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Abstract

A number of today’s state-of-the-art planners are based on forward state-space search.
The impressive performance can be attributed to progress in computing domain indepen-
dent heuristics that perform well across many domains. However, it is easy to find domains
where such heuristics provide poor guidance, leading to planning failure. Motivated by such
failures, the focus of this paper is to investigate mechanisms for learning domain-specific
knowledge to better control forward search in a given domain. While there has been a large
body of work on inductive learning of control knowledge for AI planning, there is a void of
work aimed at forward-state-space search. One reason for this may be that it is challenging
to specify a knowledge representation for compactly representing important concepts across
a wide range of domains. One of the main contributions of this work is to introduce a novel
feature space for representing such control knowledge. The key idea is to define features in
terms of information computed via relaxed plan extraction, which has been a major source
of success for non-learning planners. This gives a new way of leveraging relaxed planning
techniques in the context of learning. Using this feature space, we describe three forms of
control knowledge—reactive policies (decision list rules and measures of progress) and lin-
ear heuristics—and show how to learn them and incorporate them into forward state-space
search. Our empirical results show that our approaches are able to surpass state-of-the-art
non-learning planners across a wide range of planning competition domains.
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1. Introduction

In recent years, forward state-space search has become a popular approach in AI plan-
ning, leading to state-of-the-art performance in a variety of settings, including classical
STRIPS planning (Hoffmann and Nebel, 2001; Vidal, 2004), optimal planning (Helmert
et al., 2007), temporal-metric planning (Do and Kambhampati, 2003), nondeterministic
planning (Bryce and Kambhampati, 2006), and oversubscribed planning (Benton et al.,
2006), among others. Given that forward state-space search is one of the oldest techniques
available for planning, and many other search spaces and approaches have been developed,
this state-of-the-art performance is somewhat surprising. One of the key reasons for the
success is the development of powerful domain-independent heuristics that work well on
many AI planning domains. Nevertheless, it is not hard to find domains where these heuris-
tics do not work well, resulting in planning failure. We are motivated by these failures and
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in this study, we investigate machine learning techniques that find domain-specific control
knowledge that can improve or speed-up forward state-space search in a non-optimal, or
satisficing, planning setting.

As outlined in Section 3 there is a large body of work on learning search-control knowl-
edge for AI planning domain. However, despite the significant effort, none of these ap-
proaches has been demonstrated to be competitive with state-of-the-art non-learning plan-
ners across a wide range of planning domains. There are at least two reasons for the
performance gap between learning and non-learning planners. First, most prior work on
learning control knowledge has been in the context of non-state-of-the-art planning ap-
proaches such as partial-order planning, means-ends analysis, among others. In fact, we
are only aware of two recent efforts (Botea et al., 2005; Coles and Smith, 2007) that learn
control knowledge for forward state-space search planners. Even these approaches have
not demonstrated the ability to outperform the best non-learning planners as measured
on planning competition domains. Second, it is a challenge to define a hypothesis space
for representing control knowledge that is both rich enough for a wide variety of planning
domains, yet compact enough to support efficient and reliable learning. Indeed, a common
shortcoming of much of the prior work is that the hypothesis spaces, while adequate for
the small number of domains investigated, were not rich enough for many other domains.

The primary goal of this work is to contribute toward reversing the performance gap
between learning and non-learning planners. In this work, we do this by addressing each of
the above two issues. First, our system is based on the framework of forward state-space
search, in particular, being built upon the state-of-the-art planner FF (Hoffmann and
Nebel, 2001). Second, we propose a novel hypothesis space for representing useful heuristic
features of planning states. We show how to use this feature space as a basis for defining
and learning several forms of control knowledge that can be incorporated into forward
state-space search. The result is a learning-based planner that learns control knowledge
for a planning domain from a small number of solved problems and is competitive with
and often better than state-of-the-art non-learning planners across a substantial set of
benchmark domains and problems.

A key novelty of our proposed feature space is that it leverages the computation of
relaxed plans, which are at the core of the computation of modern forward-search heuristics
(Bonet and Geffner, 2001; Hoffmann and Nebel, 2001). Relaxed plans are constructed by
ignoring, to varying degrees, the delete/negative effects of actions and can be computed very
efficiently. The length of these plans can then serve as an informative heuristic (typically
non-admissible) for guiding state-space search. In addition to their length, relaxed plans
contain much more information about a search state that is ignored by most forward-
search planners.1 Our proposed feature space gives one way of using this information by
viewing the relaxed plan as a structure for defining potentially useful features of the current
state. As an example of the utility of our feature space, note that the fact that relaxed
planning ignores delete effects is the main reason that the length sometimes dramatically
underestimates the true distance to goal, leading to poor heuristic guidance (note that
relaxed-plan length can also overestimate the distance to goal). Our feature space is able
to partially capture information about the delete effects ignored in a relaxed plan, which
can be used to learn knowledge that partially compensates for the underestimation.

We use the relaxed-plan feature space to learn two forms of knowledge for controlling
forward state-space planning. In each case, the knowledge is learned based on a set of
training problems from a domain, each labeled by a solution. First, we consider learn-
ing knowledge in the form of linear heuristic functions. In particular, we learn heuristics
that are linear combinations of relaxed-plan features, with one of those features being the

1. One exception is Vidal (2004) where relaxed plans are also used to extract macro actions.
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relaxed-plan length. Thus, our heuristic learner can be viewed as an approach for automat-
ically correcting deficiencies of the usual relaxed-plan length heuristic, by augmenting it
with a weighted combination of additional features selected from the large space of possible
relaxed-plan features.

As a second form of control knowledge, we investigate reactive policies. Learning
reactive policies for planning domains has been studied by several researchers (Khardon,
1999; Martin and Geffner, 2000; Yoon et al., 2002, 2005). However, all of these studies have
used the learned policies as stand-alone search-free planners that simply execute the linear
sequence of actions selected by the policies. While this non-search approach is efficient and
has been shown to work well in a number of domains, it often fails due to flaws in the
policy that arise due to imperfect learning. Nevertheless, such policies capture substantial
information about the planning domain, which we would like to exploit in a more robust
way. In this work, we propose and evaluate a simple way of doing this by integrating
learned policies into forward search. At each search node (i.e. state), we execute the
learned policy for a fixed horizon and add all of the states encountered to the search queue.
In this way, flaws in the policy can be overcome by search, while the search efficiency can
be substantially improved by quickly uncovering good “deep states” that are found by the
policy. We evaluate this idea using two representations for learned policies both of which
make use of relaxed-plan features—decision lists of rules similar to Yoon et al. (2002) and
measures of progress (Yoon et al., 2005)—both of which make use of relaxed-plan features.

In our experiments, we learned and evaluated both forms of control knowledge on
benchmark problems from recent planning competitions. We learned on the first 15 prob-
lems in each domain and tested on the remaining problems. The results are very much
positive. Forward state-space search with the learned control knowledge outperforms state-
of-the-art planners, in most of the competition domains. We also demonstrate the utility
of our relaxed-plan feature space by considering feature spaces that ignore parts of the
relaxed-plan information, showing that using the relaxed-plan information leads to the
best performance.

The remainder of the paper is structured as follows. In Section 2, we introduce the
problem of learning domain-specific control knowledge for planning and in Section 3 we
overview some of the prior work in this area. In Section 4, we describe the two general
forms of control knowledge, heuristics and reactive policies, that we consider learning in
this work and how we will use that knowledge to guide forward state-space search. In
Section 5, we will describe a relaxed-plan feature space that will serve as our basis for
representing both learned heuristics and policies. In Sections 6 and 7 we will describe
specific representations for policies and heuristics, in terms of the relaxed-plan features, and
give learning algorithms for these forms of control knowledge. In Section 8, we demonstrate
the effectiveness of our proposal in this study through empirical results on benchmark
planning domains. In Section 9, we summarize and discuss potential future extensions to
this work.

2. Problem Setup

In this paper, we focus our attention on learning control knowledge for deterministic
STRIPS planning domains. Below we first give a formal definition of the types of planning
domains we consider and then describe the learning problem.

2.1 Planning Domains

A deterministic planning domain D defines a set of possible actions A and a set of states
S in terms of a set of predicate symbols P, action types Y , and objects O. Each state
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in S is a set of facts, where a fact is an application of a predicate symbol in P to the
appropriate number of objects from O. There is an action in A, for each way of applying
the appropriate number of objects in O to an action type symbol in Y . Each action a ∈ A
consists of: 1) an action name, which is an action type applied to the appropriate number
of objects, 2) a set of precondition state facts Pre(a), 3) two sets of state facts Add(a)
and Del(a) representing the add and delete effects respectively. As usual, an action a is
applicable to a state s iff Pre(a) ⊆ s, and the application of an (applicable) action a to s,
denoted a(s), results in the new state a(s) = (s \Del(a)) ∪Add(a).

Given a planning domain, a planning problem P from the domain is a tuple (s,A, g),
where A ⊆ A is a set of applicable actions, s ∈ S is the initial state, and g is a set of state
facts representing the goal. A solution plan for a planning problem is a sequence of actions
(a1, . . . , ah), where the sequential application of the sequence starting in state s leads to a
goal state s′ where g ⊆ s′. Later in the paper, in Section 7, when discussing measures of
progress, it will be useful to talk about reachability and deadlocks. We say that a planning
problem (s,A, g) is reachable from problem (s0, A, g) iff there is some action sequence in A∗

that leads from s0 to s. We say that a planning problem P is deadlock free iff all problems
reachable from P are solvable.

2.2 Learning Control Knowledge from Solved Problems

The bi-annual International Planning Competition (IPC), has played a large role in the re-
cent progress observed in AI planning. Typically the competition is organized around a set
of planning domains, with each domain providing a sequence of planning problems, often in
increasing order of difficulty. Despite the fact that the planners in these competitions ex-
perience many similar problems from the same domain, to our knowledge only one of them,
Macro-FF (Botea et al., 2005), has made any attempt to learn from previous experience
in a domain to improve performance on later problems.2 Rather they solve each problem
as if it were the first time the domain had been encountered. The ability to effectively
transfer domain experience from one problem to the next would provide a tremendous ad-
vantage. Indeed, the potential benefit of learning domain-specific control knowledge can be
seen by the impressive performance of planners such as TL Plan (Bacchus and Kabanza,
2000) and SHOP (Nau et al., 1999), where human-written control knowledge is provided
for each domain. However, to date, most “learning to plan” systems have lagged behind
the state-of-the-art non-learning domain-independent planners. One of the motivations and
contributions of this work is to move toward reversing that trend.

