
1

Monte-Carlo Planning:
Basic Principles and Recent Progress

Alan Fern

School of EECS

Oregon State University

2

Outline

Preliminaries: Markov Decision Processes

What is Monte-Carlo Planning?

Uniform Monte-Carlo

Single State Case (PAC Bandit)

Policy rollout

Sparse Sampling

Adaptive Monte-Carlo

Single State Case (UCB Bandit)

UCT Monte-Carlo Tree Search

3

State + Reward Actions
(possibly stochastic)

????

World

Stochastic/Probabilistic Planning:

Markov Decision Process (MDP) Model

We will model the world

as an MDP.

4

Markov Decision Processes

An MDP has four components: S, A, PR, PT:

 finite state set S

 finite action set A

Transition distribution PT(s’ | s, a)

 Probability of going to state s’ after taking action a in state s

 First-order Markov model

Bounded reward distribution PR(r | s, a)

 Probability of receiving immediate reward r after taking
action a in state s

 First-order Markov model

5

Graphical View of MDP

St

Rt

St+1

At

Rt+1

St+2

At+1

Rt+2

 First-Order Markovian dynamics (history independence)

 Next state only depends on current state and current action

 First-Order Markovian reward process

 Reward only depends on current state and action

At+2

6

Policies (“plans” for MDPs)

 Given an MDP we wish to compute a policy

 Could be computed offline or online.

 A policy is a possibly stochastic mapping from states to actions

 π:S → A

 π(s) is action to do at state s

 specifies a continuously reactive controller π(s)

How to measure goodness of a policy?

7

Value Function of a Policy

We consider finite-horizon discounted reward,

discount factor 0 ≤ β < 1

Vπ(s,h) denotes expected h-horizon discounted total

reward of policy π at state s

Each run of π for h steps produces a random reward

sequence: R1 R2 R3 … Rh

Vπ(s,h) is the expected discounted sum of this sequence

Optimal policy π* is policy that achieves maximum

value across all states

sREhsV
h

t

t
t ,|),(

0

8

Relation to Infinite Horizon Setting

Often value function Vπ(s) is defined over infinite

horizons for a discount factor 0 ≤ β < 1

 It is easy to show that difference between Vπ(s,h) and

Vπ(s) shrinks exponentially fast as h grows

h-horizon results apply to infinite horizon setting

],|[)(
0

sREsV
t

tt

hR
hsVsV

1
),()(max

9

Computing a Policy

Optimal policy maximizes value at each state

Optimal policies guaranteed to exist [Howard, 1960]

When state and action spaces are small and MDP is

known we find optimal policy in poly-time via LP

Can also use value iteration or policy Iteration

We are interested in the case of exponentially large

state spaces.

10

Large Worlds: Model-Based Approach

1. Define a language for compactly describing MDP

model, for example:

 Dynamic Bayesian Networks

 Probabilistic STRIPS/PDDL

2. Design a planning algorithm for that language

Problem: more often than not, the selected language

is inadequate for a particular problem, e.g.

 Problem size blows up

 Fundamental representational shortcoming

11

Large Worlds: Monte-Carlo Approach

Often a simulator of a planning domain is available

or can be learned from data

Even when domain can’t be expressed via MDP language

11

Klondike Solitaire

Fire & Emergency Response

12

Large Worlds: Monte-Carlo Approach

Often a simulator of a planning domain is available

or can be learned from data

Even when domain can’t be expressed via MDP language

Monte-Carlo Planning: compute a good policy for

an MDP by interacting with an MDP simulator

12

World

Simulator Real

World

action

State + reward

13

Example Domains with Simulators

 Traffic simulators

 Robotics simulators

 Military campaign simulators

 Computer network simulators

 Emergency planning simulators

 large-scale disaster and municipal

 Sports domains (Madden Football)

 Board games / Video games

 Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art

performance. Even in domains where model-based planner

is applicable.

