
Online Planning for Resource Production in Real-Time Strategy Games

Hei Chan, Alan Fern, Soumya Ray, Nick Wilson and Chris Ventura
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97330

{chanhe,afern,sray,wilsonic,ventura}@eecs.oregonstate.edu

Abstract

Planning in domains with temporal and numerical properties
is an important research problem. One application of this is
the resource production problem in real-time strategy (RTS)
games, where players attempt to achieve the goal of produc-
ing a certain amount of resources as fast as possible. In this
paper, we develop an online planner for resource production
in the RTS game of Wargus, where the preconditions and ef-
fects of the actions obey many properties that are common
across RTS games. Our planner is based on a computationally
efficient action-selection mechanism, which at each decision
epoch creates a possibly sub-optimal concurrent plan from
the current state to the goal and then begins executing the ini-
tial set of actions. The plan is formed via a combination of
means-ends analysis, scheduling, and a bounded search over
sub-goals that are not required for goal achievement but may
improve makespan. Experiments in the RTS game of War-
gus show that the online planner is highly competitive with
a human expert and often performs significantly better than
state-of-the-art planning algorithms for this domain.

Introduction
Real-time strategy (RTS) games, such as Warcraft, are
games where a player has to engage in actions in real-time,
with the objective being to achieve military or territorial su-
periority over other players or the computer. Central to RTS
game-play are two key problem domains, resource produc-
tion and tactical battles. In resource production, the player
has to produce (or gather) various raw materials, buildings,
civilian and military units, to improve their economic and
military power. In tactical battles, a player uses military
units to gain territory and defeat enemy units. A typical
game usually involves an initial period where players rapidly
build their economy via resource production, followed by
military campaigns where those resources are exploited for
offense and defense. Thus, winning the resource production
race is often a key factor in overall success.

In this paper, we focus on automated planning in the RTS
resource production domain. In particular, the goal is to de-
velop an action selection mechanism that can achieve any
reachable resource goal quickly. Such a mechanism would
be useful as a component for computer RTS opponents and

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as an interface option to human players, where a player need
only specify what they want to achieve rather than figur-
ing out how to best achieve it and then manually orches-
trating the many low-level actions. In addition to the prac-
tical utility of such a mechanism, RTS resource production
is interesting from a pure AI planning perspective as it en-
compasses a number of challenging issues. First, resource
production involves temporal actions with numeric effects.
Second, performing well in this task requires highly concur-
rent activity. Third, the real-time constraints of the problem
require that action selection be computational efficient in a
practical sense. For example, the planning agent needs to
respond quickly to changing goals and inaccuracies in its
action models that may emerge as the world map changes.

Most existing planners are not directly applicable to our
domain either because they do not handle temporal and nu-
meric domains, or they are simply too inefficient to be use-
ful, or they produce highly sub-optimal plans. A main rea-
son for the inefficiency of existing planners in our domain
is that they are intended to be general purpose planners and
do not exploit the special structure present in typical RTS
resource production tasks. A main contribution of this paper
is to expose this special structure and to leverage it for effi-
cient action selection. While doing this precludes generality,
the structure is quite universal in RTS resource production
and hence our algorithm is immediately applicable to this
already widely instantiated sub-class of planning problems.

In our work, we use a simple online architecture that re-
volves around a key planning component that quickly gener-
ates satisficing concurrent plans for achieving any resource
goal from any initial state using the minimum amount of
resources and minimum number of actions. At each deci-
sion epoch, the online planner makes multiple calls to this
component, each of which returns a plan that achieves the
resource goal through some explicitly selected intermediate
goal. The plan with the shortest makespan is preferred, and
new actions are chosen to be executed according to this plan,
which might be the empty set in cases were the current set
of executing actions appears to be best at the current epoch.

The planning component used by our online planner is
based on a combination of means-ends analysis (MEA) and
scheduling. Given an initial state and resource goal, MEA
is used to compute a sequential plan that reaches the goal
using the minimum number of actions and resources in the



sense that any valid plan must include all of the actions in the
MEA plan. Importantly, the special structure of our domain
guarantees that MEA will produce such a plan and do so ef-
ficiently (linear time in the plan length). Given the minimum
sequential plan, we then reschedule those actions, allowing
for concurrency, in an attempt to minimize the makespan.
This scheduling step is computationally hard, however, we
have found that simple worst-case quadratic time heuristic
methods work quite well. Thus both the MEA step and
scheduling step are both low-order polynomial operations
in the minimum number of actions required to achieve the
goal, allowing for real-time efficiency.