The input to our learner will be a set of problems for a particular planning domain
along with a solution plan to each problem. The solution plan might have been provided
by a human or automatically computed using a domain-independent planner (for modestly
sized problems). The goal is to analyze the training set to extract control knowledge that
can be used to more effectively solve new problems from the domain. Ideally, the control
knowledge allows for the solutions of large, difficult problems that could not be solved
within a reasonable time limit before learning.

As a concrete example of this learning setup, in our experiments, we use the problem set
from recent competition domains. We first use a domain-independent planner, in our case
FF (Hoffmann and Nebel, 2001), to solve the low-numbered planning problems in the set
(typically corresponding to the easier problems). The solutions are then used by our learner
to induce control knowledge. The control knowledge is then used to solve the remaining,
typically more difficult, problems in the set. Our objective here is to obtain fast, satisficing

2. Macro-FF learned on training problems from each domain provided by the organizers before the compe-
tition, rather than learning during the actual competition itself.
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planning through learning. The whole process is domain independent, with knowledge
transferring from easy to hard problems in a domain. Note that although learning times
can be substantial, the learning cost can be amortized over all future problems encountered
in the domain.

3. Prior Work

There has been a long history of work on learning-to-plan, originating at least back to the
original STRIPS planner (Fikes et al., 1972), which learned triangle tables or macros that
could later be exploited by the planner. For a collection and survey of work on learning in
AI planning see Minton (1993) and Zimmerman and Kambhampati (2003).

A number of learning-to-plan systems have been based on the explanation-based learn-
ing (EBL) paradigm, e.g. Minton et al. (1989) among many others. EBL is a deductive
learning approach, in the sense that the learned knowledge is provably correct. Despite
the relatively large effort invested in EBL research, the best approaches typically did not
consistently lead to significant gains, and even hurt performance in many cases. A primary
way that EBL can hurt performance is by learning too many, overly specific control rules,
which results in the planner spending too much time simply evaluating the rules at the cost
of reducing the number of search nodes considered. This problem is commonly referred to
as the EBL utility problem (Minton, 1988).

Partly in response to the difficulties associated with EBL-based approaches, there have
been a number of systems based on inductive learning, perhaps combined with EBL. The
inductive approach involves applying statistical learning mechanisms in order to find com-
mon patterns that can distinguish between good and bad search decisions. Unlike EBL, the
learned control knowledge does not have guarantees of correctness, however, the knowledge
is typically more general and hence more effective in practice. Some representative exam-
ples of such systems include learning for partial-order planning (Estlin and Mooney, 1996),
learning for planning as satisfiability (Huang et al., 2000), and learning for the Prodigy
means-ends framework (Aler et al., 2002). While these systems typically showed better
scalability than their EBL counterparts, the evaluations were typically conducted on only
a small number of planning domains and/or small number of test problems. There is no
empirical evidence that such systems are robust enough to compete against state-of-the-art
non-learning planners across a wide range of domains.

More recently there have been several learning-to-plan systems based on the idea of
learning reactive policies for planning domains (Khardon, 1999; Martin and Geffner, 2000;
Yoon et al., 2002). These approaches use statistical learning techniques to learn policies,
or functions, that map any state-goal pair from a given domain to an appropriate action.
Given a good reactive policy for a domain, problems can be solved quickly, without search,
by iterative application of the policy. Despite its simplicity, this approach has demonstrated
considerable success. However, these approaches have still not demonstrated the robust-
ness necessary to outperform state-of-the-art non-learning planners across a wide range of
domains.

Ideas from reinforcement learning have also been applied to learn control policies in AI
planning domains. Relational reinforcement learning (RRL) (Dzeroski et al., 2001), uti-
lized Q-learning with a relational function approximator, and demonstrated good empirical
results in the Blocksworld. The Blocksworld problems they considered were complex from
a traditional RL perspective due to the large state and action spaces, however, they were
relatively simple from an AI planning perspective. This approach has not yet shown scal-
ability to the large problems routinely tackled by today’s planners. A related approach,
utilized a more powerful form of reinforcement learning, known as approximate policy iter-
ation, and demonstrated good results in a number of planning competition domains (Fern
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et al., 2006). Still the approach failed badly on a number of domains and overall does not
yet appear to be competitive with state-of-the-art planners on a full set of competition
benchmarks.

The most closely related approaches to ours are recent systems for learning in the
context of forward state-space search. Macro-FF (Botea et al., 2005) and Marvin (Coles
and Smith, 2007) learn macro action sequences that can then be used during forward
search. Macro-FF learns macros from a set of training problems and then applies them to
new problems. Rather, Marvin is an online learner in the sense that it acquires macros
during search in a specific problem that are applied at later stages in the search. As
evidenced in the recent planning competitions, however, neither system dominates the best
non-learning planners.

Finally, we note that researchers have also investigated domain-analysis techniques,
e.g. (Gerevini and Schubert, 2000; Fox and Long, 1998), which attempt to uncover struc-
ture in the domain by analyzing the domain definition. These approaches have not yet
demonstrated the ability to improve planning performance across a range of domains.

4. Control Knowledge for Forward State-Space Search

In this section, we describe the two general forms of control knowledge that we will study
in this work: heuristic functions and reactive policies. For each, we describe how we will
incorporate them into forward state-space search in order to improve planning performance.
Later in the paper, in Sections 6 and 7, we will describe specific representations for heuristics
and policies and give algorithms for learning them from training data.

4.1 Heuristic Functions

The first and most traditional forms of control knowledge we consider are heuristic func-
tions. A heuristic function H(s,A, g) is simply a function of a state s, action set A, and
goal g that estimates the cost of achieving the goal from s using actions in A. If a heuris-
tic is accurate enough, then greedy application of the heuristic will find the goal without
search. However, when a heuristic is less accurate, it must be used in the context of a
search procedure such as best-first search, where the accuracy of the heuristic impacts the
search efficiency. In our experiments, we will utilize best-first search, which has often been
demonstrated to be an effective, though sub-optimal, search strategy in forward state-space
planning. Note that by best-first search, here we mean a search that is guided by only the
heuristic value, rather than the path-cost plus heuristic value. This search is also called
greedy best-first search. In this paper, when we use the term best-first search, it means
greedy best-first search and we will add greedy in front of best-first search to remind the
readers, as necessary, in the following texts.

Recent progress in the development of domain-independent heuristic functions for plan-
ning has led to a new generation of state-of-the-art planners based on forward state-space
heuristic search (Bonet and Geffner, 2001; Hoffmann and Nebel, 2001; Nguyen et al., 2002).
However, in many domains these heuristics can still have low accuracy, e.g. significantly un-
derestimating the distance to goal, resulting in poor guidance during search. In this study,
we will attempt to find regular pattern of heuristic inaccuracy (either due to over or under
estimation) through machine learning and compensate the heuristic function accordingly.

We will focus our attention on linear heuristics that are represented as weighted linear
combinations of features, i.e. H(s,A, g) = Σiwi · fi(s,A, g), where the wi are weights and
the fi are functions. In particular, for each domain we would like to learn a distinct set
of features and their corresponding weights that lead to good planning performance in
that domain. Note that some of the feature functions can correspond to existing domain-
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independent heuristics, allowing for our learned heuristics to exploit the useful information
they already provide, while overcoming deficiencies by including additional features. The
representation that we use for features is discussed in Section 5 and our approach to learning
linear heuristics over those features is described in Section 6.

In all of our experiments, we use the learned heuristics to guide (greedy) best-first
search when solving new problems.

4.2 Reactive Policies in Forward Search

The second general form of control knowledge that we consider in this study is of reac-
tive policies. A reactive policy is a computationally efficient function π(s,A, g), possibly
stochastic, that maps a planning problem (s,A, g) to an action in A. Given an initial prob-
lem (s0, A, g), we can use a reactive policy π to generate a trajectory of pairs of problems
and actions (((s0, A, g), a0), ((s1, A, g), a1), ((s2, A, g), a2) . . .), where ai = π(si, A, g) and
si+1 = ai(si). Ideally, given an optimal or near-optimal policy for a planning domain, the
trajectories represent high-quality solution plans. In this sense, reactive policies can be
viewed as efficient domain-specific planners that avoid unconstrained search. Later in the
paper, in Section 7, we will introduce two formal representations for policies: decision rule
lists and measures of progress, and describe learning algorithms for each representation.
Below we describe some of the prior approaches to using policies to guide forward search
and the new approach that we propose in this work.

The simplest approach to using a reactive policy as control knowledge is to simply
avoid search altogether and follow the trajectory suggested by the policy. There have been
a number of studies (Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002, 2005;
Fern et al., 2006) that consider using learned policies in this way in AI planning context.
While there have been some positive results, for many planning domains the results have
been mostly negative. One reason for these failures is that inductive, or statistical, policy
learning can result in imperfect policies, particularly with limited training data. Although
these policies may select good actions in many states, the lack of search prevents them
from overcoming the potentially numerous bad action choices.

In an attempt to overcome the brittleness of simply following imperfect reactive poli-
cies, previous researchers have considered more sophisticated methods of incorporating
imperfect policies into search. Two such methods include discrepancy search (Harvey and
Ginsberg, 1995) and policy rollout (Bertsekas and Tsitsiklis, 1996). Unfortunately, our ini-
tial investigation showed that in many planning competition domains these techniques were
not powerful enough to overcome the flaws in our learned polices. With this motivation we
developed a novel approach that is easy to implement and has proven to be quite powerful.

The main idea is to use reactive policies during the node expansion process of a heuristic
search, which in our work is greedy best-first search. Typically in best-first search, only
the successors of the current node being expanded are added to the priority queue, where
priority is measured by heuristic value. Rather, our approach first executes the reactive
policy for h steps from the node being expanded and adds the nodes of the trajectory along
with their neighbors to the queue. In all of our experiments, we used a value of h = 50,
though we found that the results were quite stable across a range of h (we sampled a range
from 30 to 200).

