Monte-Carlo Planning Outline

• Single State Case (multi-armed bandits)
 ▶ A basic tool for other algorithms

• Monte-Carlo Policy Improvement
 ▶ Policy rollout
 ▶ Policy Switching

• Monte-Carlo Look-Ahead Trees
 ▶ Sparse Sampling
 ▶ Sparse Sampling via Recursive Bandits
 ▶ UCT and variants
Sparse Sampling

• Rollout and policy switching do not guarantee optimality or near optimality
 ▶ Guarantee relative performance to base policies

• Can we develop Monte-Carlo methods that give us near optimal policies?
 ▶ With computation that does NOT depend on number of states!
 ▶ This was an open problem until late 90’s.

• In deterministic games and search problems it is common to build a look-ahead tree at a state to select best action
 ▶ Can we generalize this to general stochastic MDPs?
Online Planning with Look-Ahead Trees

- At each state we encounter in the environment we build a **look-ahead tree of depth** \(h \) and use it to estimate optimal Q-values of each action
 - Select action with highest Q-value estimate

- \(s = \) current state of environment

- Repeat
 - \(T = \text{BuildLookAheadTree}(s) \);; sparse sampling or UCT
 - tree provides Q-value estimates for root action
 - \(a = \text{BestRootAction}(T) \);; action with best Q-value
 - Execute action \(a \) in environment
 - \(s \) is the resulting state
Planning with Look-Ahead Trees

Real world state/action sequence

Build look-ahead tree

Build look-ahead tree

\[
\begin{align*}
R(s_{11}, a_1) & R(s_{11}, a_2) R(s_{1w}, a_1) R(s_{1w}, a_2) R(s_{21}, a_1) R(s_{21}, a_2) R(s_{2w}, a_1) R(s_{2w}, a_2) \\
R(s_{11}, a_1) & R(s_{11}, a_2) R(s_{1w}, a_1) R(s_{1w}, a_2) R(s_{21}, a_1) R(s_{21}, a_2) R(s_{2w}, a_1) R(s_{2w}, a_2)
\end{align*}
\]
Sparse Sampling

• Again focus on finite-horizons
 ▲ Arbitrarily good approximation for large enough horizon \(h \)

• \(h \)-horizon optimal Q-function (denoted \(Q^* \))
 ▲ Value of taking \(a \) in \(s \) and following \(\pi^* \) for \(h-1 \) steps
 ▲ \(Q^*(s,a,h) = E[R(s,a) + \beta V^*(T(s,a),h-1)] \)

• Key identity (Bellman’s equations):
 ▲ \(V^*(s,h) = \max_a Q^*(s,a,h) \)
 ▲ \(\pi^*(x) = \arg\max_a Q^*(x,a,h) \)

• Sparse sampling estimates Q-values by building sparse expectimax tree
Sparse Sampling

• Will present two views of algorithm
 ▲ The first is perhaps easier to digest and doesn’t appeal to bandit algorithms
 ▲ The second is more generalizable and can leverage advances in bandit algorithms

1. Approximation to the full expectimax tree

2. Recursive bandit algorithm
Expectimax Tree

- **Key definitions:**
 - $V^*(s,h) = \max_a Q^*(s,a,h)$
 - $Q^*(s,a,h) = E[R(s,a) + \beta V^*(T(s,a),h-1)]$

- **Expand definitions recursively to compute $V^*(s,h)$**

 $V^*(s,h) = \max_{a_1} Q(s,a_1,h)$

 $= \max_{a_1} E[R(s,a_1) + \beta V^*(T(s,a_1),h-1)]$

 $= \max_{a_1} E[R(s,a_1) + \beta \max_{a_2} E[R(T(s,a_1),a_2) + Q^*(T(s,a_1),a_2,h-1)]]$

 $= \ldots$

- **Can view this expansion as an expectimax tree**
 - Each expectation is a weighted sum over states
Exact Expectimax Tree for $V^*(s,H)$

Alternate max & expectation

Compute root V^* and Q^* via recursive procedure
Depends on size of the state-space. Bad!
Replace expectation with average over w samples w will typically be much smaller than n.

\[V^*(s, H) \]

\[Q^*(s, a, H) \]
We could create an entire tree at each decision step and return action with highest Q^* value at root.

