function \(Q_\pi(s,a,h) \) is defined as:
 expected total discounted reward of starting in state \(s \), taking action \(a \), and then following policy \(\pi \) for \(h-1 \) steps

- The approximation error decreases exponentially fast in \(h \)

\[
\left| Q_\pi(s,a) - Q_\pi(s,a,h) \right| \leq \beta^h V_{\text{max}}
\]

\[
V_{\text{max}} = \frac{R_{\text{max}}}{1 - \beta}
\]
Policy Improvement via Bandits

- **Refined Idea**: Define a stochastic function $\text{SimQ}(s, a, \pi, h)$ that we can implement, whose expected value is $Q_\pi(s, a, h)$

- Use Bandit algorithm to select (approx) best action

How to implement SimQ?
Policy Improvement via Bandits

SimQ(s,a,\pi,h)

\[
\begin{align*}
 r &= R(s,a) \\
 s &= T(s,a) \\
 \text{for } i = 1 \text{ to } h-1 \\
 r &= r + \beta^i R(s, \pi(s)) \\
 s &= T(s, \pi(s))
\end{align*}
\]

Return r

- Simply simulate taking a in s and following policy for h-1 steps, returning discounted sum of rewards
- Expected value of SimQ(s,a,\pi,h) is Q_{\pi}(s,a,h) which can be made arbitrarily close to Q_{\pi}(s,a) by increasing h
Policy Improvement via Bandits

SimQ(s,a,π,h)

\[
\begin{align*}
 r &= R(s,a) \\
 s &= T(s,a) \\
 \text{for } i = 1 \text{ to } h-1 \\
 &\quad r = r + \beta^i R(s, \pi(s)) \\
 s &= T(s, \pi(s)) \\
\end{align*}
\]

Return r

Simulate a in s

Simulate h-1 steps of policy

Trajectory under \(\pi \)

Sum discount rewards = SimQ(s,a_1,\pi,h)

Sum discount rewards = SimQ(s,a_2,\pi,h)

Sum discount rewards = SimQ(s,a_k,\pi,h)
Policy Improvement via Bandits

- **Refined Idea**: define a stochastic function $\text{SimQ}(s,a,\pi,h)$ that we can implement, whose expected value is $Q_\pi(s,a,h)$

- Use Bandit algorithm to select (approx) best action

Which bandit objective/algorithm to use?
Traditional Approach: Policy Rollout

UniformRollout[π,h,w](s)

1. For each a_i run $\text{SimQ}(s,a_i,\pi,h)$ w times
2. Return action with best average of SimQ results

$\text{SimQ}(s,a_i,\pi,h)$ trajectories

Each simulates taking action a_i then following π for $h-1$ steps.

Samples of $\text{SimQ}(s,a_i,\pi,h)$

$q_{11} \quad q_{12} \ldots q_{1w} \quad q_{21} \quad q_{22} \ldots q_{2w} \quad q_{k1} \quad q_{k2} \ldots q_{kw}$
Executing Rollout in Real World

Real world state/action sequence

Simulated experience

run policy rollout

a₁ a₂ aₖ

s → a₂ → ... → aₖ

Simulated experience

run policy rollout

a₁ a₂ aₖ
Uniform Policy Rollout: # of Simulator Calls

- For each action \(w \) calls to SimQ, each using \(h \) sim calls
- Total of \(kwh \) calls to the simulator

SimQ(\(s, a_i, \pi, h \)) trajectories
Each simulates taking action \(a_i \) then following \(\pi \) for \(h-1 \) steps.
Let a^* be the action that maximizes the true Q-function $Q_\pi(s,a)$.

Let a' be the action returned by $\text{UniformRollout}[\pi,h,w](s)$.

Putting the PAC bandit result together with the finite horizon approximation we can derive the following:

$$w \geq \left(\frac{R_{\text{max}}}{\varepsilon} \right)^2 \ln \frac{k}{\delta} \text{ then with probability at least } 1 - \delta$$

$$\left| Q_\pi(s,a^*) - Q_\pi(s,a') \right| \leq \varepsilon + \beta^h V_{\text{max}}$$

But does this guarantee that the value of $\text{UniformRollout}[\pi,h,w](s)$ will be close to the value of π'?
Policy Rollout: Quality

- How good is UniformRollout[π, h, w] compared to π'?

- **Bad News.** In general for a fixed h and w there is always an MDP such that the quality of the rollout policy is arbitrarily worse than π'.

- The example MDP is somewhat involved, but shows that even small error in Q-value estimates can lead to large performance gaps compared to π'.