Note that when h = 0 we get standard (greedy) best-first search. In cases, where the
policy can solve a given problem from the current node being expanded, this approach will
solve the problem without further search provided that h is large enough. Otherwise, when
the policy does not directly lead to the goal, it may still help the search process by putting
heuristically better nodes in the search queue in a single node expansion. Without the
policy (i.e. h = 0) such nodes would only appear in the queue after many node expansions.
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Intuitively, given a reasonably good heuristic, this approach is able to leverage the good
choices made by a policy, while overcoming the flaws. While this technique for incorporating
policies into search is simple, our empirical results, show that it is very effective, achieving
better performance than either pure heuristic search or search-free policy execution.

5. A Relaxed-Plan Feature Space

A key challenge toward learning control knowledge in the form of heuristics and policies
is to develop specific representations that are rich enough to capture important properties
of search nodes. In this section, we describe a novel feature space for representing such
properties. This feature space will be used as a basis for our policy and heuristic repre-
sentations described in Sections 6 and 7. Note that throughout, for notational convenience
we will describe each search node by its implicit planning problem (s,A, g), where s is the
current state of the node, g is the goal, and A is the action set.

Each feature in our space is represented via an expression in taxonomic syntax, which
as described in Section 5.4, provides a language for describing sets of objects with common
properties. Given a search node (s,A, g) and a taxonomic expression C, the value of the
corresponding feature is computed as follows. First, a database of atomic facts D(s,A, g)
is constructed, as described in Section 5.3, which specifies basic properties of the search
node. Next, we evaluate the class expression C relative to D(s,A, g), resulting in a class or
set of objects. These sets, or features, can then be used as a basis for constructing control
knowledge in various ways—e.g. using the set cardinalities to define a numeric feature
representation of search nodes.

Our feature space, is in the spirit of prior work (Martin and Geffner, 2000; Yoon et al.,
2002; Fern et al., 2006) that also used taxonomic syntax to represent control knowledge.
However, our approach is novel in that we construct databases D(s,A, g) that contain not
only facts about the current state and goal, but also facts derived via a bounded reasoning
process known as relaxed planning. Prior work, considered only databases that included
information about the current state and goal. By defining features in terms of taxonomic
expressions built from our extended databases, we are able to capture properties that are
difficult to represent in terms of the state and goal predicates alone.

In the remainder of this section, we first review the idea of relaxed planning, which is
central to our feature space. Next, we describe the construction of the database D(s,A, g)
for search nodes. Finally, we introduce taxonomic syntax, which is used to build complex
features on top of the database.

5.1 Relaxed Plans

Given a planning problem (s,A, g), we define the corresponding relaxed planning problem
to be the problem (s,A+, g) where the new action set A+ is created by copying A and then
removing the delete list from each of the actions. Thus, a relaxed planning problem is a
version of the original planning problem where it is not necessary to worry about delete
effects of actions. A relaxed plan for a planning problem (s,A, g) is simply a plan that
solves the relaxed planning problem.

Relaxed planning problems have two important characteristics. First, although a re-
laxed plan may not necessarily solve the original planning problem, the length of the
shortest relaxed plan serves as an admissible heuristic for the original planning problem.
This is because preconditions and goals are defined in terms of positive state facts, and
hence removing delete lists can only make it easier to achieve the goal. Second, in general,
it is computationally easier to find relaxed plans compared to solving general planning
problems. In the worst case, this is apparent by noting that the problem of plan existence

8



Learning Control Knowledge

can be solved in polynomial time for relaxed planning problems, but is PSPACE-complete
for general problems. However, it is still NP-hard to find minimum-length relaxed plans
(Bylander, 1994). Nevertheless, practically speaking, there are very fast polynomial time
algorithms that typically return short relaxed plans whenever they exist, and the lengths
of these plans, while not admissible, often provide good heuristics.

The above observations have been used to realize a number of state-of-the-art planners
based on heuristic search. HSP (Bonet and Geffner, 2001) uses forward state-space search
guided by an admissible heuristic that estimates the length of the optimal relaxed plan.
FF (Hoffmann and Nebel, 2001) also takes this approach, but unlike HSP, estimates the
optimal relaxed-plan length by explicitly computing a relaxed plan. FF’s style of relaxed
plan computation is linear with the length of the relaxed plan, thus fast, but the result-
ing heuristics can be inadmissible. Our work builds on FF, using the same relaxed-plan
construction technique, which we briefly describe below.

FF computes relaxed plans using a relaxed plan graph (RPG). An RPG is simply
the usual plan graph created by Graphplan (Blum and Furst, 1995), but for the relaxed
planning problem rather than the original problem. Since there are no delete lists in the
relaxed plan, there will be no mutex relations in the plan graph. The RPG is a leveled
graph alternating between action levels and state-fact levels, with the first level containing
the state facts in the initial state. An action level is created by including any action whose
preconditions are satisfied in the preceding state-fact level. A state-fact level is created by
including any fact that is in the previous fact level or in the add list of an action in the
preceding action level. RPG construction stops when a fixed point is reached or the goal
facts are all contained in the most recent state-fact level. After constructing the RPG for
a planning problem, FF starts at the last RPG level and uses a backtrack-free procedure
that extracts a sequence of actions that correspond to a successful relaxed plan. All of this
can be done very efficiently, allowing for fast heuristic computation.

While the length of FF’s relaxed plan often serves as an effective heuristic, for a number
of planning domains, ignoring delete effects leads to severe underestimates of the distance
to a goal. The result is poor guidance and failure on all but the smallest problems. One
way to overcome this problem would be to incorporate partial information about delete lists
into relaxed plan computation, e.g., by considering mutex relations. However, to date, this
has not born out as a practical alternative. Another possibility is to use more information
about the relaxed plan than just its length. For example, Vidal (2004) uses relaxed plans
to construct macro actions, which help the planner overcome regions of the state space
where the relaxed-plan length heuristic is flat. However, that work still uses length as the
sole heuristic value. In this work, we give a novel approach to leveraging relaxed planning,
in particular, we use relaxed plans as a source of information from which we can compute
complex features that will be used to learn heuristic functions and policies. Interestingly, as
we will see, this approach will allow for features that are sensitive to delete lists of actions
in relaxed plans, which can be used to help correct for the fact that relaxed plans ignore
delete effects.

5.2 Example of using Relaxed Plan Features for Learning Heuristics

As an example of how relaxed plans can be used to define useful features, consider a problem
from the Blocksworld in Figure 1. Here, we show two states S1 and S2 that can be reached
from the initial state by applying the actions putdown(A) and stack(A,B) respectively.
From each of these states we show the optimal relaxed plans for achieving the goal. For
these states, the relaxed-plan length heuristic is 3 for S2 and 4 for S1, suggesting that S2

is the better state. However, it is clear that, in fact, S1 is better.
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Figure 1: Blocksworld Example

Notice that in the relaxed plan for S2, on(A,B) is in the delete list of the action
unstack(A,B) and at the same time it is a goal fact. One can improve the heuristic
estimation by adding together the relaxed-plan length and a term related to such deleted
facts. In particular, suppose that we had a feature that computed the number of such “on”
facts that were both in the delete list of some relaxed plan action and in the goal, giving
a value of 0 for S1 and 1 for S2. We could then weight this feature by two and add it to
the relaxed-plan length to get a new heuristic. This would assign a value of 4 for S1 and 5
for S2, correctly ranking the states. Using taxonomic syntax, one can define such a feature
as the cardinality of a certain class expression over a database of facts defined in the next
section.

While this is an over-simplified example, it is suggestive as to the utility of features
derived from relaxed plans. Below we describe a domain-independent feature space that
can be instantiated for any planning domain. Our experiments show that these features
are useful across a range of domains used in planning competitions.

5.3 Constructing Databases from Search Nodes

Recall that each feature in our feature space corresponds to a taxonomic syntax expression
(see next section) built from the predicate symbols in databases of facts constructed for
each search node encountered. We will denote the database for search node (s,A, g) as
D(s,A, g), which will simply contain a set of ground facts over some set of predicate symbols
and objects derived from the search node. Whereas prior work defined D(s,A, g) to include
only facts about the goal g and state s, we will also include facts about the relaxed plan
corresponding to problem (s,A, g), denoted by (a1, . . . , an). Note that in this work we use
the relaxed plan computed by FF’s heuristic calculation.

Given any search node (s,A, g) we now define D(s,A, g) to be the database that con-
tains the following facts:

• All of the state facts in s.

• The name of each action ai in the relaxed plan. Recall that each name is an action type Y

from domain definition D applied to the appropriate number of objects, e.g., unstack(A,B).
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on(A, B), on(B, table), on(C, table), clear(A), clear(C), armempty()
unstack(A, B), pickup(B), stack(B, C)

aholding(A), aclear(B), aholding(B), aon(B, C)
don(A, B), darmempty(), darmempty(), don(B, table), dholding(B), dclear(C)

gon(A, B), gon(B, C)

con(A, B), con(C,table)

Figure 2: Database for state S2 in Figure 1

• For each state fact in the add list of some action ai in the relaxed plan, add a fact to the
database that is the result of prepending an a to the fact’s predicate symbol. For example, in
Figure 1, for state S2 the fact holding(B) is in the add list of pickup(B), and thus we would
add the fact aholding(B) to the database.

• Likewise for each state fact in the delete list of some ai, we prepend a d to the predicate
symbol and add the resulting fact to the database. For example, in Figure 1, for S2, we would
add the fact don(A,B).

• For each state fact in the goal g, we prepend a g to the predicate symbol and add it to the
database. For example, in Figure 1, we would add the facts gon(A,B) and gon(B,C).

• For each predicate symbol that appears in the goal, we prepend a c to the predicate symbol
and add a corresponding fact to the database whenever it is true in the current state s and
appears in the goal. For example, the predicate con represents the relation “correctly on”,
and in Figure 1, for state S2 we would add the fact con(A,B) since A is currently on B and is
supposed to be on B in the goal. The ’c’ predicates provide a useful mechanism for expressing
concepts that relate the current state to the goal.