While in general planning problems, such interleaving
of planning and scheduling might produce no solution or
highly suboptimal solutions, we observe that for the resource
production domain, our approach is very effective at quickly
selecting a good set of actions to begin executing at each de-
cision epoch. In particular, our experimental results, in the
RTS game Wargus, show that our planner is able to solve
large resource goals in real time. Furthermore the planning
performance in terms of the number of game cycles to reach
the goal is equal to or better than that of an experienced
human player, and is significantly better than the existing
general-purpose planners that we were able to apply to our
problem.

The RTS Resource Production Domain
The two key components of the RTS resource production
domain are resources and actions. Here, we define resources
to include all raw materials, buildings, civilian and military
units. While the player can reason about each individual ob-
ject at a lower level, in this paper we reason about them at a
higher level by aggregating them into their various types and
deal with each of the total numerical amounts in the game
state. While this abstraction will lead to a certain amount of
sub-optimality, it greatly aids in making the planning prob-
lem more manageable, and as our experiments demonstrate
still allows for high quality plans. As an example RTS game,
and the one used in our experiments, Figure 1 shows a screen
shot of the RTS game Wargus. At the current game state,
the player possesses a “peasant”, which is a type of civilian
worker unit, and a “townhall”, a type of building. A peas-
ant may collect gold by traveling to the gold mine, then re-
turning to the townhall to deposit the gold, or it may collect
wood by traveling to the forest, then returning to the town-
hall to deposit the wood. When enough gold and wood are
collected, a peasant may also build certain buildings, such
as “barracks”. Barracks may then be used to create “foot-
men”, a type of military unit, provided that other resource
preconditions are met.

Human players typically have no difficulty selecting ac-
tions that at least achieve a particular set of resource goals.
However, it is much more difficult, and requires much more
expertise, to find close to minimal makespan plans. As an
example consider the seemingly simple problem of collect-
ing a large amount of gold starting with a single peasant
and townhall. One could simply repeatedly collect gold with
the single peasant, which would eventually achieve the goal.
However, such a plan would be far from optimal in terms

Figure 1: A screenshot of Wargus.

of time-to-goal. Rather, it is often faster to instead collect
gold and wood for the purpose of creating some number of
additional peasants (which consumes gold and wood) that
will subsequently be used to collect gold concurrently and
hence reach the resource goal faster. In practice it can be
quite difficult to determine the correct tradeoff between how
many peasants to create, which require time and resources,
and the payoff those peasants provide in terms of increased
production rate. The problem is even more difficult than just
described. For example, one must also provide enough sup-
ply by building “farms” in order to support the number of
desired peasants and footmen. This requires even more time
and resources. One could also consider building additional
townhalls and barracks, which are used to create peasants
and footmen respectively, to increase their rates of produc-
tion. Our online planner attempts to approximately optimize
these choices while maintaining computational efficiency.

For our experimental testbed we selected Wargus because
it has common properties with many popular RTS games
and it is based on a freely available RTS engine. We will
now review the properties of RTS resource production that
are crucial to our design of the planning architecture.

At any time, a player can choose to execute one or more
actions, defined from the action set of the game. Each action
produces a certain amount of products, but also consumes a
certain amount of other resources, and requires that some
preconditions are met before it can be executed. Actions are
usually durative, i.e., they take a certain amount of time to
finish upon which the products are added to the game state.
In RTS games, resource-production actions are usually de-
terministic, and the preconditions, effects, and durations of
each action are usually given or can be easily discovered
through game-play. For certain actions, where a unit has to
travel to a destination for an action to take place, the dura-
tion of the action will vary due to the spatial properties of a
game map. However, for simplicity we assume we have a
constant duration for each instance of an action. On average
over the many actions taken during a game, this turns out



to be a reasonable assumption. We note that extending our
approach to incorporate durations that are functions of the
current state is straightforward.

In our representation, the game state at timet consists of:
(1) for each resourceRi, the amountri possessed by the
agent and (2) the list of actionsAi, i = 1, . . . ,m currently
being executed along with the start and end timestsi andtei
for each (tsi < t < tei ). We refer to the state reached when all
actions currently executing inS have terminated as thepro-
jected game state, denoted byProj(S). This state is times-
tamped witht = maxi=1,...,m tei , has resources updated ac-
cording to the effects of the actionsAi, and no actions being
executed.

The objective of a player in this domain is to reach a
certain resource goal,G = {R1 ≥ g1, . . . , Rn ≥ gn},
defined as constraints on the resources, from the current
game state. Often, many of the constraints will be triv-
ial, (Ri ≥ 0), as we may only be interested in a subset
of resources. To achieveG, a player must select a set of
actions to execute at each decision epoch. These actions
may be executed concurrently as long as their preconditions
are satisfied when they are executed, as the game state is
changed throughout the course of action. In essence, the
player must determine a plan, which is a list of actions,
((A1, t

s
1, t

e
1), . . . , (Ak, tsk, tek)), whereAi is an action that

starts at timetsi and ends at timetei . While this domain
does not require concurrency to achieve the goals in a for-
mal sense (Cushinget al. 2007), plans with short makespan
typically involves a large amount of concurrency.