High memory cost!
Sparse Sampling [Kearns et. al. 2002]

The Sparse Sampling algorithm computes root value via depth first expansion
Return value estimate $V^*(s, h)$ of state s and estimated optimal action a^*

SparseSampleTree(s, h, w)

If $h=0$ Return [0, null]

For each action a in s

$Q^*(s, a, h) = 0$

For $i = 1$ to w

Simulate taking a in s resulting in s_i and reward r_i

$[V^*(s_i, h-1), a^*] = \text{SparseSample}(s_i, h-1, w)$

$Q^*(s, a, h) = Q^*(s, a, h) + r_i + \beta V^*(s_i, h-1)$

$Q^*(s, a, h) = Q^*(s, a, h) / w$;; estimate of $Q^*(s, a, h)$

$V^*(s, h) = \max_a Q^*(s, a, h)$;; estimate of $V^*(s, h)$

$a^* = \arg\max_a Q^*(s, a, h)$

Return $[V^*(s, h), a^*]$
Sparse Sampling (Cont’d)

• For a given desired accuracy, how large should sampling width and depth be?
 ▲ Answered: Kearns, Mansour, and Ng (1999)

• **Good news:** gives values for w and H to achieve PAC guarantee on optimality
 ▲ Values are independent of state-space size!
 ▲ First near-optimal general MDP planning algorithm whose runtime didn’t depend on size of state-space

• **Bad news:** the theoretical values are typically still intractably large---also exponential in H
 ▲ Exponential in H is the best we can do in general
 ▲ **In practice:** use small H & heuristic value at leaves
Sparse Sampling w/ Leaf Heuristic

Let \(\hat{V}(s) \) be a heuristic value function estimator. Generally this is a very fast function, since it is evaluated at all leaves.

\[
\text{SparseSampleTree}(s, h, w)
\]

If \(h = 0 \) Return \([0, \text{null}]\)
If \(h = 0 \) Return \([\hat{V}(s), \text{null}]\)

For each action \(a \) in \(s \)

\[Q^*(s, a, h) = 0 \]

For \(i = 1 \) to \(w \)

Simulate taking \(a \) in \(s \) resulting in \(s_i \) and reward \(r_i \)

\[[V^*(s_i, h-1), a^*] = \text{SparseSample}(s_i, h-1, w) \]

\[Q^*(s, a, h) = Q^*(s, a, h) + r_i + \beta V^*(s_i, h-1) \]

\[Q^*(s, a, h) = \frac{Q^*(s, a, h)}{w} \quad ;\; \text{estimate of } Q^*(s, a, h) \]

\[V^*(s, h) = \max_a Q^*(s, a, h) \quad ;\; \text{estimate of } V^*(s, h) \]

\[a^* = \arg\max_a Q^*(s, a, h) \]

Return \([V^*(s, h), a^*]\)
Often a shallow sparse sampling search with a simple \hat{V} at leaves can be very effective.
Sparse Sampling

• Will present two views of algorithm
 ▶ The first is perhaps easier to digest
 ▶ The second is more generalizable and can leverage advances in bandit algorithms

1. Approximation to the full expectimax tree

2. Recursive bandit algorithm
 ▶ Consider horizon H=2 case first
 ▶ Show for general H
Sparse Sampling Tree

$Q^*(s,a_1,H)$ sampled average

Each max node in tree is just a bandit problem.
I.e. must choose action with highest $Q^*(s,a,h)$---approximate via bandit.
Consider 2-horizon problem

\[V^*(s_{11}, 1) \]

\[h=1: \text{Traditional bandit problem (stochastic arm reward } R(s_{11}, a_i)) \]

Implement bandit alg. to return estimated expected reward of best arm
Bandit View of Sparse Sampling (H=2)

h=2: higher level bandit problem (finds arm with best Q* value for h=2)

Pulling an arm returns a Q-value estimate by: 1) sample next state s’, 2) run h=1 bandit at s’, return immediate reward + estimated value of s’
Consider UniformBandit using \(w\) pulls per arm.
Bandit View: General Horizon H

- \(\text{SimQ}^*(s,a,h) \): we want this to return a random sample of the immediate reward and then \(h-1 \) value of resulting state when executing action \(a \) in \(s \).

- If this is (approx) satisfied then bandit algorithm will select near optimal arm.
Bandit View: General Horizon H

Definition:

\[\text{BanditValue}(A_1, A_2, ..., A_k) \]
returns estimated expected value of best arm (e.g. via UniformBandit)

\[
\begin{align*}
\text{SimQ}^*(s, a_1, h) \\
\text{SimQ}^*(s, a_2, h) \\
\text{SimQ}^*(s, a_k, h)
\end{align*}
\]

\[
\begin{align*}
\text{SimQ}^*(s, a, h) &= R(s, a) \\
&\text{If } h=1 \text{ then Return } r \\
s' &= T(s, a) \\
\text{Return } r + \beta & \text{BanditValue(SimQ}^*(s', a_1, h - 1), ..., \text{SimQ}^*(s', a_k, h - 1))
\end{align*}
\]
Recursive UniformBandit: General H

Consider UniformBandit

and so on Clearly replicating Sparse Sampling.
Recursive Bandit: General Horizon H