Figure 2, shows an example of the database that would be constructed for the state
S2 in Figure 1. Note that taxonomic syntax class expressions will be constructed from the
predicates in this database which include the set of planning domain predicates and action
types, along with a variant of each planning domain predicate prepended with an ’a’, ’d’,
’g’, or ’c’. The database captures information about the state and goal using the planning
domain predicates, the ’g’ predicates, and ’c’ predicates. It captures information about
the relaxed plan using the action type predicates and the ’a’ and ’d’ predicates. Notice
that the database does not capture information about the temporal structure of the relaxed
plan. Such temporal information may be useful for describing features, and is a natural
extension of this work.

5.4 Defining Complex Features with Taxonomic Syntax

For a given search node (s,A, g) with database D(s,A, g) we now wish to define more
complex features of the search node. We will do this using taxonomic syntax (McAllester
and Givan, 1993) which is a first-order language for writing class expressions C that are
used to denote sets of objects. In particular, given a class expression C, the set of objects
it represents relative to D(s,A, g) will be denoted by C[D(s,A, g)]. Thus, each C can be
viewed as defining a feature that for search node (s,A, g) takes the value C[D(s,A, g)].
Below we describe the syntax and semantics of the taxonomic syntax fragment we use in
this paper.

Syntax. Taxonomic class expression are built from a set of predicates P, where n(P )
will be used to denote the arity of predicate P . For example, in our application the set of
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predicates will include all predicates used to specify facts in database D(s,A, g) as described
above. The set of possible class expressions over P are given by the following grammar:

C := a-thing | P1 | C ∩ C | ¬C | (P C1 . . . Ci−1 ? Ci+1 . . . Cn(P ))

where C and Cj are class expressions, P1 is any arity one predicate, and P is any pred-
icate symbol of arity two or greater. Given this syntax we see that the primitive class
expressions are the special symbol a-thing, which will be used to denote the set of all
objects, and single arity predicates, which will be used to denote the sets of objects for
which the predicates are true. One can then obtain compound class expressions via com-
plementation, intersection, or relational composition (the final rule). Before defining the
formal semantics of class expressions, we introduce the concept of depth, which will be
used in our learning procedures. We define the depth of a class expression C, denoted
depth(C) as follows. The depth of a-thing or a single arity predicate is 0, depth(C1∩C2) =
1 + max (depth(C1),depth(C2)), depth(¬C) = 1 + depth(C), and the depth of the expres-
sion (P C1 . . . Ci−1 ? Ci+1 . . . Cn(P )), is 1 + max

(

depth(C1), . . . ,depth(Cn(P ))
)

. Note
that the number of class expressions can be infinite. However, we can limit the number
of class expressions under consideration by placing an upper bound on the allowed depth,
which we will often do when learning.

Semantics. We now describe the semantics of class expressions, which are defined
relative to a finite database D of ground facts over the set of predicates P and a finite set
of constant symbols, or objects. For example, D might correspond to one of the databases
described in the previous section. One can simply view the database D as a finite first-order
model, or Herbrand interpretation. Given a class expression C and a database D, we use
C[D] to denote the set of objects represented by C with respect to D. We also use P [D] to
denote the set of tuples of objects corresponding to predicate P in D, i.e. the tuples that
make P true.

If C = a-thing then C[D] denotes the set of all objects in D. For example, in a database
constructed from a Blocksworld state, a-thing would correspond to the set of all blocks. If
C is a single arity predicate symbol P , then C[D] is the set of all objects in D for which P is
true. For example, if D again corresponds to the Blocksworld then clear[D] and ontable[D]
denote the sets of blocks that are clear and on the table respectively in D. If C = C1 ∩C2

then C[D] = C1[D]∩C2[D]. For example, (clear∩ontable)[D] denotes the set of blocks that
are clear and on the table. If C = ¬C ′ then C[D] = a-thing−C ′[D]. Finally, for relational
composition, if C = (P C1 . . . Ci−1 ? Ci+1 . . . Cn(P )) then C[D] is the set of all constants
c such that there exists cj ∈ Cj [D] such that the tuple (c1, . . . , ci−1, c, ci+1, . . . , cn(R)) is in
P [D]. For example, if D again contains facts about a Blocksworld problem, (on clear ?)[D]
is the set of all blocks that are directly under some clear block.

As some additional Blocksworld examples, C = (con a-thing ?) describes the blocks
that are currently directly under the block that they are supposed to be under in the goal.
So if D corresponds to the database in Figure 2 then C[D] = {B, table}. Recall that as
described in the previous section the predicate con is true of block pairs (x, y) that are
correctly on each other, i.e. x is currently on y and x should be on y in the goal. Likewise
(con ? a-thing) is the set of blocks that are directly above the block they are supposed
to be on in the goal and would be interpreted as the set {A,C} in database D. Another
useful concept is ¬(con ? a-thing) which denotes the set of blocks that are not currently
on their final destination block and would be interpreted as {B, table} with respect to D.

6. Learning Heuristic Functions

Given the relaxed plan feature space, we will now describe how to use that space to represent
and learn heuristic functions for use as control knowledge in forward state-space search.
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Recall from Section 4.1 that we will utilize the learned heuristics to control (greedy) best-
first search in our experiments. Below we first review our heuristic representation followed
by a description of our learning algorithm. Recall that heuristic functions are just one of
two general forms of control knowledge that we consider in this paper. Our second form,
reactive policies, will be covered in the next section.

6.1 Heuristic Function Representation

Recall that a heuristic function H(s,A, g) is simply a function of a state s, action set A,
and goal g that estimates the cost of achieving the goal from s using actions in A. In
this section, we will consider learning heuristic functions that are represented as weighted
linear combinations of functions fi, i.e. H(s,A, g) = Σiwi · fi(s,A, g). In particular,
for each planning domain we would like to learn a distinct set of functions fi and their
corresponding weights that lead to good planning performance in that domain when guided
by the resulting linear heuristic function. In this work, each function will correspond to
a class expression Ci defined over the relaxed-plan database as described in the previous
section, and will be denoted by fCi

. We will take the numeric value of fCi
given a search

node (s,A, g) to be the cardinality of Ci with respect to D(s,A, g)—that is, fCi
(s,A, g) =

|Ci[D(s,A, g)]|.

6.2 Heuristic Function Learning

The input to our learning algorithm is a set of planning problems, each paired with an
example solution plan, taken from a target planning domain. We do not assume that
these solutions are optimal, though there is an implicit assumption that the solutions
are reasonably good. Our learning objective is to learn a heuristic function that closely
approximates the observed distance-to-goal for each state in the training solutions. To do
this, we first create a derived training set J that contains a training example for each state
in the solution set. In particular, for each training problem (s0, A, g) and corresponding
solution trajectory (s0, s1, . . . , sn) we add to J a set of n examples {((si, A, g), n− i) | i =
0, . . . , n− 1}, each example being a pair of a planning problem and the observed distance-
to-goal in the training trajectory. Given the derived training set J, we then attempt to
learn a real valued function ∆(s,A, g) that closely approximates the difference between
the distances recorded in J and the value of FF’s relaxed-plan length (RPL) heuristic,
RPL(s,A, g). We then take the final heuristic function to be H(s,A, g) = RPL(s,A, g) +
∆(s,A, g).

We represent ∆(s,A, g) as a finite linear combination of functions fCi
with the Ci

selected from the relaxed plan feature space, i.e., ∆(s,A, g) = Σiwi · fCi
(s,A, g). Note

that the overall representation for H(s,A, g) is a linear combination of features, where
the feature weight of RPL(s,A, g) has been clamped to one. Another design choice could
have been to allow the weight of the RPL feature to also be learned, however, an initial
exploration showed that constraining the value to be one and learning the residual ∆(s,A, g)
gives moderately better performance in some domains.

Learning the above representation involves selecting a set of class expressions from the
above infinite space defined in Section 5 and then assigning weights to the corresponding
features. One approach to this problem would be to impose a depth bound on class ex-
pressions and then learn the weights (e.g., using least squares) for a linear combination
that involves all features whose depths of class expression are within the bound. How-
ever, the number of such features is exponential in the depth bound, making this approach
impractical for all but very small bounds. Such an approach will also have no chance of
finding important features beyond the fixed depth bound. In addition, we would prefer
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to use the smallest possible number of features, since the time complexity of evaluating
the learned heuristic grows in proportion to the number of selected features. Thus, we
consider a greedy learning approach where we heuristically search through the space of
features, without imposing apriori depth bounds. The procedure described below is a rela-
tively generic approach that we found to work well, however, alternative more sophisticated
search approaches are an important direction for future work.

Figure 3 gives our algorithm for learning ∆(s,A, g) from a derived training set J. The
main procedure Learn-Delta first creates a modified training set J′ that is identical to
J except that the distance-to-goal of each training example is changed to the difference
between the distance-to-goal and FF’s relaxed-plan length heuristic. Each iteration of
Learn-Delta maintains a set of class expressions Φ, which represents the set of features
that are currently under consideration. Initially Φ is equal to the set of expressions of
depth 0 and 1. Each iteration of the loop has two main steps. First, we use the procedure
Learn-Approximation (described below) to select a subset of class expressions from Φ
and to compute their feature weights. Second, we create a new candidate feature set Φ
that includes higher depth class expressions. This is done by using the selected features as
seeds and then calling the procedure Expand-Features. This results in a larger candidate
feature set, including the seed features, which is again used by Learn-Approximation to
find a possibly improved approximation. We continue alternating between feature space
expansion and learning an approximation until the approximation accuracy does not im-
prove. Here we measure the accuracy of the approximation by the R-square value, which
is the fraction of the variance in the data that is explained by the linear approximation.

Learn-Approximation uses a simple greedy procedure. Starting with an empty fea-
ture set, on each iteration the feature from Φ that can most improve the R-square value
of the current feature set is included in the approximation. This continues until the R-
square value can no longer be improved. Given a current feature set, the quality of a newly
considered feature is measured by calling the function lm from the statistics tool R, which
outputs the R-square value and weights for a linear approximation that includes the new
feature. After observing no improvement, the procedure returns the most recent set of
selected features along with their weights, yielding a linear approximation of ∆(s,A, g).

The procedure Expand-Features creates a new set of class expressions that includes
the seed set, along with new expressions generated from the seeds. There are many
possible ways to generate an expanded set of features from a given seed C. Here we
consider three such expansion functions that worked well in practice. The first function
Relational-Extension takes a seed expression C and returns all expressions of the form
(P c0 . . . cj−1 C cj+1 . . . ci−1 ? ci+1 . . . cn(P )), where P is a predicate symbol of arity
larger than one, the ci are all a-thing, and i, j ≤ n(P ). The result is all possible ways
of constraining a single argument of a predicate by C and placing no other constraints on
the predicate. For example in Blocksworld, a relational extension of the class expression,
holding, is (gon holding ?). The extended expression describes the block in the goal state
that should be under the block currently being held.