 - But this result is quite pathological
Policy Rollout: Quality

- How good is UniformRollout[\(\pi, h, w\)] compared to \(\pi'\)?
- **Good News.** If we make an assumption about the MDP, then it is possible to select \(h\) and \(w\) so that the rollout quality is close to \(\pi'\).
 - This is a bit involved.
 - Assume a lower bound on the difference between the best Q-value and the second best Q-value.
- **More Good News.** It is possible to select \(h\) and \(w\) so that Rollout[\(\pi, h, w\)] is (approximately) no worse than \(\pi\) for any MDP.
 - So at least rollout won’t hurt compared to the base policy.
 - At the same time it has the potential to significantly help.
Non-Uniform Policy Rollout

- Should we consider minimizing cumulative regret?

No! We really only care about finding an (approx) best arm.
Non-Uniform Policy Rollout

PAC Setting: use **MedianElimination**

(parameterized by ϵ and δ instead of w)

- Often we are given a budget on number of samples (i.e. time per decision).
- MedianElimination not applicable.
Non-Uniform Policy Rollout

Simple Regret: use \(\varepsilon \)-Greedy

(parameterized by budget \(n \) on # of pulls)

- Call this \(\varepsilon \)-Rollout\([\pi, h, n]\)
- \(n \) is number of samples per step
- For \(\varepsilon = 0.5 \) we might expect it to be better than UniformRollout for same # of total samples.
Multi-Stage Rollout

• In what follows we will use the notation $\text{Rollout}[\pi]$ to refer to either UniformRollout[π, h, w] or ϵ-Rollout[π, h, n].

• A single call to $\text{Rollout}[\pi](s)$ approximates one iteration of policy iteration initialized at policy π
 ▲ But only computes the action for state s rather than all states (as done by full policy iteration)!

• We can use more computation time to approximate multiple iterations of policy iteration via nesting calls to Rollout.

• Gives a way to use more time in order to improve performance.
Each step requires khw simulator calls for Rollout policy

Trajectories of $\text{SimQ}(s,a_i,\text{Rollout}[\pi], h)$

- Two stage: compute rollout policy of “rollout policy of π”
- Requires $(khw)^2$ calls to the simulator for 2 stages
- In general exponential in the number of stages
Rollout Summary

• We often are able to write simple, mediocre policies
 ▶ Network routing policy
 ▶ Policy for card game of Hearts
 ▶ Policy for game of Backgammon
 ▶ Solitaire playing policy

• Policy rollout is a general and easy way to improve upon such policies given a simulator

• Often observe substantial improvement, e.g.
 ▶ Compiler instruction scheduling
 ▶ Backgammon
 ▶ Network routing
 ▶ Combinatorial optimization
 ▶ Game of GO
 ▶ Solitaire
Example: Rollout for Solitaire [Yan et al. NIPS’04]

<table>
<thead>
<tr>
<th>Player</th>
<th>Success Rate</th>
<th>Time/Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Expert</td>
<td>36.6%</td>
<td>20 min</td>
</tr>
<tr>
<td>(naïve) Base Policy</td>
<td>13.05%</td>
<td>0.021 sec</td>
</tr>
<tr>
<td>1 rollout</td>
<td>31.20%</td>
<td>0.67 sec</td>
</tr>
<tr>
<td>2 rollout</td>
<td>47.6%</td>
<td>7.13 sec</td>
</tr>
<tr>
<td>3 rollout</td>
<td>56.83%</td>
<td>1.5 min</td>
</tr>
<tr>
<td>4 rollout</td>
<td>60.51%</td>
<td>18 min</td>
</tr>
<tr>
<td>5 rollout</td>
<td>70.20%</td>
<td>1 hour 45 min</td>
</tr>
</tbody>
</table>

- Multiple levels of rollout can payoff but is expensive
Monte-Carlo Planning Outline

• Single State Case (multi-armed bandits)
 ▲ A basic tool for other algorithms

• Monte-Carlo Policy Improvement
 ▲ Policy rollout
 ▲ Policy Switching

• Monte-Carlo Tree Search
 ▲ Sparse Sampling
 ▲ UCT and variants
Another Useful Technique: Policy Switching

• Sometimes policy rollout can be too expensive when the number of actions is large (time scales linearly with number of actions)

• Sometimes we have multiple base policies and it is hard to pick just one to use for rollout.

• Policy switching helps deal with both of these issues.
Another Useful Technique: Policy Switching

• Suppose you have a set of base policies \(\{\pi_1, \pi_2, \ldots, \pi_M\} \)

• Also suppose that the best policy to use can depend on the specific state of the system and we don’t know how to select.