SelectRootAction(s,H)
Return BanditAction(SimQ*(s, a₁, H), ..., SimQ*(s, aₖ, H))

SimQ*(s,a,h)

\[r = R(s,a) \]

If h=1 then Return r

\[s' = T(s,a) \]

Return \[r + \beta \text{BanditValue}(\text{SimQ}*(s', a₁, h - 1), ..., \text{SimQ}*(s', aₖ, h - 1)) \]

• When bandit is UniformBandit same as Sparse Sampling
• Can plug in more advanced bandit algorithms for possible improvement!
Uniform vs. Non-Uniform Bandits

- Sparse sampling wastes time on bad parts of tree
 - Devotes equal resources to each state encountered in the tree
 - Would like to focus on most promising parts of tree
- But how to control exploration of new parts of tree vs. exploiting promising parts?
- Use non-uniform bandits
Non-Uniform Recursive Bandits

UCB-Based Sparse Sampling

- Use UCB as bandit algorithm
- There is an analysis of this algorithm’s bias (it goes to zero)

Recursive UCB: General H

UCB in Recursive Bandit
Non-UniformRecursive Bandits

• UCB-Based Sparse Sampling
 ▲ Is UCB the right choice?
 ▲ We don’t really care about cumulative regret.
 ▲ My Guess: part of the reason UCB was tried was for purposes of leveraging its analysis

• ϵ — Greedy Sparse Sampling
 ▲ Use ϵ — Greedy as the bandit algorithm
 ▲ I haven’t seen this in the literature
 ▲ Might be better in practice since it is more geared to simple regret
 ▲ This would raise issues in the analysis (beyond the scope of this class).
Non-Uniform Recursive Bandits

• **Good News:** we might expect to improve over pure Sparse Sampling by changing the bandit algorithm

• **Bad News:** this recursive bandit approach has poor “anytime behavior”, which is often important in practice

• **Anytime Behavior:** good anytime behavior roughly means that an algorithm should be able to use small amounts of additional time to get small improvements
 ▲ What about these recursive bandits?
Recursive UCB: General H

- After pulling a single arm at root we wait for an H-1 recursive tree expansion until getting the result.
Non-Uniform Recursive Bandits

• Information at the root only increases after each of the expensive root arm pulls
 ▶ Much time passes between these pulls

• Thus, small amounts of additional time does not result in any additional information at root!
 ▶ Thus, poor anytime behavior
 ▶ Running for 10sec could essentially the same as running for 10min (for large enough H)

• Can we improve the anytime behavior?
Monte-Carlo Planning Outline

• Single State Case (multi-armed bandits)
 ▶ A basic tool for other algorithms

• Monte-Carlo Policy Improvement
 ▶ Policy rollout
 ▶ Policy Switching

• Monte-Carlo Look-Ahead Trees
 ▶ Sparse Sampling
 ▶ Sparse Sampling via Recursive Bandits
 ▶ Monte Carlo Tree Search: UCT and variants
UCT Algorithm

- UCT is an instance of **Monte-Carlo Tree Search**
 - Applies bandit principles in this framework
 - Similar theoretical properties to sparse sampling
 - Much better **anytime behavior** than sparse sampling

- Famous for yielding a major advance in computer Go

- A growing number of success stories
 - Practical successes still not understood so well

Bandit Based Monte-Carlo Planning. (2006).
Levente Kocsis & Csaba Szepesvari. European Conference, on Machine Learning,
Monte-Carlo Tree Search

- Builds a sparse look-ahead tree rooted at current state by repeated Monte-Carlo simulation of a “rollout policy”

- During construction each tree node stores:
 - state-visitiation count $n(s)$
 - action counts $n(s,a)$
 - action values $Q(s,a)$

- Repeat until time is up
 1. Execute rollout policy starting from root until horizon (generates a state-action-reward trajectory)
 2. Add first node not in current tree to the tree
 3. Update statistics of each tree node s on trajectory
 - Increment $n(s)$ and $n(s,a)$ for selected action a
 - Update $Q(s,a)$ by total reward observed after the node

What is the rollout policy?
Rollout Policies

- Monte-Carlo Tree Search algorithms mainly differ on their choice of rollout policy.

- Rollout policies have two distinct phases:
 - **Tree policy**: selects actions at nodes already in tree (each action must be selected at least once).
 - **Default policy**: selects actions after leaving tree.

- **Key Idea**: the tree policy can use statistics collected from previous trajectories to intelligently expand tree in most promising direction.
 - Rather than uniformly explore actions at each node.
At a leaf node tree policy selects a random action then executes default policy.