The second procedure for generating new expressions given a class expression C is
Specialize. This procedure simply generates all class expressions that can be created by
replacing a single depth zero or one sub-expression c′ of C with the intersection of c′ and
another depth zero or one class expression. Note that all expressions that are produced by
Specialize will be subsumed by C. That is, for any such expression C ′, we have that for
any database D, C ′[D] ⊆ C[D]. As an example, given the Blocksworld expression (on ?
a-thing), one of the class expression generated by Specialize would be (on ? (a-thing
∩ gclear)). The input class expression describes all the blocks on some block, and the
example output class expression describes the blocks that are currently on blocks that
should be clear in the goal state. Finally, we add the complement of the seed classes into
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the expanded feature set. For example in Logisticsworld, for the input class expression (cin
? a-thing), the complement output is ¬(cin ? a-thing). The input describes packages
that are already in the goal location, and the output describes packages that are not in the
goal location.

Learn-Delta (J,D)
// J is pairs of problem states and plan length from them

// D is domain definition to enumerate class expressions

J′ ← {((s,A, g), d− RPL(s,A, g)) | ((s,A, g), d) ∈ J}
d is the plan length, the remaining states in the solution trajectories

Φ← {C | C is a class expression of depth 0 or 1}
repeat until no R-square value improvement observed

(Φ′,W )← Learn-Approximation(J′, Φ)
// Φ′ is newly selected features, W is the set of weights for Φ′

Φ← Expand-Features(D, Φ′)
Return Φ′,W

Learn-Approximation (J,Φ)
Φ′ ← {} // return features
repeat until no improvement in R-square value

C ← arg maxC∈Φ R-square(J,Φ′ ∪ {C})
// R-square is computed after linear approximation with the features

Φ′ ← Φ′ ∪ {C}
W ← lm(J,Φ′)

// lm, least square approximation, returns weights

Return Φ′,W

Expand-Features (D,Φ′)
Φ← Φ′ // return features
for-each C ∈ Φ′

Φ← Φ ∪Relational-Extension(D, C) ∪ Specialize(D, C) ∪ {¬C}
Return Φ

Figure 3: Pseudo-code for learning heuristics: The learning algorithm used to approximate
the difference between the relaxed plan length heuristic and the observed plan
lengths in the training data.

7. Learning Reactive Policies

In this section, we present two representations and associated learning algorithms for re-
active policies: taxonomic decision lists and measures of progress. Recall that Section 4.2
describes in detail our novel approach for using the resulting policies as search control
knowledge.
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7.1 Taxonomic Decision Lists

We first consider representing and learning policies as taxonomic decision lists. Similar
representations have been considered previously (Martin and Geffner, 2000; Yoon et al.,
2002), though this is the first work that builds such lists from relaxed-plan-based features.

7.1.1 Representation

A taxonomic decision list policy is a list of taxonomic action-selection rules. Each rule has
the form

a(x1, . . . , xk) : L1, L2, . . . Lm

where a is a k-argument action type, the Li are literals, and the xi are action-argument
variables. Each literal has the form x ∈ C, where C is a taxonomic syntax class expression
and x is an action-argument variable.

Given a search node (s,A, g) and a list of action-argument objects O = (o1, . . . , ok),
we say that a literal xi ∈ C is satisfied if oi ∈ C[D(s,A, g)], that is, object oi satisfies
the constraint imposed by the class expression C. We say that a rule R = a(x1, . . . , xk) :
L1, L2, . . . Lm suggests action a(o1, . . . ok) in (s,A, g) if each literal in the rule is true given
(s,A, g) and O, and the preconditions of the action are satisfied in s. Note that if there
are no literals in a rule for action type a, then all legal actions of type a are suggested by
the rule. A rule can be viewed as placing mutual constraints on the tuples of objects that
an action type can be applied to. Note that a single rule may suggest no action or many
actions of one type. Given a decision list of such rules we say that an action is suggested by
the list if it is suggested by some rule in the list, and no previous rule suggests any actions.
Again, a decision list may suggest no action or multiple actions of one type.

A decision list L defines a deterministic policy π[L] as follows. If L suggests no ac-
tion for node (s,A, g), then π[L](s,A, g) is the lexicographically least action in s, whose
preconditions are satisfied; otherwise, π[L](s,A, g) is the least action suggested by L. It
is important to note that since π[L] only considers legal actions, as specified by action
preconditions, the rules do not need to explicitly encode the preconditions, which allows
for simpler rules and learning. In other words, we can think of each rule as implicitly
containing the preconditions of its action type.

As an example of a taxonomic decision list policy, consider a simple Blocksworld domain
where the goal is to place all of the blocks on the table. The following policy will solve any
problem in the domain.

putdown(x1) : x1 ∈ holding

pickup(x1) : x1 ∈ (on ? (on ? a-thing))

The first rule will cause the agent to putdown any block that is being held. Otherwise, if
no block is being held, then the second rule will pickup a block x1 that is directly on top
of a block that is directly on top of another object (either the table or another block). In
particular, this will pickup a block at the top of a tower of height two or more, as desired.
3

7.1.2 Decision List Learning

Figure 4 depicts the learning algorithm we use for decision list policies. The training set J

passed to the main procedure Learn-Decision-List is a multi-set that contains all pairs of

3. If the second rule is changed to pickup(x1) : x1 ∈ (on ? a-thing), then the decision rule list may find
the loop, since it might try to pick up a block on the table that has just been put down.
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Learn-Decision-List (J, d, b)
// J: set of training instances where each instance is a search node labeled by an action

// d: the depth limit for class expressions

// b: beam width, used in search for the rules

L← ()
while ( J 6= {} )

R← Find-Best-Rule (J, d, b)
J← J− {j ∈ J | R suggests an action for j}
L← L : R; // append rule to end of current list

Return L

Find-Best-Rule(J, d, b)

Hvalue-best-rule← −∞; R← ()
for-each action type a

Ra ←Beam-Search(a, J, d, b)
if H(J, Ra) > Hvalue-best-rule

// H(J, Ra) is learning heuristic function in Equation 2

R← Ra

Hvalue-best-rule ← H(J, Ra)
Return R

Beam-Search(a, J, d, b)

Lset ← {(xk ∈ C)|k ≤ n(a),depth(C) ≤ d}
// the set of all possible literals involving class expressions of depth d or less

beam ← {a(x1, . . . , ak)} // initial beam contains rule with empty rule body
Hvalue-best ← −∞; Hvalue-best-new ← 0
while (Hvalue-best < Hvalue-best-new)

Hvalue-best ← Hvalue-best-new
candidates← {R, l|l ∈ Lset, R ∈ beam}

// the set of all possible rules resulting from adding one literal to a rule in the beam

beam ← set of b best rules in candidates according to heuristic H from Equation 2
Hvalue-best-new ← H value of best rule in beam

Return best rule in beam

Figure 4: Pseudo-code for learning policy

search nodes and corresponding actions observed in the solution trajectories. The objective
of the learning algorithm is to find a taxonomic decision list that for each search node in
the training set suggests the corresponding action.

The algorithm takes a Rivest-style decision list learning approach (Rivest, 1987) where
one rule is learned at a time, from highest to lowest priority, until the resulting rule set
“covers” all of the training data. Here we say that a rule covers a training example if it
suggests an action for the corresponding state. An ideal rule is one that suggests only
actions that are in the training data.

The main procedure Learn-Decision-List initializes the rule list to () and then calls
the procedure Find-Best-Rule in order to select a rule that covers many training examples
and that correctly covers a high fraction of those examples—i.e. a rule with high coverage
and high precision. The resulting rule is then added to the tail of the current decision list,
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and at the same time the training examples that it covers are removed from the training set.
The procedure then searches for another rule with high coverage and high precision with
respect to the reduced training set. The process of selecting good rules and reducing the
training set continues until no training examples remain uncovered. Note that by removing
the training examples covered by previous rules we force Find-Best-Rule to focus on only
the training examples for which the current rule set does not suggest an action.

The key procedure in the algorithm is Find-Best-Rule, which at each iteration does
a search through the exponentially large rule space for a good rule. Recall that each rule
has the form

a(x1, . . . , xk) : L1, L2, . . . Lm

where a is one of the action types and the Li are of the form x ∈ C. Since this rule space
is exponentially large we utilize a greedy beam-search approach. In particular, the main
loop of Find-Best-Rule loops over each action type a and then uses a beam search to
construct a set of literals for that particular a. The best of these rules, as measured by an
evaluation heuristic, is then returned. It remains to describe the beam search over literal
sets and our heuristic evaluation function.

The input to the procedure Beam-Search is the action type a, the current training
set, a beam width b, and a depth bound d on the maximum size of class expressions that
will be considered. The beam width and the depth bound are user specified parameters
that bound the amount of search. We used d = 2, b = 10 in all of our experiments. The
search is initialized so that the current beam contains only the empty rule, i.e. a rule with
head a(x1, . . . , xk) and no literals. On each iteration of the search a candidate rule set is
constructed that contains one rule for each way of adding a new literal, with depth bound
d, to one of the rules in the beam. If there are n possible literals of depth bound d this will
resulting in a set of nb rules. Next the rule evaluation heuristic is used to select the best b

of these rules which are kept in the beam for the next iteration, with all other candidates
being discarded. The search continues until the search is unable to uncover an improved
rule as measured by the heuristic.