• Policy switching is a simple way to select which policy to use at a given step via a simulator
Another Useful Technique: Policy Switching

- The stochastic function $\text{Sim}(s, \pi, h)$ simply samples the h-horizon value of π starting in state s
- Implement by simply simulating π starting in s for h steps and returning discounted total reward
- Use Bandit algorithm to select best policy and then select action chosen by that policy
Uniform Policy Switching

UniformPolicySwitch[\{\pi_1, \pi_2, \ldots, \pi_M\}, h, w](s)

1. For each \pi_i run Sim(s, \pi_i, h) w times
2. Let i* be index of policy with best average result
3. Return action \pi_i^*(s)

Sim(s, \pi_i, h) trajectories
Each simulates following \pi_i for h steps.

Discounted cumulative rewards

\begin{align*}
V_1^1 & \quad V_1^2 & \quad \ldots & \quad V_1^w \\
V_2^1 & \quad V_2^2 & \quad \ldots & \quad V_2^w \\
\vdots & \quad \vdots & \quad \ddots & \quad \vdots \\
V_M^1 & \quad V_M^2 & \quad \ldots & \quad V_M^w
\end{align*}
Executing Policy Switching in Real World

Real world state/action sequence

Simulated experience

\(\pi_2(s) \)
\(\pi_k(s') \)

run policy rollout

run policy rollout
Uniform Policy Switching: Simulator Calls

For each policy use \(w \) calls to Sim, each using \(h \) simulator calls

Total of \(Mhw \) calls to the simulator

Does not depend on number of actions!
\(\epsilon\)-Greedy Policy Switching

- Similar to rollout we can have a non-uniform version that takes a total number of trajectories \(n\) as an argument.

\[
\epsilon\text{-PolicySwitch}[\{\pi_1, \ldots, \pi_M\}, h, n]
\]

Use \(\epsilon\)-Greedy as the bandit algorithm for \(n\) pulls and return best arm/policy.
Policy Switching: Quality

• Let π_{ps} denote the ideal switching policy
 ▲ Always pick the best policy index at any state

Theorem: For any state s, $\max_i V_{\pi_i}(s) \leq V_{\pi_{ps}}(s)$.

• The value of the switching policy is at least as good as the best single policy in the set
 ▲ It will often perform better than any single policy in set.
 ▲ For non-ideal case, were bandit algorithm only picks approximately the best arm we can add an error term to the bound.
Proof

Theorem: For any state s, $\max_i V_{\pi_i}(s) \leq V_{\pi_{ps}}(s)$.

We’ll use the following property.

Proposition: For any policy π and value function V, if $V \leq B_\pi[V]$, then $V \leq V_\pi$.

Recall $B_\pi[V](s) = R(s) + \sum_s T(s, \pi(s), s') \cdot V(s')$ is the restricted Bellman backup.

So all we need to do is prove that $\max_i V_{\pi_i} \leq B_{\pi_{ps}} \left(\max_i V_{\pi_i} \right)$ since this will imply that $\max_i V_{\pi_i} \leq V_{\pi_{ps}}$ as desired.
Proof \((to\ simply\ notation\ and\ without\ loss\ of\ generality,\ assume\ rewards\ only\ depend\ on\ state\ and\ are\ deterministic)\)

Prove that \(\max_i V_{\pi_i} \leq B_{\pi_{ps}} \left[\max_i V_{\pi_i}\right]\)

Let \(i^*\) be the index of the best policy in state \(s\).

\[
B_{\pi_{ps}} \left[\max_i V_{\pi_i}\right](s) = R(s) + \sum_{s'} T(s, \pi_{ps}(s), s') \cdot \max_i V_{\pi_i}(s')
\]

\[
\geq R(s) + \max_i \sum_{s'} T(s, \pi_{i^*}(s), s') \cdot V_{\pi_i}(s')
\]

\[
= \max_i \left[R(s) + \sum_{s'} T(s, \pi_{i^*}(s), s') \cdot V_{\pi_i}(s') \right]
\]

\[
\geq \max_i \left[R(s) + \sum_{s'} T(s, \pi_i(s), s') \cdot V_{\pi_i}(s') \right]
\]

\[
= \max_i V_{\pi_i}(s)
\]
Policy Switching Summary

• Easy way to produce an improved policy from a set of existing policies.
 ▲ Will not do any worse than the best policy in your set.

• Complexity does not depend on number of actions.
 ▲ So can be practical even when action space is huge, unlike policy rollout.

• Can combine with rollout for further improvement
 ▲ Just apply rollout to the switching policy.