RL for Large State Spaces: Value Function Approximation

Alan Fern

* Based in part on slides by Daniel Weld
Large State Spaces

• When a problem has a large state space we cannot any longer represent the V or Q functions as explicit tables

• Even if we had enough memory
 ▲ Never enough training data!
 ▲ Learning takes too long

• What to do??
Function Approximation

• Never enough training data!
 ▲ Must generalize what is learned from one situation to other “similar” new situations

• Idea:
 ▲ Instead of using large table to represent V or Q, use a parameterized function
 ■ The number of parameters should be small compared to number of states (generally exponentially fewer parameters)
 ▲ Learn parameters from experience
 ▲ When we update the parameters based on observations in one state, then our V or Q estimate will also change for other similar states
 ■ I.e. the parameterization facilitates generalization of experience
Linear Function Approximation

- Define a set of state features \(f_1(s), \ldots, f_n(s) \)
 - The features are used as our representation of states
 - States with similar feature values will be considered to be similar

- A common approximation is to represent \(V(s) \) as a weighted sum of the features (i.e. a linear approximation)
 \[
 \hat{V}_\theta(s) = \theta_0 + \theta_1 f_1(s) + \theta_2 f_2(s) + \ldots + \theta_n f_n(s)
 \]

- The approximation accuracy is fundamentally limited by the information provided by the features

- Can we always define features that allow for a perfect linear approximation?
 - Yes. Assign each state an indicator feature. (i.e. i’th feature is 1 iff i’th state is present and \(\theta_i \) represents value of i’th state)
 - Of course this requires far too many features and gives no generalization.
Example

- Grid with no obstacles, deterministic actions U/D/L/R, no discounting, -1 reward everywhere except +10 at goal
- Features for state \(s=(x,y) \): \(f_1(s)=x, f_2(s)=y \) (just 2 features)
- \(V(s) = \theta_0 + \theta_1 x + \theta_2 y \)
- Is there a good linear approximation?
 - Yes.
 - \(\theta_0 = 10, \theta_1 = -1, \theta_2 = -1 \)
 - (note upper right is origin)

- \(V(s) = 10 - x - y \) subtracts Manhattan dist. from goal reward
But What If We Change Reward …

- $V(s) = \theta_0 + \theta_1 x + \theta_2 y$
- Is there a good linear approximation?
 - No.
But What If…

• \(V(s) = \theta_0 + \theta_1 x + \theta_2 y + \theta_3 z \)

• Include new feature \(z \)

 \[z = |3-x| + |3-y| \]

 \(z \) is dist. to goal location

• Does this allow a good linear approx?

 \[\theta_0 = 10, \theta_1 = \theta_2 = 0, \theta_3 = -1 \]
Linear Function Approximation

• Define a set of features \(f_1(s), \ldots, f_n(s) \)
 ▲ The features are used as our representation of states
 ▲ States with similar feature values will be treated similarly
 ▲ More complex functions require more complex features

\[
\hat{V}_\theta(s) = \theta_0 + \theta_1 f_1(s) + \theta_2 f_2(s) + \ldots + \theta_n f_n(s)
\]

• Our goal is to learn good parameter values (i.e. feature weights) that approximate the value function well
 ▲ How can we do this?
 ▲ Use TD-based RL and somehow update parameters based on each experience.
TD-based RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
3. Update estimated model (if model is not available)
4. Perform TD update for each parameter
 \[\theta_i \leftarrow ? \]
5. Goto 2

What is a “TD update” for a parameter?
Aside: Gradient Descent

- Given a function \(f(\theta_1, \ldots, \theta_n) \) of \(n \) real values \(\theta = (\theta_1, \ldots, \theta_n) \) suppose we want to minimize \(f \) with respect to \(\theta \)
- A common approach to doing this is gradient descent
- The gradient of \(f \) at point \(\theta \), denoted by \(\nabla_{\theta} f(\theta) \), is an \(n \)-dimensional vector that points in the direction where \(f \) increases most steeply at point \(\theta \)
- Vector calculus tells us that \(\nabla_{\theta} f(\theta) \) is just a vector of partial derivatives
 \[
 \nabla_{\theta} f(\theta) = \left[\frac{\partial f(\theta)}{\partial \theta_1}, \ldots, \frac{\partial f(\theta)}{\partial \theta_n} \right]
 \]
 where
 \[
 \frac{\partial f(\theta)}{\partial \theta_i} = \lim_{\varepsilon \to 0} \frac{f(\theta_1, \ldots \theta_{i-1}, \theta_i + \varepsilon, \theta_{i+1}, \ldots, \theta_n) - f(\theta)}{\varepsilon}
 \]
- Decrease \(f \) by moving \(\theta \) in negative gradient direction
Aside: Gradient Descent for Squared Error