Finally, our rule evaluation heuristic H(J, R) is shown in Equation 2, which evaluates
a rule R with respect to a training set J. There are many good choices for heuristics and
this is just one that has shown good empirical performance in our experience. Intuitively
this function will prefer rules that suggest correct actions for many search nodes in the
training set, while at the same time minimizing the number of suggested actions that are
not in the training data. We use R(s,A, g) to represent the set of actions suggested by
rule R in (s,A, g). Using this, Equation 1, evaluates the “benefit” of rule R on training
instance ((s,A, g), a) as follows. If the training set action a is not suggested by R then the
benefit is zero. Otherwise the benefit decreases with the size of R(s,A, g). That is, the
benefit decreases inversely with the number of actions other than a that are suggested. The
overall heuristic H is simply the sum of the benefits across all training instances. In this
way the heuristic will assign small heuristic values to rules that cover only a small number
of examples and rules that cover many examples but suggest many actions outside of the
training set.

benefit(((s,A, g), a), R) =

{

0 : a 6∈ R(s,A, g)
1

|R(s,A,g)| : a ∈ R(s,A, g)
(1)

H(J, R) =
∑

j∈J

benefit(j, R) (2)
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7.2 Measures of Progress

In this section, we describe the notion of measures of progress and how they can be used
to define policies and learned from training data.

7.2.1 Representation

Good plans can often be understood as seeking to achieve specific subgoals en route to the
goal. In an object-oriented view, these subgoals, along with the goal itself, can be seen as
properties of objects, where in each case we wish to increase the number of objects with the
given property. Taking this view, we consider control knowledge in the form of compact
descriptions of object classes (properties) that a controller is to select actions to enlarge.
For example in Blocksworld, in an optimal trajectory, the number of blocks well placed
from the table up never decreases, or in Logisticsworld the number of solved packages
never decreases in an optimal plan.

Good trajectories also often exhibit locally monotonic properties: properties that in-
crease monotonically for identifiable local periods, but not all the time during the trajectory.
For example, in Blocksworld, consider a block “solvable” if its desired destination is clear
and well placed from the table up. Then, in good trajectories, while the number of blocks
well placed from the table up stays the same, the number of solvable blocks need never
decrease locally; but, globally, the number of solvable blocks may decrease as the number
of blocks well placed from the table up increases. Sequences of such properties can be
used to define policies that select actions in order to improve the highest-priority property
possible, while preserving higher-priority properties.

Previously, the idea of monotonic properties of planning domains have been identified
by Parmar (2002) as “measures of progress” and we inherit the term and expand the idea to
ensembles of measures where the monotonicity is provided via a prioritized list of functions.
Let F = (F1, . . . , Fn) be an ordered list where each Fi is a function from search nodes to
integers. Given an F we define an ordering relation on search nodes (s,A, g) and (s′, A, g)
as F (s,A, g) ≻ F (s′, A, g) if Fi(s,A, g) > Fi(s

′, A, g) while Fj(s,A, g) = Fj(s
′, A, g) for all

j < i. F is a strong measure of progress for planning domain D iff for any reachable problem
(s,A, g) of D, either g ⊆ s or there exists an action a such that F (a(s), A, g) ≻ F (s,A, g).
This definition requires that for any state not satisfying the goal there must be an action
that increases some component heuristic Fi while maintaining the preceding, higher-priority
components. In this case we say that such an action has priority i. Note that we allow
the lower priority heuristics that follow Fi to decrease so long as Fi increases. If an action
is not able to increase some Fi, while maintaining all higher-priority components, we say
that the action has null priority. In this work we represent our prioritized lists of functions
F = (F1, . . . , Fn) using a sequence of class expressions C = (C1, . . . , Cn) and just as was
the case for our heuristic representation we take the function values to be the cardinalities
of the corresponding sets of objects, that is, Fi(s,A, g) = |Ci[D(s,A, g)]|.

Given a prioritized list C, we define the corresponding policy π[C] as follows. Given
search node (s,A, g), if all legal actions in state s have null priority, then π[C](s,A, g) is
just the lexicographically least legal action. Otherwise π[C](s,A, g) is the lexicographically
least legal action that achieves highest priority among all other legal actions.

As a simple example, consider again a Blocksworld domain where the objective is to
always place all the blocks on the table. A correct policy for this domain is obtained using
a prioritized class expression list (C1, C2) where C1 = ¬(on ? (on ? a-thing)) and
C2 = ¬holding. The first class expression causes the policy to prefer actions that are able
to increase the set of objects that are not above at least two other objects (objects directly
on the table are in this set). This expression can always be increased by picking up a
block from a tower of height two or greater when the hand is empty. When the hand is
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not empty, it is not possible to increase C1 and thus actions are preferred that increase
the second expression while not decreasing C1. The only way to do this is to putdown the
block being held on the table, as desired.

7.2.2 Learning Measures of Progress

Figure 5 describes the learning algorithm for measures of progress. The overall algorithm
is similar to our Rivest-style algorithm for learning decision lists. Again each training
example is a pair ((s,A, g), a) of a search node and the corresponding action selected in
that node. Each iteration of the main procedure Learn-Prioritized-Measures finds a
new class expression, or measure, that is added to the tail of the prioritized list and then
removes any newly “covered” examples from the training set. Here we say that a measure C

covers a training example ((s,A, g), a) if |C(D[s,A, g])| 6= |C(D[a(s), A, g])|. It covers the
example positively, if |C(D[s,A, g])| < |C(D[a(s), A, g])| and covers it negatively otherwise.
Intuitively if a class expression positively covers an example then it increases across the
state transition caused by the action of the example. Negative coverage corresponds to
decreasing across the transition. We stop growing the prioritized list when we are unable
to find a new measure with positive heuristic value.

The core of the algorithm is the procedure Find-Best-Measure, which is responsible
for finding a new measure of progress that positively covers as many training instances as
possible, while avoiding negative coverage. To make the search more tractable we restrict
our attention to class expressions that are intersections of class expressions of depth d or
less, where d is a user specified parameter. The search over this space of class expressions
is conducted using a beam search of user specified width b which is initialized to a beam
that contains only the universal class expression a-thing. We used d = 2, b = 10 in all of
our experiments. Given the current beam of class expressions, the next set of candidates
contains all expressions that can be formed by intersecting an element of the beam with a
class expression of depth d or less. The next beam is then formed by selecting the best b

candidates as measured by a heuristic. The search ends when it is unable to improve the
heuristic value, upon which the best expression in the beam is returned.

To guide the search we use a common heuristic shown in Equation 3, which is known
as weighted accuracy (Furnkranz and Flach, 2003). This heuristic evaluates an expression
by taking a weighted difference between the number of positively covered examples and
negatively covered examples. The weighting factor ω measures the relative importance
of negative coverage versus positive coverage. In all of our experiments, we have used
ω = 4 which results in a positive value when the positive coverage is at least four times the
negative coverage.

Hm(J, C, ω) = |{j|C covers positively j ∈ J}| − ω × |{j|C covers negatively j ∈ J}| (3)

We note that one shortcoming of our current learning algorithm is that it can be fooled
by properties that monotonically increase along all or many trajectories in a domain, even
those that are not related to distinguishing between good and bad plans. For example,
consider a domain with a class expression C, where |C| never decrease and frequently
increases along any trajectory. Our learner will likely output this class expression as a
solution, although it does not in any way distinguish good from bad trajectories. In many
of our experimental domains, such properties do not seem to exist, or at least are not
selected by our learner. However, in Philosopher from IPC 4, this problem did appear
to arise and hurt the performance of policies based on measures of progress.

There are a number of possible approaches for dealing with this pitfall. For example, one
idea would be to generate a set of random (legal) trajectories and reward class expressions
that can distinguish between the random and training trajectories.
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Learn-Prioritized-Measures (J, d, b, ω)
// J: states and corresponding actions in the solution plan trajectories
// d: the depth limit of class expressions
// b is the beam width for the search for best measures
// ω is the weight used for the heuristic defined in Equation 3

C← () // C is the list of prioritized measures
while ( J 6= {} )

C ← Find-Best-Measure (J, d, b, ω)
if Hm(J, C) ≤ 0 // see Equation 3 for Hm

Return C

J← J− {j ∈ J | C covers j}
C← C : C // append new expression to list

Return C

Find-Best-Measure(J, d, b, ω)

beam ← {a-thing}
Hvalue-best ← −∞
Hvalue-best-new ← 0
while ( Hvalue-best-new > Hvalue-best )

Hvalue-best ← Hvalue-best-new
candidates← {C ′ ∩ C|C ∈ beam,depth(C ′) ≤ d}
beam ← best b elements of candidates according to Hm(J,C, ω)
Hvalue-best-new ← Hm value of best element of beam

Return best element of beam

Figure 5: Pseudo-code for learning measures of progress

8. Experiments

We evaluated our learning techniques on the traditional benchmark domain Blocksworld
and then on a subset of the STRIPS/ADL domains from two recent international planning
competitions (IPC3 and IPC4). We included all of the IPC3 and IPC4 domains where
FF’s RPL heuristic was sufficiently inaccurate on the training data, so as to afford our
heuristic learner the opportunity to learn. That is, for domains where the FF heuristic
is very accurate as measured in the first 15 training problems, our heuristic learning has
nothing to learn since its training signal is the difference between the observed distance in
the training set and FF’s heuristic. Thus, we did not include such domains.

For each domain, we used 15 problems as training data, with the solutions being gen-
erated by FF. We then learned all three types of control knowledge (heuristics, taxonomic
decision lists, and measures of progress) in each domain and used that knowledge to solve
the remaining problems, which were typically more challenging than the training problems.
We used each form of control knowledge as described in Section 4. For the case of the policy
representations (taxonomic decision lists and measures of progress), we utilized FF’s RPL
heuristic as the heuristic function and used a fixed policy-execution horizon of 50.

To study the utility of our proposed relaxed-plan feature space, we also conducted
separate experiments that removed the relaxed plan features from consideration. As the
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experiments will show, the relaxed-plan features were critical to achieving good performance
in a number of domains. The time cutoff for each planning problem was set to 30 CPU
minutes and a problem was considered unsolved after reaching the cutoff. For all of the
experiments, we used a Linux box with 2 Gig RAM and 2.8 Ghz Intel Xeon CPU.

8.1 Table Mnemonics

Before we present our results, we first explain the mnemonics used in our data tables. We
provide one table for each of our domains, each having the same structure, for example,
Figure 6 gives our Blocksworld results. Each row corresponds to a distinct planning tech-
nique, some using learned control knowledge and some not. The mnemonics used for these
planners are described below. These mnemonics are also used in the main text.

• FF: the planner FF (Hoffmann and Nebel, 2001). FF adds goal-ordering, enforced-hill climb-
ing, and helpful action pruning on top of relaxed plan heuristic search. If all these fail, FF
falls back on best first search guided by relaxed plan length.