In Wargus, and many other RTS games, each precondition
and effect is specified by providing the name of a resource,
an amount for that resource, and a usage tag that specifies
how the resource is used by the action (e.g. shared, con-
sumed, etc). We define four possible resource tags:

• Require : An action requires a certain amount of a re-
source if it needs to be present throughout the execution of
the action. For example, the collect-gold action requires
the presence of a townhall. In this case, the same town-
hall can be used for concurrent collect-gold actions, as the
townhall is not “locked up” by the collect-gold actions.
Thus, the requires tag allows for sharing of resources.

• Borrow : An action borrows a certain amount of a re-
source if it requires that the resource amount be “locked
up” throughout the execution of the action, so that no
other action is allowed to borrow those resources during
its execution. After the action has completed the resource
amount is freed up for use by other actions. For exam-
ple, the collect-gold action borrows a peasant. During the
execution of the collect-gold action, the borrowed peas-
ant may not be borrowed by any other action. After the
collect-gold action is finished, the peasant becomes avail-
able again and can be used for other actions. Therefore, to
allow concurrent collect-gold actions, multiple peasants
must be used.

• Consume: An action consumes a certain amount of a
resource at the start of its execution, as this amount is de-
ducted from the game state. As the game state must obey
the constraint that every resource value is non-negative,

resource gold
resource wood
resource supply
resource townhall
resource barracks
resource peasant
resource footman

action collect-gold :duration 300
:require 1 townhall :borrow 1 peasant
:produce 100 gold
action collect-wood :duration 1200
:require 1 townhall :borrow 1 peasant
:produce 100 wood
action build-supply :duration 600
:borrow 1 peasant :consume 500 gold 250 wood
:produce 4 supply
action build-townhall :duration 1530
:borrow 1 peasant :consume 1200 gold 800 wood
:produce 1 townhall
action build-barracks :duration 1200
:borrow 1 peasant :consume 700 gold 450 wood
:produce 1 barracks
action build-peasant :duration 225
:borrow 1 townhall :consume 400 gold 1 supply
:produce 1 peasant
action build-footman :duration 200
:borrow 1 barracks :consume 600 gold 1 supply
:produce 1 footman

Figure 2: Resource and action specification of the simplified
Wargus domain.

the inferred precondition of the action is that this resource
amount must be present at the start of the action. For ex-
ample, the build-barracks action consumes 700 units of
gold and 450 units of wood.

• Produce : An action produces a certain amount of a re-
source at the end of its execution, as this amount is added
to the game state.

These tags are similar to resource requirement specifications
used in the scheduling literature (for example, see (Ghallab,
Nau, & Traverso 2004)). Given the above tags, Figure 2
gives the definitions of a subset of the resource-production
actions in Wargus. In future work, we plan to consider ex-
tensions to this specification, for example, by considering
consume and produce tags that specify rates of consumption
or production, or allowing resource consumption to happen
at the end of an action.

Note that we could have used a more traditional domain
specification language such as PDDL2.1 (Fox & Long 2003)
to describe our domain. However, for this work we choose
the above representation to make the key resource roles
explicit, which will be leveraged by our algorithm. Fig-
ure 3 shows two actions encoded using PDDL2.1. It is
fairly straightforward to translate any action described by
the keywords above into PDDL. Further, it is likely that
the roles played by therequire , borrow , consume and
produce tags could be automatically inferred from a re-
stricted subclass of PDDL.



(:durative-action collect-gold
:parameters ()
:duration (= ?duration 300)
:condition

(and (over all (> total-townhall 0)))
(at start (> avail-peasant 0))

:effect
(and (at start (decrease avail-peasant 1))

(at end (increase avail-peasant 1))
(at end (increase total-gold 100))
(at end (increase time ?duration))))

(:durative-action build-townhall
:parameters ()
:duration (= ?duration 1530)
:condition

(and (at start (> avail-peasant 0)))
(at start (>= total-gold 1200))
(at start (>= total-wood 800))

:effect
(and (at start (decrease avail-peasant 1))

(at start (decrease total-gold 1200))
(at start (decrease total-wood 800))
(at end (increase avail-peasant 1))
(at end (increase total-townhall 1))
(at end (increase avail-townhall 1))
(at end (increase time ?duration))))

Figure 3: PDDL2.1 specification of the collect-gold and
build-townhall actions.