- Suppose that we have a sequence of states and target values for each state: \(\langle s_1, v(s_1) \rangle, \langle s_2, v(s_2) \rangle, \ldots \)
 - E.g. produced by the TD-based RL loop

- Our goal is to minimize the sum of squared errors between our estimated function and each target value:

 \[
 E_j = \frac{1}{2} \left(\hat{V}_\theta(s_j) - v(s_j) \right)^2
 \]

 - squared error of example j
 - our estimated value for j’th state
 - target value for j’th state

- After seeing j’th state the **gradient descent rule** tells us that we can decrease error by updating parameters by:

 \[
 \theta_i \leftarrow \theta_i - \alpha \frac{\partial E_j}{\partial \theta_i}
 \]

 - learning rate
Aside: continued

\[\theta_i \leftarrow \theta_i - \alpha \frac{\partial E_j}{\partial \theta_i} = \theta_i - \alpha \left(\hat{V}_\theta(s_j) - v(s_j) \right) \frac{\partial \hat{V}_\theta(s_j)}{\partial \theta_i} \]

\[E_j = \frac{1}{2} \left(\hat{V}_\theta(s_j) - v(s_j) \right)^2 \]

• For a linear approximation function:

\[\hat{V}_\theta(s) = \theta_1 + \theta_1 f_1(s) + \theta_2 f_2(s) + \ldots + \theta_n f_n(s) \]

\[\frac{\partial \hat{V}_\theta(s_j)}{\partial \theta_i} = f_i(s_j) \]

• Thus the update becomes: \[\theta_i \leftarrow \theta_i + \alpha \left(v(s_j) - \hat{V}_\theta(s_j) \right) f_i(s_j) \]

• For linear functions this update is guaranteed to converge to best approximation for suitable learning rate schedule
\[\theta_i \leftarrow \theta_i - \alpha \frac{\partial E_j}{\partial \theta_i} = \theta_i - \alpha \frac{\partial E_j}{\partial \hat{V}_\theta(s_j)} \frac{\partial \hat{V}_\theta(s_j)}{\partial \theta_i} \]

\[E_j = \frac{1}{2} (\hat{V}_\theta(s_j) - \nu(s_j))^2 \]

\[\hat{V}_\theta(s_j) - \nu(s_j) \]

depends on form of approximator

- For a linear approximation function:
 \[\hat{V}_\theta(s) = \theta_1 + \theta_1 f_1(s) + \theta_2 f_2(s) + \ldots + \theta_n f_n(s) \]
 \[\frac{\partial \hat{V}_\theta(s_j)}{\partial \theta_i} = f_i(s_j) \]

- Thus the update becomes:
 \[\theta_i \leftarrow \theta_i + \alpha \left(\nu(s_j) - \hat{V}_\theta(s_j) \right) f_i(s_j) \]

- For linear functions this update is guaranteed to converge to best approximation for suitable learning rate schedule
TD-based RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE) Transition from s to s’
3. Update estimated model
4. Perform TD update for each parameter
 \[\theta_i \leftarrow \theta_i + \alpha \left(v(s) - \hat{V}_{\theta}(s) \right) f_i(s) \]
5. Goto 2

What should we use for “target value” v(s)?

- Use the TD prediction based on the next state s’
 \[v(s) = R(s) + \beta \hat{V}_{\theta}(s') \]

This is the same as previous TD method only with approximation.
TD-based RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
3. Update estimated model
4. Perform TD update for each parameter
 \[\theta_i \leftarrow \theta_i + \alpha \left(R(s) + \beta \hat{V}_\theta(s') - \hat{V}_\theta(s) \right) f_i(s) \]
5. Goto 2

- Step 2 requires a model to select greedy action
- For some applications (e.g. Backgammon as we will see later) it is easy to get a model (but not easy to get a policy)
- For others it is difficult to get a good model
Q-function Approximation

• Define a set of features over state-action pairs: $f_1(s,a), \ldots, f_n(s,a)$
 - State-action pairs with similar feature values will be treated similarly
 - More complex functions require more complex features

$$\hat{Q}_\theta(s,a) = \theta_0 + \theta_1 f_1(s,a) + \theta_2 f_2(s,a) + \ldots + \theta_n f_n(s,a)$$

Features are a function of states and actions.