• RPL: greedy best-first search using FF’s RPL heuristic.

• Best: best performer of the corresponding domain during the competition (only available for
IPC4).

• DL: greedy best-first search guided by RPL and learned decision list policy using the full
relaxed-plan feature space, refer to Section 7 for the representation and learning algorithm
and Section 4 for how to use the knowledge.

• H: greedy best-first search guided by a learned heuristic function using the full relaxed-plan
feature space, refer to Section 6 for representation and learning.

• MoP: greedy best-first search guided by RPL and learned measures-of-progress policy using
the full relaxed-plan feature space, refer to Section 7 for the representation and learning and
to Section 4 for use of the knowledge to guide the search.

• DL-noRP, H-noRP, MoP-noRP: identical to DL, H, and MoP except that the control
knowledge is learned from a feature space that does not include relaxed plan information.
That is, the database construction described in Section 5.3 does not include any facts related
to the relaxed plan into the search node databases. These experiments are conducted to check
the usefulness of the relaxed plan information.

The columns of the results tables show various performance measures for the planners.
In the following, we list mnemonics for the performance measures and their descriptions.

• Solved (n): gives the number of problems solved within 30 minutes out of n test problems.

• Time: the average CPU time in seconds consumed across all problems that were solved within
the 30 minute cutoff.

• Length: average solution length of the problems solved within the 30 minute cutoff.

• LTime: the time used for learning (only applies to the learning systems). Unless followed by
H, the number is in seconds.

• Greedy: number of problems solved using greedy execution of the decision list or measures-
of-progress policies (only applies to systems that learn decision list rules and measures of
progress). This allows us to observe the quality of the policy without the integration of
heuristic search.

• Evaluated: the average number of states evaluated on the problems that were solved with
the 30 minute cutoff.
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8.2 Blocksworld Results

For Blocksworld, we have used the competition problems from track 1 of IPC2. There
were 35 problems giving us 15 problems for training and 20 problems for testing. For this
domain only, we included one additional predicate symbol “above” that is not part of the
original domain definition. The above predicate is computed as the transitive closure of
the “on” predicate and is true of tuple (x, y) if x is above y in a stack of towers. This
is an important concept to be able to represent in the Blocksworld and is not expressible
via the fragment of taxonomic syntax used in this work. Note that in prior work (Yoon
et al., 2002; Fern et al., 2006), we included the Kleene-star operator into the taxonomic
syntax, which allowed for concepts such as above to be expressed in terms of the primitive
predicates. However, we have decided to not include Kleene star in this work as it did not
appear necessary in most of the other domains and increases the size of the search space
over taxonomic expressions and hence learning time.

Blocksworld (IPC2)

Techniques Solved (20) Time Length LTime Greedy Evaluated

FF 16 0.64 38.12 - - 15310
RPL 20 11.74 116 - - 12932

DL 20 0.05 44 100 13 215
MoP 20 0.13 51.7 10 20 757

H 20 12.94 82.7 600 - 31940

DL-noRP 20 0.12 60.8 12 0 915
MoP-noRP 20 0.15 49.4 1 20 984

H-noRP 12 113.3 352 88 - 185808

Figure 6: Blocksworld (IPC2, Track 1) Results. For information on mnemonics, please refer
sub-Section 8.1

Figure 6 shows Blocksworld results for various learning and non-learning systems. For
this domain, DL, H, and MoP were all able to solve all of the problems. Note that
greedy application of the learned decision list policy manages to solve only 13 of the 20
problems, indicating that the learned policy has a significant error rate. Despite this error
rate, however, incorporating the policy into search as implemented in DL allows for all 20
problems to be solved. Furthermore, the incorporation of the policy into search significantly
speeds up search, achieving an average search time of 0.05 seconds compared to a time of
11.74 seconds achieved by RPL, which uses the same RPL heuristic as DL but ignores the
policy. The number of evaluated states partially shows why running policies in the best
first search helps. The average number of evaluated states is significantly lower for DL
compared to other techniques. Later in our discussion of the Depots domain we will give
empirical evidence that one reason for this reduction in the amount of search is that the
policies are able to quickly move through plateaus to find states with low heuristic values.

We see that for this domain the measures of progress are learned quite accurately,
allowing for greedy search to solve all of the problems. Again, as for the decision-list
policies we see that the incorporation of the measures of progress into search significantly
speeds up planning time compared to RPL. The fact that measures of progress are learned
more accurately is possibly due to the fact that the training data for decision-list policy
learning is quite noisy. That is, all actions not in the training plans are treated as negative
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examples, while in fact many of those actions are just as good as the selected action, since
there are often many good action choices in a state. The training data for learning measures
of progress does not include such noisy negative examples. Note that prior work (Yoon
et al., 2002) has learned highly accurate Blocksworld policies, however, there the training
data contained the set of all optimal actions for each state, with all other actions labeled
as negative. Thus, the training data was not nearly as noisy in that work.

Considering now the performance of the heuristic learner H, we see that overall its so-
lution times were larger than for RPL and also considers more states than RPL. However,
the heuristic learner H did find significantly better solutions than RPL, which used only
the RPL heuristic, reducing the average length from 116 to 83. Thus, by attempting to
learn a more accurate heuristic, H is able to find higher quality solutions at the expense of
more search.

Overall we see that the learners DL and MoP are more effective in this domain. This
is likely because it is possible to learn very good decision list rules and measure of progress
in the Blocksworld, which guide the heuristic search to good solutions very quickly. Note
that FF solves fewer problems than other systems, but the average solution length of FF is
the best, noting that it is difficult to compare averages between planners that solve different
sets of problems. Apparently enforced hill-climbing and the goal-ordering mechanisms of
FF help facilitate shorter solutions when they are able to find solutions.

Our feature comparison results indicate that when the relaxed plan features are re-
moved, decision-list and measures-of-progress learning still solve all of the problems, but
the heuristic learner H-noRP only solves 12 problems. This indicates that the relaxed
plan information is important to the heuristic learner in this domain. We note that previ-
ous work on learning Blocksworld decision list rules and measures did not use relaxed-plan
features and also had reasonable success. Thus, for the Blocksworld it was not surprising
that relaxed plan features were not critical for the policy learners.

The learning time for policies and measures are negligible for Blocksworld. As will be
revealed later, the learning time for decision-list policies is quite significant in many other
domains. For the Blocksworld domain, the number of predicates, the number of actions,
and the arities of predicates and actions are all small, which greatly reduces the complexity
of feature enumeration during learning, as described in Section 7. For many domains in the
following experiments those numbers increase sharply, and accordingly so does the learning
time. It is important to remember, however, that learning time is a price we pay once, and
can then be amortized over all future problem solving.

8.3 IPC3 Results

IPC3 included 6 STRIPS domains: Zenotravel, Satellite, Rover, Depots, Driverlog, and
FreeCell. FF’s heuristic is very accurate for the first three domains, trivially solving the
15-training-problems and leaving little room for learning. Thus, here we report results on
Depots, Driverlog, and FreeCell. Each domain includes 20 problems, and FF was able to
generate training data for all 15 training problems. Figures 7, 8, 9 summarizes the results.

For Depots, FF performed the best, solving all of the problems. At the same time the
average plan length was short. Clearly, the goal-ordering and the enforced hill climbing were
key factors to this success since RPL, which carries out just the best-first search component
of FF, only solved one problem. The learning systems DL, MoP and H were all able to
solve all of the problems, showing that the learned knowledge was able to overcome the
poor performance of RPL. However, the learning systems consumed more time than FF
and/or resulted in longer plans. In the Driverlog domain, MoP was the only system able to
solve all of the problems, with H and DL solving 4 and 3 problems respectively compared
to the single solved problem of the non-learning systems. In FreeCell, both non-learning
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Depots (IPC3)

Techniques Solved (5) Time Length LTime Greedy Evaluated

FF 5 4.32 54.2 - - 1919
RPL 1 0.28 29 - - 1106

DL 5 3.73 63.2 8H 0 2500
MoP 5 48.5 81.2 950 0 16699

H 5 174 68.4 325 - 71795

DL-noRP 2 0.83 30 8H 0 437
MoP-noRP 4 94.5 124.7 900 0 101965

H-noRP 3 5 61.7 258 - 4036

Figure 7: Depots results

Driverlog (IPC3)

Techniques Solved (5) Time Length LTime Greedy Evaluated

FF 1 37.62 149 - - 171105
RPL 1 1623 167 - - 165454

DL 4 75.9 177 6H 0 15691
MoP 5 546 213 600 0 126638

H 3 199 402 274 - 98801

DL-noRP 3 86 142 8H 0 33791
MoP-noRP 3 583 177 900 0 253155

H-noRP 1 37 149 252 - 22164

Figure 8: Driverlog results

systems were able to outperform the learning systems in terms of problems solved and plan
lengths. The learning system DL is close behind these systems, solving one less problem,
with about the same average length. This domain is a clear example of how learned control
knowledge can sometimes hurt performance. In practice, one might utilize a validation
process to determine whether to use learned control knowledge or not, and also to select
among various forms of control knowledge.

Aggregating the number of problems solved across the three domains in IPC3, the
learning and planning systems DL, MoP and H all solved more problems than FF and
RPL. Overall the learned control knowledge generally speeds up planning. The solution
lengths are sometimes longer, though it is quite likely that post processing techniques could
be used to help reduce length by removing wasteful parts of the plan. This for example has
been done effectively in the planning by rewriting framework (Ambite and Knoblock, 2001).
In such frameworks, simply finding a sub-optimal solution quickly is a key requirement that
our learning approaches help facilitate.

Interestingly, greedy action selection according to both the learned decision list policies
and measures of progress is unable to solve any testing problem and very few training
problems. This indicates that the learned policies and measures have significant flaws.
Yet, when incorporated into our proposed search approach, they are still able to improve

25



Yoon, Fern, & Givan

Freecell (IPC3)

Techniques Solved (5) Time Length LTime Greedy Evaluated

FF 5 574 108 - - 26344
RPL 5 442 109 - - 25678

DL 4 217 108 6H 0 12139
MoP 3 371 192 1000 0 44283

H 5 89 145 4214 - 5096

DL-noRP 4 200 111 8H 0 11132
MoP-noRP 3 368 129 900 0 18299

H-noRP 2 29.87 85.5 3892 - 1521

Figure 9: FreeCell results

planning performance. This shows that even flawed control knowledge can be effectively
used in our framework, assuming it provides some amount of useful guidance.