Given the action specifications, we divide the resources
into two classes, renewable and consumable resources. Con-
sumable resources are those that are consumed by actions,
such as gold, wood, and supply (a peasant or footman can-
not be built unless there is an unused supply). Renewable
resources are those that are required or borrowed by actions,
such as peasants, townhalls and barracks. Generally, a re-
source is either renewable or consumable, but not both, and
this can be easily inferred from the domain description. We
observe that multiple renewable resources are usually not es-
sential to achieve any given resource goal, since most actions
borrow or require only one of such resources. However, if
multiple such resources are available, they can vastly reduce
the makespan of a plan by permitting concurrent actions.

Next, we consider certain properties of our domain spec-
ification that help us to efficiently create satisficing plans.
First, the dependency structure between resources is such
that, if the initial state has a townhall and a peasant (and
assuming the world map has enough consumable resources
like gold and wood), there always exists a plan for any re-
source goal. Further, if such a state cannot be reached, no
such plan exists. Thus, we focus our attention to initial
states with at least these elements. In Wargus, and other RTS
games, it is straightforward to hand-code a scripted behav-
ior to reach such a state if the game begins in a state without
the required elements, after which our automated planner
can take over with the guarantee of computational efficiency.
Second, we observe that the amount of renewable resources
in a problem never decreases, since no unit is destroyed in

our scenarios. Third, by the Wargus action specification, all
effects at the start of an action are subtractive effects, while
all effects at the end of an action are additive effects. Fourth,
again by the Wargus specification, for each resource, there
is exactly one action that produces it. This property implies
that every plan that produces the goal resources from a game
state must contain the same set of actions (though possibly
not in the samesequence). Conversely, suppose we have two
executable plans from the same state consisting of the same
set of actions, but with different starting times for some of
the actions. Then the final game states after executing the
two plans will be the same. This is due to the property of
commutativity of action effects, as the game state is changed
by the increase or decrease of resources according to the
actions in the Wargus domain. Each of these properties is
used by our planner to search for satisficing plans more effi-
ciently. Each property can be relaxed, but would result in a
less efficient search process.

Related Work on Temporal Planning
Some key properties of our domain are:

1. Actions have durations;

2. There are multiple units, so actions can be executed con-
currently;

3. Units and buildings can be created as the game pro-
gresses;

4. Many actions involve numeric fluents;

5. Solution plans typically involve a large number of actions
compared to most standard planning benchmarks, and

6. In our setting, the planner must find a plan in real-time.

Thus, our domain exemplifies some of the hardest aspects of
planning. Recent research has resulted in several planners
that are capable of handling some of these aspects. In this
section, we briefly describe some of these state-of-the-art
planners, and the problems that remain when applying them
to our domain.

One issue that is problematic for all planning algorithms
is a compact encoding of the domain specification when ob-
jects are allowed to be created and destroyed. One way to
deal with this aspect is to specify, a priori, a name for each
possible object thatcould be created, along with a predi-
cate that tests for its creation. This approach was used to
encode the “Settlers” domain in the International Planning
Competition (Long & Fox 2003), for example. However,
such an encoding is awkward. In particular, at each step,
it forces the planner to consider a large number of actions
that are impossible. One way to avoid such a cumbersome
encoding, which we use in this work, is to use a repre-
sentation where all units of a given type are treated as ex-
changeable resources. Thus, instead of havingPeasant1
throughPeasant4 , we may introduce the numeric vari-
ables, total-peasants and avail-peasants that
represent the total number and number of currently available
peasants. This representation reduces the encoding size and
assumes an external procedure to handle the task allocation
strategy at a per-unit level. Of course this representation may



not always be appropriate when the planner needs to reason
about specific properties of individual units in order to make
good decisions. In Wargus, and many other RTS games, the
exchangeability assumption along with an appropriate task
allocation strategy leads to reasonable performance.

The above representation raises some interesting seman-
tic issues. Since nearly all state-of-the-art planners work
with the PDDL specification, the plans they produce respect
PDDL semantics. For the resource gathering domain, how-
ever, these semantics are somewhat unnatural and restric-
tive. In particular, the “no-moving-targets” rule of PDDL
prevents any pair of actions that use the same resource from
starting or stopping at the same time (Kovarsky & Buro
2006), though they are allowed to overlap if their start and
stop times are separated by a nonzero constant. Thus, in
our exchangeable-unit encoding, actions that use common
exchangeable objects now refer to and modify the same nu-
meric variables, and are subject to the no-moving-targets re-
striction. Observe that, in the encoding where each object is
given a “name”, this problem does not arise.

While the no-moving-targets restriction is quite unnatu-
ral in our domain and can lead to sub-optimal plans, with
a small enough “separation constant” it does not in princi-
ple prevent concurrency which is critical for achieving small
makespans. However, in our tests, no PDDL planner was
able to properly exploit the concurrency potential of our do-
main. In particular, these planners never produced extra re-
newable resources (e.g. peasants), even when this would
have reduced makespan because of the resulting increase
in concurrency. Rather the planners would create the mini-
mum amount of renewable resources, typically resulting in
no concurrency and poor plans. The exact reasons for these
failures require further investigation.