14

MDP: Simulation-Based Representation

 A simulation-based representation gives: S, A, R, T:

 finite state set S (generally very large)

 finite action set A

 Stochastic, real-valued, bounded reward function R(s,a) = r

 Stochastically returns a reward r given input s and a

 Can be implemented in arbitrary programming language

 Stochastic transition function T(s,a) = s’ (i.e. a simulator)

 Stochastically returns a state s’ given input s and a

 Probability of returning s’ is dictated by Pr(s’ | s,a) of MDP

 T can be implemented in an arbitrary programming language

15

Outline

Preliminaries: Markov Decision Processes

What is Monte-Carlo Planning?

Uniform Monte-Carlo

Single State Case (Uniform Bandit)

Policy rollout

Sparse Sampling

Adaptive Monte-Carlo

Single State Case (UCB Bandit)

UCT Monte-Carlo Tree Search

16

Single State Monte-Carlo Planning

Suppose MDP has a single state and k actions
Figure out which action has best expected reward

Can sample rewards of actions using calls to simulator

Sampling a is like pulling slot machine arm with random
payoff function R(s,a)

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

17

PAC Bandit Objective

Probably Approximately Correct (PAC)
Select an arm that probably (w/ high probability) has

approximately the best expected reward

Use as few simulator calls (or pulls) as possible

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

18

UniformBandit Algorithm
NaiveBandit from [Even-Dar et. al., 2002]

1. Pull each arm w times (uniform pulling).

2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

s

a1 a2 ak

…

…r11 r12 … r1w r21 r22 … r2w rk1 rk2 … rkw

19

Aside: Additive Chernoff Bound

• Let R be a random variable with maximum absolute value Z.

An let ri i=1,…,w be i.i.d. samples of R

• The Chernoff bound gives a bound on the probability that the

average of the ri are far from E[R]

11

1

1 ln][
w

w

i

iw
ZrRE

With probability at least we have that, 1

w
Z

rRE
w

i

iw

2

1

1 exp][Pr
Chernoff

Bound

Equivalently:

20

UniformBandit Algorithm
NaiveBandit from [Even-Dar et. al., 2002]

1. Pull each arm w times (uniform pulling).

2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

s

a1 a2 ak

…

…r11 r12 … r1w r21 r22 … r2w rk1 rk2 … rkw

21

UniformBandit PAC Bound

If for all arms simultaneously

with probability at least 1

k
R

w ln

2

max

With a bit of algebra and Chernoff bound we get:

That is, estimates of all actions are ε – accurate with
probability at least 1-

Thus selecting estimate with highest value is
approximately optimal with high probability, or PAC

w

j

ijwi rasRE
1

1)],([

22

Simulator Calls for UniformBandit

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

…

…

Total simulator calls for PAC:

Can get rid of ln(k) term with more complex
algorithm [Even-Dar et. al., 2002].

k
k

Owk ln
2

23

Outline

Preliminaries: Markov Decision Processes

What is Monte-Carlo Planning?

Non-Adaptive Monte-Carlo

Single State Case (PAC Bandit)

Policy rollout

Sparse Sampling

Adaptive Monte-Carlo

Single State Case (UCB Bandit)

UCT Monte-Carlo Tree Search

Policy Improvement via Monte-Carlo

 Now consider a multi-state MDP.

 Suppose we have a simulator and a non-optimal policy

 E.g. policy could be a standard heuristic or based on intuition

 Can we somehow compute an improved policy?

24

World

Simulator

+

Base Policy
Real

World

action

State + reward

25

Policy Improvement Theorem

 The h-horizon Q-function Qπ(s,a,h) is defined as:
expected total discounted reward of starting in state s, taking
action a, and then following policy π for h-1 steps

 Define:

 Theorem [Howard, 1960]: For any non-optimal policy π the
policy π’ a strict improvement over π.

 Computing π’ amounts to finding the action that maximizes
the Q-function
 Can we use the bandit idea to solve this?

),,(maxarg)(' hasQs a

26

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h)

…

 Idea: define a stochastic function SimQ(s,a,π,h) that we
can implement and whose expected value is Qπ(s,a,h)

 Use Bandit algorithm to PAC select improved action

How to implement SimQ?