Initial tree is single leaf:

Assume all non-zero reward occurs at terminal nodes.
Must select each action at a node at least once

Iteration 2

Current World State

Default Policy

Terminal (reward = 0)

new tree node
Must select each action at a node at least once

Iteration 3

Current World State

1/2

1

0
When all node actions tried once, select action according to tree policy

Iteration 3

Current World State

![Tree Diagram]

Tree Policy
When all node actions tried once, select action according to tree policy

Iteration 3

Current World State

Tree Policy

Default Policy

new tree node
When all node actions tried once, select action according to tree policy

Iteration 4

Current World State

Tree Policy

Node Actions:
- 1/3
- 1/2
- 0

0
When all node actions tried once, select action according to tree policy.

Iteration 4

Current World State

```
  1/3
   /  \
  1/2  0
 /    /
0  0  0
```

1
When all node actions tried once, select action according to tree policy

Current World State

Tree Policy

What is an appropriate tree policy?
Default policy?
UCT Algorithm [Kocsis & Szepesvari, 2006]

- Basic UCT uses random default policy
 - In practice often use hand-coded or learned policy

- Tree policy is based on UCB:
 - $Q(s,a)$: average reward received in current trajectories after taking action a in state s
 - $n(s,a)$: number of times action a taken in s
 - $n(s)$: number of times state s encountered

$$
\pi_{UCT}(s) = \arg\max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}}
$$

Theoretical constant that is empirically selected in practice
(theoretical results based on c equal to horizon H)
When all state actions tried once, select action according to tree policy

\[\pi_{UCT}(s) = \arg \max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}} \]
When all node actions tried once, select action according to tree policy

\[
\pi_{UCT}(s) = \arg\max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}}
\]
When all node actions tried once, select action according to tree policy

\[
\pi_{UCT}(s) = \arg\max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}}
\]
When all node actions tried once, select action according to tree policy

\[
\pi_{UCT}(s) = \arg \max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}}
\]
When all node actions tried once, select action according to tree policy

\[\pi_{UCT}(s) = \arg \max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}} \]
When all node actions tried once, select action according to tree policy

\[
\pi_{UCT}(s) = \arg \max_a Q(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}}
\]
UCT Recap

• To select an action at a state s
 ▶ Build a tree using N iterations of monte-carlo tree search
 ▶ Default policy is uniform random
 ▶ Tree policy is based on UCB rule
 ▶ Select action that maximizes $Q(s,a)$
 (note that this final action selection does not take the exploration term into account, just the Q-value estimate)

• The more simulations the more accurate
Computer Go

9x9 (smallest board)

19x19 (largest board)

- “Task Par Excellence for AI” (Hans Berliner)
- “New Drosophila of AI” (John McCarthy)
- “Grand Challenge Task” (David Mechner)
A Brief History of Computer Go

- **2005**: Computer Go is impossible!
- **2006**: UCT invented and applied to 9x9 Go *(Kocsis, Szepesvari; Gelly et al.)*
- **2007**: Human master level achieved at 9x9 Go *(Gelly, Silver; Coulom)*
- **2008**: Human grandmaster level achieved at 9x9 Go *(Teytaud et al.)*

Computer GO Server rating over this period:
1800 ELO → 2600 ELO
Other Successes

- Klondike Solitaire (wins 40% of games)
- General Game Playing Competition
- Real-Time Strategy Games
- Combinatorial Optimization

List is growing

Usually extend UCT in some ways
Some Improvements

- Use domain knowledge to handcraft a more intelligent default policy than random
 - E.g. don’t choose obviously stupid actions
 - In Go a fast hand-coded default policy is used

- Learn a heuristic function to evaluate positions
 - Use the heuristic function to initialize leaf nodes (otherwise initialized to zero)
Other bandits?

- UCT was partly motivated by the question of how to use a UCB-like rule for tree search.
 - It is questionable whether UCB is the best choice for a tree policy.

- Root Node:
 - We only care about selecting the best action.
 - Suggests trying ϵ-Greedy at root.

- Non-Root Nodes:
 - The cumulative reward at these nodes is used as the value estimate by parent nodes.
 - Suggests we would like a small cumulative regret.
 - Suggests UCB might be more appropriate.
Varying the Root Bandit

Recent work has considered such a UCT variant
- Use 0.5-Greedy as tree policy at root and UCB at non-root nodes
- They also consider some other alternatives at the root that are more tuned to simple regret
- The results in that paper show that this simple change can improve performance significantly
 - The generality of this result remains to be seen

Results in the Sailing Domain

- UCB at root
- 0.5-Greedy at root
Summary

• When you have a tough planning problem and a simulator
 ▲ Try Monte-Carlo planning

• Basic principles derive from the multi-arm bandit

• Policy rollout and switching are great way to exploit existing policies and make them better

• If a good heuristic exists, then shallow sparse sampling can give good results

• UCT is often quite effective especially when combined with domain knowledge