The two issues described above imply that, to our knowl-
edge, no state-of-the-art planner is entirely satisfactory in
handling resource production problems. However, several
interesting approaches have been developed to handle the
other aspects of our domain—durative actions and numeric
fluents. Examples include SAPA (Do & Kambhampati
2003), MIPS-XXL (Edelkamp, Jabbar, & Nazih 2006), SG-
Plan (Chen, Wah, & Hsu 2006), LPG and LPG-td (Gerevini,
Saetti, & Serina 2006), and TM-LPSAT (Shin & Davis
2005), all of which we have tested in our work. However,
none of these approaches produced satisfactory plans if they
produced plans at all. Thus, in our work, we focus on an
online heuristic action selection mechanisms that is able to
obtain good performance in large RTS resource production
problems.

Planning Architecture
In this section, we describe the overall architecture of our
planner. In the following sections, we describe the two ma-
jor components, a sequential planner and a heuristic sched-
uler, in more detail.

In our work, we focus on an online planning architec-
ture. This seems suitable for the RTS setting where goals
and environments change over time. For example, the plan-
ner may be used as an assistant to a human that provides
high-level goals to achieve as quickly as possible. These

Algorithm 1 Online planner: Main Loop.
The sequential plannerMEA is shown in Algorithm 2. The
heuristic schedulerSchedule is shown in Algorithm 3.
1: for every pre-determined number of game cyclesdo
2: t← current time
3: S ← current game state
4: if there exists some available actions that can be executed at

the current timethen
5: Plan← Schedule(MEA(S, G))
6: (G1, . . . , Gn) ← a list of intermediate goals which cre-

ates additional renewable resources
7: for all i = 1, . . . n do
8: P0 ←MEA(S, Gi)
9: S′ ← state after executingP0 from projection ofS

10: P1 ←MEA(S′, G)
11: Plani ← Schedule(concatenate(P0, P1))
12: if makespan ofPlani < makespan ofPlan then
13: Plan← Plani

14: for all (Aj , t
s
j , t

e
j) ∈ Plan wherets

j = t do
15: executeAj

goals may change over time, requiring replanning for each
change. Similarly, as the game proceeds, the world map and
the planner’s action models may change, requiring fast re-
planning with respect to the changed environment. In fact, a
changing environment may make it impossible for the agent
to execute a plan that is constructed offline ahead of time.
Therefore, a planner which takes a long time to plan or does
not provide a bound on its planning time is undesirable for
our domain even if it may otherwise return the optimal plan.
Instead, we aim to develop a planner which finds a good
plan quickly while being able to scale with the number of
resources, and the number of actions in the plan.

To adapt to changing goals and environments, our plan-
ner replans every decision epoch using the current goal and
game state. To find a new plan, it carries out a bounded
search over possible intermediate goals. The set of possi-
ble intermediate goals includes all states that have an extra
renewable resource of every type. For each such goal, the
planner employs means-ends analysis followed by a heuris-
tic scheduling process to generate a plan to reach the over-
all goal via the intermediate goal. To select an action to
be executed, the planner chooses the plan with the small-
est makespan. If this plan has any action that is executable
at the current game state, that action (or actions) is started.
Notice that the plans generated by the planner are not usu-
ally completely executed—when the planner replans at the
next decision epoch using the game state at that point, it may
not obtain a suffix of the plan it found at the current epoch.
However, constructing such plans are valuable because they
help in action selection at the current step.

The rationale for our bounded search procedure over in-
termediate goals is as follows. It is clear that we can eas-
ily find a successful plan which has a minimum number
of actions and creates the minimum amount of renewable
resources, such as peasants. However, creating additional
renewable resources can decrease the makespan of a plan
(even though this new plan now has more actions), if the
time penalty paid by creating these resources is compen-



sated by the time saved by the concurrent actions allowed
by the additional renewable resources. This step is never ex-
plicitly considered by many planners, or the plans become
too complex if an unbounded search over all possible inter-
mediate goals is considered. To get around this problem, we
explicitly find a plan which achieves the intermediate goal
of creating some additional fixed amount of renewable re-
sources, such as an additional peasant, then find a plan which
achieves the goal from this intermediate goal state. The two
plans are then combined into a single plan, and we check if
the new plan has a shorter makespan than the original plan.
If so, we prefer the new plan which produces the additional
renewable resources. Clearly this procedure may be subopti-
mal, because resources are often subject to threshold effects:
while producingx or less does not decrease the makespan,
producing more thanx does. Such solutions can be found by
performing more search over these goals and is a topic of fu-
ture work. In our evaluation, we observed that the heuristic
approach of always considering a fixed amount of additional
resources as an intermediate goal performed well.