• Just as for TD, we can generalize Q-learning to update the parameters of the Q-function approximation
Q-learning with Linear Approximators

1. Start with initial parameter values

2. Take action a according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE) transitioning from s to s’

3. Perform TD update for each parameter

\[
\theta_i \leftarrow \theta_i + \alpha \left(R(s) + \beta \max_{a'} \hat{Q}_\theta(s', a') - \hat{Q}_\theta(s, a) \right) f_i(s, a)
\]

4. Goto 2

- TD converges close to minimum error solution
- Q-learning can diverge. Converges under some conditions.
Defining State-Action Features

- Often it is straightforward to define features of state-action pairs (example to come)
- In other cases it is easier and more natural to define features on states $f_1(s), \ldots, f_n(s)$
 - Fortunately there is a generic way of deriving state-features from a set of state features
- We construct a set of $n \times |A|$ state-action features

$$f_{ik}(s,a) = \begin{cases} f_i(s), & \text{if } a = a_k \\ 0, & \text{otherwise} \end{cases} \quad i \in \{1,\ldots,n\}, k \in \{1,\ldots,|A|\}$$

- This effectively replicates the state features across actions, and activates only one set of features based on which action is selected
Example: Tactical Battles in Wargus

- **Wargus** is a real-time strategy (RTS) game.
 - Tactical battles are a key aspect of the game.

RL Task: Learn a policy to control n friendly agents in a battle against m enemy agents.
 - Policy should be applicable to tasks with different sets and numbers of agents.

5 vs. 5

10 vs. 10
Example: Tactical Battles in Wargus

• **States**: contain information about the locations, health, and current activity of all friendly and enemy agents

• **Actions**: Attack(F,E)
 - causes friendly agent F to attack enemy E

• **Policy**: represented via Q-function Q(s,Attack(F,E))
 - Each decision cycle loop through each friendly agent F and select enemy E to attack that maximizes Q(s,Attack(F,E))

• Q(s,Attack(F,E)) generalizes over any friendly and enemy agents F and E
 - We used a linear function approximator with Q-learning
Example: Tactical Battles in Wargus

\[\hat{Q}_\theta(s, a) = \theta_1 + \theta_1 f_1(s, a) + \theta_2 f_2(s, a) + \ldots + \theta_n f_n(s, a) \]

- Engineered a set of relational features
 \{f_1(s, \text{Attack}(F, E)), \ldots, f_n(s, \text{Attack}(F, E))\}

- **Example Features:**
 - # of other friendly agents that are currently attacking E
 - Health of friendly agent F
 - Health of enemy agent E
 - Difference in health values
 - Walking distance between F and E
 - Is E the enemy agent that F is currently attacking?
 - Is F the closest friendly agent to E?
 - Is E the closest enemy agent to E?
 - …

- Features are well defined for any number of agents
Example: Tactical Battles in Wargus

Initial random policy
Example: Tactical Battles in Wargus

- Linear Q-learning in 5 vs. 5 battle
Example: Tactical Battles in Wargus

Learned Policy after 120 battles
Example: Tactical Battles in Wargus

10 vs. 10 using policy learned on 5 vs. 5
Example: Tactical Battles in Wargus

- Initialize Q-function for 10 vs. 10 to one learned for 5 vs. 5

Initial performance is very good which demonstrates generalization from 5 vs. 5 to 10 vs. 10
Q-learning w/ Non-linear Approximators

\(\hat{Q}_\theta(s, a) \) is sometimes represented by a non-linear approximator such as a neural network

1. Start with initial parameter values

2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)

3. Perform TD update for each parameter

\[
\theta_i \leftarrow \theta_i + \alpha \left(R(s) + \beta \max_{a'} \hat{Q}_\theta(s', a') - \hat{Q}_\theta(s, a) \right) \frac{\partial \hat{Q}_\theta(s, a)}{\partial \theta_i}
\]

4. Goto 2

• Typically the space has many local minima and we no longer guarantee convergence

• Often works well in practice
~Worlds Best Backgammon Player

- Neural network with 80 hidden units
- Used TD-updates for 300,000 games of self-play
- One of the top (2 or 3) players in the world!