27

Policy Improvement via Bandits

SimQ(s,a,π,h)

r = R(s,a) simulate a in s

s = T(s,a)

for i = 1 to h-1

r = r + βi R(s, π(s)) simulate h-1 steps

s = T(s, π(s)) of policy

Return r

 Simply simulate taking a in s and following policy for h-1
steps, returning discounted sum of rewards

 Expected value of SimQ(s,a,π,h) is Qπ(s,a,h)

28

Policy Improvement via Bandits

SimQ(s,a,π,h)

r = R(s,a) simulate a in s

s = T(s,a)

for i = 1 to h-1

r = r + βi R(s, π(s)) simulate h-1 steps

s = T(s, π(s)) of policy

Return r

s …

…

…

…

a1

a2

Trajectory under

Sum of rewards = SimQ(s,a1,π,h)

ak

Sum of rewards = SimQ(s,a2,π,h)

Sum of rewards = SimQ(s,ak,π,h)

29

Policy Rollout Algorithm

1. For each ai run SimQ(s,ai,π,h) w times

2. Return action with best average of SimQ results

s

a1 a2
ak

…

q11 q12 … q1w q21 q22 … q2w qk1 qk2 … qkw

… … … … … … … … …

SimQ(s,ai,π,h) trajectories

Each simulates taking

action ai then following

π for h-1 steps.

Samples of SimQ(s,ai,π,h)

30

Policy Rollout: # of Simulator Calls

• For each action w calls to SimQ, each using h sim calls

• Total of khw calls to the simulator

a1 a2
ak

…

… … … … … … … … …

SimQ(s,ai,π,h) trajectories

Each simulates taking

action ai then following

π for h-1 steps.

s

31

Multi-Stage Rollout

a1 a2
ak

…

… … … … … … … … …

Trajectories of

SimQ(s,ai,Rollout(π),h)

Each step requires

khw simulator calls

• Two stage: compute rollout policy of rollout policy of π

• Requires (khw)2 calls to the simulator for 2 stages

• In general exponential in the number of stages

s

32

Rollout Summary
We often are able to write simple, mediocre policies
Network routing policy

Policy for card game of Hearts

Policy for game of Backgammon

Solitaire playing policy

Policy rollout is a general and easy way to improve
upon such policies

Often observe substantial improvement, e.g.
Compiler instruction scheduling

Backgammon

Network routing

Combinatorial optimization

Game of GO

Solitaire

33

Example: Rollout for Thoughful Solitaire
[Yan et al. NIPS’04]

 Multiple levels of rollout can payoff but is expensive

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

34

Outline

Preliminaries: Markov Decision Processes

What is Monte-Carlo Planning?

Uniform Monte-Carlo

Single State Case (UniformBandit)

Policy rollout

Sparse Sampling

Adaptive Monte-Carlo

Single State Case (UCB Bandit)

UCT Monte-Carlo Tree Search

35

Sparse Sampling

 Rollout does not guarantee optimality or near optimality

 Can we develop simulation-based methods that give us
near optimal policies?
With computation that doesn’t depend on number of states!

 In deterministic games and problems it is common to build
a look-ahead tree at a state to determine best action
 Can we generalize this to general MDPs?

Sparse Sampling is one such algorithm
Strong theoretical guarantees of near optimality

MDP Basics

Let V*(s,h) be the optimal value function of MDP

Define Q*(s,a,h) = E[R(s,a) + V*(T(s,a),h-1)]

Optimal h-horizon value of action a at state s.

R(s,a) and T(s,a) return random reward and next state

Optimal Policy: *(x) = argmaxa Q*(x,a,h)

What if we knew V*?