The pseudocode of the main loop of our algorithm is
shown in Algorithm 1. Every few game “cycles” (the time
unit in Stratagus), the client checks if there are some avail-
able actions that can be executed. If so, it calls the planner to
find plans which satisfy our goal from the current state. One
plan will aim to satisfy the overall resource goal without any
intermediate goals, while the others will aim to satisfy each
of the intermediate goals which explicitly creates additional
renewable resources. The plan with the shortest makespan
is preferred, and actions in the plan that should start now are
executed. The planner consists of two main components:

• A sequential planner that uses means-ends analysis to find
a plan from game stateS to goalG with the minimum
number of actions,MEA(S, G), and

• A heuristic scheduler which reorders actions in a sequen-
tial plan (the output of the previous step) to allow concur-
rency and decrease its makespan,Schedule(Plan).

Next, we discuss the sequential planner and the heuristic
scheduler components.

Sequential Planner
The first component of our online planner is a sequential
planner which outputs a sequential plan to achieve the goal
from the given initial state. In principle, any off-the-shelf se-
quential planner can be used in this step. However, given the
specific properties of our domain discussed earlier, a simple
sequential planner based on means-ends analysis suffices.
Means-ends analysis is a search technique proposed for the
General Problem Solver (GPS) (Newell & Simon 1963) and
was used in the STRIPS planner (Fikes & Nilsson 1971).
It operates by selecting a subgoal to solve which will de-
crease the difference between the initial state and the goal
state, and then executing the necessary actions to solve the
sub-goal. Then from the new state which satisfies the sub-
goal the process is recursively applied until we reach the
goal state. Notice that if one subgoal becomes unsolved
while solving another, it will be re-solved later, in the re-
cursive step. The pseudocode is given in Algorithm 2. For

Algorithm 2 MEA(S, G).
S, the current game state, andG, the goal, are described in
Section 2.
1: PS ← Proj(S), the projected game state
2: if ∀i, Ri ≥ gi is satisfied byPS then
3: return∅
4: Ri ← some resource whereRi < gi in PS
5: Ai ← action that producesRi

6: ri ← amount ofRi in PS { Plan to satisfy theRi goal}
7: α← units ofRi produced byAi

8: k ← ceil((gi − ri)/α)
9: Acts← sequential plan withAi repeatedk times

10: G∗ ← ∅{ Plan to satisfy preconditions ofAi}
11: for all Rj = p which are preconditions ofAi do
12: if Rj = p is a “require” or “borrow” precondition ofA then
13: G∗ ← G∗ ∪Rj ≥ p
14: if Rj = p is a “consume” precondition ofAi then
15: G∗ ← G∗ ∪Rj ≥ k · p
16: Pre←MEA(S, G∗)
17: Plan′ ← concatenate(Pre, Acts)
18: S′ ← game state after sequentially executingPlan′ from PS
19: returnconcatenate(Plan′, MEA(S′, G)).

simplicity this pseudocode assumes that there is no resource
that is both produced and consumed by a single action. It is
straightforward to lift this assumption while still maintain-
ing the polynomial-time guarantee outlined below.

We now informally characterize the behavior of the
means-ends analysis in the Wargus domain based on some
of the domain properties. First, means-ends analysis repeat-
edly picks an unsatisfied sub-goalRi ≥ gi, and constructs
a sub-planPlan′ which satisfies it. It is possible to show
that, given a dependency graph over resources, there ex-
ists an ordering over goals such that theMEA procedure
will not need to revisit a solved goal. Intuitively, this or-
dering first solves all renewable resource goals before any
non-renewable resource goals (because renewable resource
goals, once solved, always stay solved using the monotonic
increase property of renewable resources). In this ordering,
every action added to the plan is necessary to solve the final
goal. Further, if we choose any other ordering of goals that
necessitates revisiting previously solved goals, we will only
generate permutations of the set of actions produced by the
“canonical” ordering. This is because, if we revisit a goal, it
must be because some actions used to solve that goal were
“used up” by the preconditions of some other goal. Thus, we
are effectively permuting the sequence of necessary actions
if we choose a different ordering. Since the plan found by
MEA has the minimal set of actions, it consumes the min-
imal set of resources necessary to reach the goal. Finally,
because each step of means-ends analysis adds at least one
useful action to the plan, its running time is bounded by the
minimum number of actions to the goal.

Notice that if the dependency graph between resources
contains cycles, it is possible for means-ends analysis to get
stuck in an infinite loop for certain initial states. For exam-
ple, in Wargus, collecting gold requires a townhall and bor-
rows a peasant, while building a townhall or a peasant con-
sumes certain amounts of gold. The presence of these cycles



means there is a possibility that there is no plan to achieve
a goal in some cases. However, we can easily extend our
algorithm to detect such cases if they happen. Further, as we
have noted above, if the initial game state contains a peasant
and a townhall, we can guarantee that there is always a plan
no matter what the goal state is.