The DL system took a significant amount of time to learn in all of the domains, on
the order of hours. These domains have more predicates, actions and larger arities for each
action than Blocksworld, leading to a bigger policy search space. Still, the benefit of the
policy cannot be ignored, since once it is learned, the execution of a policy is much faster
than measures of progress or heuristic functions. This is verified by the solution time.
DL consumes the least planning time among all the learning systems. Finally, we see
that for all the domains, the use of the relaxed-plan-based features improved performance
as exhibited by the better performance of the systems DL, MoP, and H compared to
DL-noRP, MoP-noRP, and H-noRP respectively.

Our approach to incorporating policies into search appears to help speed-up the search
process by adding nodes that are far from the current node being expanded, helping to
overcome local minima of the heuristic function. To help illustrate this, Figures 10 and
11 show the heuristic value trace during the search in problem 20 of Depot, where RPL
performed poorly and DL solved the problem quickly. The figures plot the heuristic values
of each newly expanded node. Figure 10 shows the heuristic trace for best-first search as
used by RPL. The search stays at heuristic value 40 for more than 10000 node expansion,
stuck in some local minima. Rather, Figure 11 shows that DL, may have been stuck in a
local minima from node expansion 5 to 8, but quickly finds its way out and finds the goal
after only 16 node expansions.

In contrast, recall that incorporating our learned policies into search in the Freecell
domain hurt performance. To help understand this, we again plotted the heuristic trace
during the search in Figures 12 and 13. As is the case with Depots problem 20, the learned
policy leads to a heuristic value jump (though small), but the jump did not help and we
conjecture that the jump has led the search to some local minimum for both the heuristic
and policy, which would not necessarily be visited with the heuristic alone, causing poor
performance here for the policy-based approach.

8.4 IPC4 Results

IPC4 includes seven STRIPS/ADL domains: Airport, Satellite, Pipesworld, Pipesworld-
with-Tankage, Philosophers (Promela), Optical Telegraph (Promela), and PSR (middle-
compiled). FF’s heuristic is very accurate for the first two domains, where for all of the
solved problems the solution length and FF’s heuristic are almost identical, leaving little
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Figure 10: Heuristic trace of RPL on Depots problem 20: The RPL search found some local
minimum heuristic around 38 at about 200th node expansion and remain in that
region for over 15000 search nodes.
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Figure 11: Heuristic trace of DL on Depots problem 20: The DL search hit a local minimum
from node expansion 5 to 8, but quickly found a way out of it and reached the
goal in just 16 node expansions.
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Figure 12: Heuristic trace of RPL on FreeCell problem 18: The RPL search hit a local
minimum of around 70 for a long sequence of node expansions, but in the end,
the search found a way out after 10000 node expansions.
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Figure 13: Heuristic trace of DL on FreeCell problem 18: Compared to Figure 12, DL search
found lower heuristic states faster but did not find a way out of it. The states
may not necessarily been found by RPL search.
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Pipesworld (IPC4)

Techniques Solved (35) Time Length LTime Greedy Evaluated

FF 21 71.2 48.2 - - 63077
RPL 15 71.3 48.2 - - 26830
Best 35 4.94 74.6 - - -

DL 28 129 76.7 18H 0 37778
MoP 25 155 79.2 1000 0 48460

H 24 17.6 98.4 709 - 22448

DL-noRP 26 10.6 67.7 12H 0 8453
MoP-noRP 23 137 87.6 870 0 67733

H-noRP 15 276 319 685 - 134366

Figure 14: Pipesworld Results

Pipesworld-with-Tankage (IPC4)

Techniques Solved (35) Time Length LTime Greedy Evaluated

FF 4 532 62 - - 120217
RPL 4 333 62 - - 100952
Best 28 221 165 - - -

DL 16 124 86 36H 0 49455
MoP 14 422 138 1200 0 101833

H 12 281 39 2091 - 137996

DL-noRP 10 553 52 33H 0 159113
MoP-noRP 13 287 116 1038 0 77926

H-noRP 7 441 719 1970 - 153108

Figure 15: Pipesworld Tankage Results

room for learning. Thus, we only give results for the latter five domains. Each domain
includes either 48 or 50 problems, giving a total of 33 or 35 testing problems, using the
15 lower numbered problems as training examples. Figures 14, 15, 16, 17, 18 present the
results.

For the IPC4 results, we show the performance of the competition’s best performer in
each domain, labeled as Best. Note that the best planner varies from domain to domain.
The CPU times for the best performer were taken from the official competition results, and
thus are not exactly comparable to the CPU times of the other systems which were run
on our local machine. In order to provide a rough comparison between the times reported
for Best from the IPC4 results, and the times on our own machine, we ran Yahsp (Vidal,
2004) on our machine for a number of benchmark problems. In most cases, the times were
quite similar. For example, on problems 40 and 45 from Pipesworld with Tankage the
IPC4 results reported CPU times of 112.08 and 60.45, while we recorded times of 127.35
and 68.76 on our machine

Overall, as for the IPC4 domains, our learning systems DL and H solved more problems
than FF or RPL, showing that the learning and planning approaches are useful. DL and
H solved 127 problems among 171 testing problems from all of the domains while FF solved
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PSR (IPC4)

Techniques Solved (35) Time Length LTime Greedy Evaluated

FF 17 692 108 - - 13706
RPL 22 710 116 - - 12829
Best 18 134 111 - - -

DL 17 736 102 1800 0 15448
MoP - - - - - -

H 25 568 109 2848 - 3189

DL-noRP 11 795 94 1530 0 26022
MoP-noRP - - - - - -

H-noRP 23 565 296 2685 - 4807

Figure 16: PSR Results

Philosophers (IPC4)

Techniques Solved (33) Time Length LTime Greedy Evaluated

FF 0 - - - - -
RPL 0 - - - - -
Best 14 0.2 258 - - -

DL 33 2.59 363 3H 33 727
MoP 0 - - - 0 -

H 33 58.2 363 340 - 30325

DL-noRP 0 - - - - -
MoP-noRP 0 - - - - -

H-noRP 0 - - - - -

Figure 17: Philosophers Results

42 and RPL solved 41. Quite surprisingly, DL and H were even able to outperform the
collective results of the best performers, which solved a total of 105 problems. The MoP
system did not perform as well as the other learners. In PSR, MoP was unable to learn any
monotonic properties, and so was not even run. In Philosophers and Optimal Telegraph,
MoP did find monotonic properties, but those properties hurt performance. Compared to
DL and H, DL-noRP and H-noRP significantly underperformed. DL-noRP solved 37
and H-noRP solved 45 showing the usefulness of the relaxed plan feature space.

Finally, note that for most of these domains, greedy execution of the learned policies
does not solve any problems. Again, however, our approach to incorporating the policies
into search is still able to exploit them for significant benefits.

9. Discussion and Future Work

This study provided two primary contributions. First, we introduced a novel feature space
for representing control knowledge based on extracting features from relaxed plans. Second,
we showed how to learn and use control knowledge over this feature space for forward state-
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Optical Telegraph (IPC4)

Techniques Solved (33) Time Length LTime Greedy Evaluated

FF 0 - - - - -
RPL 0 - - - - -
Best 10 721 387 - - -

DL 33 501 594 1H 33 930
MoP 0 - - - - -

H 33 594 826 - 9777

DL-noRP 0 - - - - -
MoP-noRP 0 - - - - -

H-noRP 0 - - - - -

Figure 18: Optical Telegraph Results

space heuristic search planning, a planning framework for which little work has been done
in the direction of learning. We have shown that the combined approach is competitive
with state-of-the-art planners across a wide range of benchmark problems. To the best of
our knowledge, no prior learning-to-plan system has competed this well across such a wide
set of benchmarks.

One natural extension to the relaxed-plan feature space introduced in this paper is
to consider properties based on the temporal structure of relaxed plans. This could be
accomplished by extending our current feature language to include temporal modalities.
Regarding the learning of heuristics, our learning approach reduces the problem to one of
standard function approximation. There are a number of ways in which we might further
improve the quality of the learned heuristic. One approach would be to use ensemble-
learning techniques such as bagging (Breiman, 1996), where we learn and combine multiple
heuristic functions. Another more interesting extension would be to develop a learning
technique that explicitly considers the search behavior of the heuristic, focusing on parts
of the state space that need improvement the most. An initial step in this direction has
been considered by Xu et al. (2007).

A key problem in applying learned control knowledge in planning is to robustly deal
with imperfect knowledge resulting from the statistical nature of the learning process.
Here we have shown one approach to help overcome imperfect policies by incorporating
them into a search process. However, there are many other planning settings and forms of
control knowledge for which we are interested in developing robust mechanisms for applying
control knowledge. For example, stochastic planning domains and planning with richer cost
functions are of primary interest. Learning control knowledge for regression-based planners
is also of interest—it is not clear how the forms of knowledge we learn here could be used
in a regression based setting. As another example, we are interested in robust methods
of incorporating control knowledge into SAT-based planners. Huang et al. (2000) have
considered an approach to learning and incorporating constraints into a SAT-based planner.
However, the approach has not been widely evaluated and it appears relatively easy for
imperfect knowledge to make the planner incomplete by ruling out possible solutions.

Another research direction is to consider extending the relaxed-plan feature space to
stochastic planning domains. Here one might determinize the stochastic domain in one
or more ways and compute the corresponding relaxed plans. The resulting features could
then be used to learn policies or value functions, using an approach such as approximate
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policy iteration (Fern et al., 2006). It would also be interesting to consider extending
our approach for incorporating imperfect policies into search in the context of real-time
dynamic programming (Barto et al., 1995).

In summary, we have demonstrated that it is possible to utilize machine learning to
improve the performance of forward state-space search planners across a range of planning
domains. However, the results are still far from the performance of human-written control
knowledge in most domains, for example, TL-Plan (Bacchus and Kabanza, 2000) and SHOP
(Nau et al., 1999). Also the results have still not shown large performance gains over state-
of-the-art non-learning systems. Demonstrating this level of performance should be a key
goal of future work in learning-based planning systems.
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