Can apply bandit algorithm to select action that

approximately maximizes Q*(s,a,h)

37

Bandit Approach Assuming V*
s

a1 a2 ak

SimQ*(s,a1,h) SimQ*(s,a2,h) SimQ*(s,ak,h)

…

SimQ*(s,a,h)

s’ = T(s,a)

r = R(s,a)

Return r + V*(s’,h-1)

 Expected value of SimQ*(s,a,h) is Q*(s,a,h)

 Use UniformBandit to select approximately optimal action

SimQ*(s,ai,h) =

R(s, ai) + V*(T(s, ai),h-1)

But we don’t know V*

To compute SimQ*(s,a,h) need V*(s’,h-1) for any s’

Use recursive identity (Bellman’s equation):

V*(s,h-1) = maxa Q*(s,a,h-1)

 Idea: Can recursively estimate V*(s,h-1) by running

h-1 horizon bandit based on SimQ*

Base Case: V*(s,0) = 0, for all s

39

Recursive UniformBandit
s

a1 a2 ak

SimQ*(s,a2,h) SimQ*(s,ak,h)

…

q11

a1 ak

…

SimQ*(s11,a1,h-1) SimQ*(s11,ak,h-1)

…

s11

a1 ak

…

SimQ*(s12,a1,h-1) SimQ*(s12,ak,h-1)

…

s12

SimQ(s,ai,h)

Recursively generate

samples of

R(s, ai) + V*(T(s, ai),h-1)

… q1wq12

Sparse Sampling [Kearns et. al. 2002]

SparseSampleTree(s,h,w)

For each action a in s

Q*(s,a,h) = 0

For i = 1 to w

Simulate taking a in s resulting in si and reward ri

[V*(si,h),a*] = SparseSample(si,h-1,w)

Q*(s,a,h) = Q*(s,a,h) + ri + V*(si,h)

Q*(s,a,h) = Q*(s,a,h) / w ;; estimate of Q*(s,a,h)

V*(s,h) = maxa Q*(s,a,h) ;; estimate of V*(s,h)

a* = argmaxa Q*(s,a,h)

Return [V*(s,h), a*]

This recursive UniformBandit is called Sparse Sampling

Return value estimate V*(s,h) of state s and estimated optimal action a*

of Simulator Calls
s

a1 a2 ak

SimQ*(s,a2,h) SimQ*(s,ak,h)

…

q11

a1 ak

…

SimQ*(s11,a1,h-1) SimQ*(s11,ak,h-1)

…

s11

… q1wq12

• Can view as a tree with root s

• Each state generates kw new states

(w states for each of k bandits)

• Total # of states in tree (kw)h

How large must w be?

Sparse Sampling

For a given desired accuracy, how large

should sampling width and depth be?

Answered: [Kearns et. al., 2002]

Good news: can achieve near optimality for

value of w independent of state-space size!

First near-optimal general MDP planning algorithm

whose runtime didn’t depend on size of state-space

Bad news: the theoretical values are typically

still intractably large---also exponential in h

 In practice: use small h and use heuristic at

leaves (similar to minimax game-tree search)

43

Uniform vs. Adaptive Bandits

Sparse sampling wastes time

on bad parts of tree

Devotes equal resources to each

state encountered in the tree

Would like to focus on most

promising parts of tree

But how to control exploration

of new parts of tree vs.

exploiting promising parts?

Need adaptive bandit algorithm

that explores more effectively

44

Outline

Preliminaries: Markov Decision Processes

What is Monte-Carlo Planning?

Uniform Monte-Carlo

Single State Case (UniformBandit)

Policy rollout

Sparse Sampling

Adaptive Monte-Carlo

Single State Case (UCB Bandit)

UCT Monte-Carlo Tree Search

45

Regret Minimization Bandit Objective

s

a1 a2 ak

…

Problem: find arm-pulling strategy such that the
expected total reward at time n is close to the best
possible (i.e. pulling the best arm always)

UniformBandit is poor choice --- waste time on bad arms

Must balance exploring machines to find good payoffs
and exploiting current knowledge

46

UCB Adaptive Bandit Algorithm
[Auer, Cesa-Bianchi, & Fischer, 2002]

Q(a) : average payoff for action a based on
current experience

n(a) : number of pulls of arm a

Action choice by UCB after n pulls:

Theorem: The expected regret after n arm
pulls compared to optimal behavior is
bounded by O(log n)

No algorithm can achieve a better loss rate

)(

ln2
)(maxarg*

an

n
aQa a

Assumes payoffs

in [0,1]

47

UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]

)(

ln2
)(maxarg*

an

n
aQa a

Value Term:

favors actions that looked

good historically

Exploration Term:

actions get an exploration

bonus that grows with ln(n)

Expected number of pulls of sub-optimal arm a is bounded by:

where is regret of arm a

n
a

ln
8
2

a

Doesn’t waste much time on sub-optimal arms unlike uniform!