Heuristic Scheduler
The previous component finds a sequential plan. However,
to accurately estimate the utility of any renewable resources,
we need to reschedule actions to allow concurrency and de-
crease the makespan of the found plan. We do this by using
a heuristic scheduling procedure that traverses the found ac-
tion sequence in order. For each actionAi, the procedure
moves the start time ofAi to the earliest possible time such
that its preconditions are still satisfied. Assume thatAi starts
at timetsi , and the stateR+(tsi ) is the resource state at time
tsi after the effects of all actions that end at timetsi are added
to the game state, andR−(tsi ) is the resource game state
before the effects are added. Obviously, the preconditions
of Ai are satisfied byR+(tsi ). If they are also satisfied by
R−(tsi ), this means the satisfaction of the preconditions of
Ai is not due to any of the actions that end at timetsi , and we
can now move actionAi to start earlier thantsi , to the pre-
vious decision epoch (time where an action starts or ends).
This is repeated until the preconditions ofA are satisfied by
someR+(ts) but notR−(ts), i.e., the satisfaction of the pre-
conditions ofA is due to the actions that end at timets. The
plan is now rescheduled such that actionA starts at timets,
and we can proceed to attempt to reschedule the next action
in our sequential plan. The pseudocode for this procedure is
given in Algorithm 3.

We can show this procedure is sound using the follow-
ing informal argument. We need to ensure that when we
reschedule an action, every action between the new start
time and the old start time remains executable. Now when
processing each action, we can always schedule it before
a previous action if they do notconsume or borrow the
same resource. Consider a pair of actionsA andB, A before
B, in a valid plan that bothconsume or borrow resource
R, and assume we are about to rescheduleB. First, if A and
B are adjacent, the state beforeA must have enoughR for
A andB to execute. This means that at that state,A and
B could be executed concurrently, orB could be scheduled
beforeA, if possible. On the other hand, ifA andB were
separated by any actions that producedR in order to satisfy
B’s precondition, then our procedure would not shiftB be-
fore the effects of those actions. IfA andB are separated
by actions not producingR, this effectively reduces to the
adjacent case. Thus, this procedure is sound. While this
procedure is not guaranteed to produce a plan with the opti-
mal makespan, it is fast (at most quadratic in the number of
actions) and performs well in practice. Investigating more
complex scheduling algorithms for this problem is a topic of
future work.

Empirical Evaluation
We evaluate our algorithm using various resource produc-
tion scenarios in the Wargus RTS game. In each case, the

Algorithm 3 Schedule(Plan).
Plan = ((A1, t

s
1, t

e
1), . . . , (Ak, tsk, tek)) is a sequential plan

where the actions are sorted by their starting times in in-
creasing order. The operators+ and− add and remove ac-
tions from a plan respectively.
1: for i = 1, . . . , k do
2: ts ← ts

i

3: R−(ts) ← resource state before the effects of actions that
end atts are added

4: while preconditions ofAi are satisfied byR−(ts) do
5: ts ← previous decision epoch
6: Plan← Plan− (Ai, t

s
i , t

e
i ) + (Ai, t

s, te
i − ts

i + ts)

initial state is set to one peasant, one townhall, and one sup-
ply. Every five game cycles, the agent reads the game state
from the Wargus engine and calls the procedure in Algo-
rithm 1. If a new plan is found, the agent then sends actions
to the game engine for execution. For our experiments, we
use a fixed heuristic task allocation algorithm written by a
human expert that handles allocating individual units in the
game to the tasks assigned by the planner.

To evaluate the performance of our approach, we record
the number of game cycles used by our algorithm to achieve
the given resource goals. We compare our results with sev-
eral baselines. First, we report the results achieved by some
state-of-the-art planning algorithms on some resource pro-
duction problems. Next, we compare our results with those
of an expert human player in two ways. First, we compare
to the cycles taken by the player when playing Stratagus via
its player interface, i.e., executing the actions through the
graphical interface with mouse and keyboard clicks. We re-
port the best and worst results over five trials. Second, we
compare to the cycles taken by executing several plans writ-
ten by the player, where a series of actions can be specified
by one command. For example, he may specify the collec-
tion of 1000 units of gold using a maximum of 3 peasants.
We also report best and worst results in this case.