48

UCB for Multi-State MDPs

UCB-Based Policy Rollout:

Use UCB to select actions instead of uniform

UCB-Based Sparse Sampling

Use UCB to make sampling decisions at internal

tree nodes

UCB-based Sparse Sampling [Chang et. al. 2005]

s

a1 a2 ak

…

q11

a1 ak

…

SimQ*(s11,a1,h-1) SimQ*(s11,ak,h-1)

…

s11

q32

• Use UCB instead of Uniform

to direct sampling at each state

• Non-uniform allocation

q21 q31

s11

q22

• But each qij sample requires

waiting for an entire recursive

h-1 level tree search

• Better but still very expensive!

50

Outline

Preliminaries: Markov Decision Processes

What is Monte-Carlo Planning?

Uniform Monte-Carlo

Single State Case (UniformBandit)

Policy rollout

Sparse Sampling

Adaptive Monte-Carlo

Single State Case (UCB Bandit)

UCT Monte-Carlo Tree Search

 Instance of Monte-Carlo Tree Search

Applies principle of UCB

Some nice theoretical properties

Much better anytime behavior than sparse sampling

Major advance in computer Go

Monte-Carlo Tree Search

Repeated Monte Carlo simulation of a rollout policy

Each rollout adds one or more nodes to search tree

Rollout policy depends on nodes already in tree

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

Rollout

Policy

Terminal

(reward = 1)

1

1

1

1

1

At a leaf node perform a random rollout

Initially tree is single leaf

Current World State

1

1

1

1

1

Must select each action at a node at least once

0

Rollout

Policy

Terminal

(reward = 0)

Current World State

1

1

1

1

1/2

Must select each action at a node at least once

0

0

0

0

Current World State

1

1

1

1

1/2

0

0

0

0

When all node actions tried once, select action according to tree policy

Tree Policy

Current World State

1

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0

Tree Policy

0

Rollout

Policy

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree

Policy

0

0

0

0

What is an appropriate tree policy?

Rollout policy?

58

Basic UCT uses random rollout policy

Tree policy is based on UCB:
Q(s,a) : average reward received in current

trajectories after taking action a in state s

n(s,a) : number of times action a taken in s

n(s) : number of times state s encountered

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT

Theoretical constant that must

be selected empirically in practice

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree

Policy

0

0

0

0

a1 a2
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree

Policy

0

0

0

0

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT

61

UCT Recap

To select an action at a state s

Build a tree using N iterations of monte-carlo tree

search

 Default policy is uniform random

 Tree policy is based on UCB rule

Select action that maximizes Q(s,a)

(note that this final action selection does not take

the exploration term into account, just the Q-value

estimate)

The more simulations the more accurate

Computer Go

“Task Par Excellence for AI” (Hans Berliner)

“New Drosophila of AI” (John McCarthy)

“Grand Challenge Task” (David Mechner)

9x9 (smallest board) 19x19 (largest board)

A Brief History of Computer Go

2005: Computer Go is impossible!

2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)

2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)

2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

Computer GO Server: 1800 ELO  2600 ELO

Other Successes

Klondike Solitaire (wins 40% of games)

General Game Playing Competition

Real-Time Strategy Games

Combinatorial Optimization

List is growing

Usually extend UCT is some ways

Some Improvements

Use domain knowledge to handcraft a more

intelligent default policy than random

E.g. don’t choose obviously stupid actions

Learn a heuristic function to evaluate

positions

Use the heuristic function to initialize leaf nodes

(otherwise initialized to zero)

66

Summary

When you have a tough planning problem

and a simulator

Try Monte-Carlo planning

Basic principles derive from the multi-arm

bandit

Policy Rollout is a great way to exploit

existing policies and make them better

 If a good heuristic exists, then shallow sparse

sampling can give good gains

UCT is often quite effective especially when

combined with domain knowledge