Table 1 shows the comparison between the cycles taken
by the human player and our planner to achieve some of
the easier goals. We observe that, for most large resource
goals, our approach successfully creates multiple renewable
resources as necessary. Further, our approach is competitive
with the human player. In some cases, our planner is able to
achieve the goal faster, mainly by finding a better number of
peasants to be used to produce the resources. For example,
for collecting 1000 units of wood, our planner finds that cre-
ating multiple peasants do not help decrease the makespan,
while for creating 10 footmen, our planner finds that cre-
ating more peasants helps decrease the makespan. Further,
we observed that our approach scales well to large resource
scenarios. For example, to create30 footmen, plans typ-
ically consist of about300 actions, and during game-play
every plan (including those that create additional renewable
resources) is generated within about0.02 seconds.

In Table 2 we show the results of several state-of-the-art
planners on similar problems. We observe that while these
planners found valid plans in under a second, we could not
get them to create extra renewable resources even when do-



Goal Human Human-plan Planner
G=5k 17865 (5P) 18360 (5P) 17400 (5P)

19890 (3P) 20580 (3P)
G=10k 21480 (8P) 22740 (9P) 22500 (5P)

24340 (4P) 24150 (10P)
W=1k 16320 (5P) 16170 (5P) 14985 (1P)

18000 (6P) 18176 (2P)
W=2k 19320 (5P) 19410 (5P) 19980 (8P)

25350 (2P) 26070 (2P)
G=5k+W=1k 20500 (9P) 21360 (5P) 20585 (5P)

21440 (5P) 22590 (7P)
F=5 20500 (5P) 21750 (5P) 20515 (4P)

22300 (6P) 23220 (6P)
F=10 24640 (7P) 26560 (5P) 24185 (9P)

28950 (9P) 27150 (5P)

Table 1: Results comparing the cycles taken by a hu-
man playing manually (Human), a human-designed plan
(Human-plan), and our approach (Planner) to achieve the
given goals. The resources are denoted as follows: G–gold,
W–wood, F–footmen, P–peasants created during game-play.
Best results are shown in bold.

goal Planner LPG-td SGPlan
G=10k 22500 (5P) 30000 (1P) 30000 (1P)
W=2k 19980 (8P) 30000 (1P) 30000 (1P)

G=10k+W=2k 28845 (5P) 60000 (1P) 60000 (1P)
F=10 24185 (9P) 45900 (1P) 45900 (1P)

Table 2: Results comparing the cycles taken by our approach
(Planner), LPG-td andSGPlan to achieve the given goals.

ing so would greatly decrease the makespan of the resulting
plan. We also ran SAPA and MIPS-XXL on these problems,
but these were unable to find any plan at all. Finally, TM-
LPSAT was unable to scale to these problems because of the
large number (over 100) of timepoints required.

Conclusion
We have presented an approach to solving large resource
production problems in RTS games. Our approach works
in an online setting. Every decision epoch, it searches over
possible intermediate goals that create additional renewable
resources. For each such goal, it uses means-ends analy-
sis and heuristic rescheduling to generate plans. The best
such plan is used to select actions at the current epoch. We
evaluate our approach on Wargus and show that it is able to
handle large and complex resource goals and it usually finds
plans that are comparable to the strategies of an expert hu-
man player. In future work, we plan to establish theoretical
properties of our approach for various classes of resource
production problems. We also plan to study the use of ap-
proximate action models in the online planning framework.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis.AI Journal90:281–300.

Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal
planning using subgoal partitioning and resolution in SG-
Plan.Journal of AI Research26:323–369.
Cushing, W.; Mausam; Kambhampati, S.; and Weld, D.
2007. When is temporal planning really temporal. InPro-
ceedings of the 20th International Joint Conference on Ar-
tificial Intelligence, 1852–1859.
Do, M. B., and Kambhampati, S. 2003. SAPA: A scal-
able multi-objective metric temporal planner.Journal of
AI Research20:155–194.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Cost-
optimal planning with constraints and preferences in large
state spaces. InInternational Conference on Automated
Planning and Scheduling (ICAPS) Workshop on Prefer-
ences and Soft Constraints in Planning, 38–45.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence2:189–203.
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG.Journal of Artificial Intelligence Research20:239–
290.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An ap-
proach to temporal planning and scheduling in domains
with predicatable exogenous events.Journal of Artificial
Intelligence Research25:187–231.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning: Theory and Practice. Kaufman. Chapter 15.
Kovarsky, A., and Buro, M. 2006. A first look at build-
order optimization in real-time strategy games. InProceed-
ings of the GameOn Conference, 18–22.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis.Journal of Artifi-
cial Intelligence Research20:1–59.
Newell, A., and Simon, H. 1963. GPS: A program that
simulates human thought.In Computers and Thought.
Shin, J.-A., and Davis, E. 2005. Processes and continu-
ous change in a SAT-based planner.Artificial Intelligence
166(1-2):194–253.
Wolfman, S. A., and Weld, D. S. 2001. Combining linear
programming and satisfiability solving for resource plan-
ning. Knowledge Engineering Review16(1):85–99.


