
Lower Bounding Klondike Solitaire with Monte-Carlo Planning

Ronald Bjarnason and Alan Fern and Prasad Tadepalli
{ronny, afern, tadepall}@eecs.oregonstate.edu

Oregon State University
Corvallis, OR, USA

Abstract

Despite its ubiquitous presence, very little is known
about the odds of winning the simple card game of
Klondike Solitaire. The main goal of this paper is to in-
vestigate the use of probabilistic planning to shed light
on this issue. Unfortunatley, most probabilistic plan-
ning techniques are not well suited for Klondike due
to the difficulties of representing the domain in stan-
dard planning languages and the complexity of the re-
quired search. Klondike thus serves as an interesting ad-
dition to the complement of probabilistic planning do-
mains. In this paper, we study Klondike using several
sampling-based planning approaches including UCT,
hindsight optimization, and sparse sampling, and estab-
lish empirical lower bounds on their performance. We
also introduce novel combinations of these approaches
and evaluate them in Klondike. We provide a theoret-
ical bound on the sample complexity of a method that
naturally combines sparse sampling and UCT. Our re-
sults demonstrate that there is a policy that within tight
confidence intervals wins over 35% of Klondike games.
This result is the first reported empirical lower bound of
an optimal Klondike policy.

Introduction
Klondike Solitaire (commonly referred to simply as “Soli-
taire”) has recently been named the most important com-
puter game of all time (Levin 2008). Solitaire is easily rep-
resented, easily described and has appeared on every major
distribution of Microsoft Windows. Despite its broad appeal
and near-ubiquitous presence, very little is known about the
odds of winning a game. Modern researchers have declared
that “it is one of the embarrassments of applied mathematics
that we cannot determine the odds of winning the common
game of Solitaire” (Yan et al. 2005).

In addition to being highly stochastic, Solitaire involves
complicated reasoning about actions with many constraints.
Unlike many of the probabilistic planning domains intro-
duced by planning researchers, it is independently developed
and holds broader interest. There also exist many variants of
the game which allows for a systematic study of these vari-
ants with different planning approaches. As we argue below,

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Klondike poses several problems for probabilistic planning
including representation and search. In this paper, we study
several sampling based planning approaches and establish
empirical lower bounds on their performance. We also in-
troduce some novel combinations of these approaches and
provide theoretical and empirical evaluations. Our results
show that there is a policy that within tight confidence inter-
vals wins over 35% of Klondike games, thus establishing the
first empirical lower bound of an optimal Klondike policy.

Klondike Solitaire
Klondike Solitaire is a simple game played with a standard
deck of 52 playing cards. Initially, 28 cards are dealt to 7
tableau stacks, 1 card to stack 1, 2 to stack 2, ... etc, with the
top card of each stack face-up. The remaining 24 cards are
placed in a deck. Four foundation stacks (one for each suit)
are initially empty. An instance of the common Windows
version of Klondike can be seen in Figure 1. The object
of the game is to move all 52 cards from the deck and the
tableau to the foundation stacks. Variants of Klondike define
specific elements of game play. This research deals exclu-
sively with a common variant that allows unlimited passes
through the deck, turning three cards at a time, and allowing
partial tableau stack moves.

The Klondike Solitaire domain is problematic due to a
large branching factor and the depth required to reach a goal
state. Klondike is played with 52 cards, 21 of which are ini-
tially face-down. For each initial deal, there are 21! possible
hidden configurations. This amount effectively eliminates
the possibility of any pure reasoning regarding the odds of
winning any initial deal. Klondike games are also relatively
lengthy. Even the most straightforward games require a min-
imum of 52 moves to reach a solution, as each of the 52 cards
must eventually reach a foundation stack. Anecdotal evi-
dence suggests that typical human players win around 15%
of games (Diaconis 1999). One common method of scor-
ing games, known as “Las Vegas” style, pays players five
fold their up-front per-card cost for each card that reaches a
foundation stack. Such a payoff suggests that a strategy that
wins 20% of games should be considered a success. In real-
ity, there is a complete lack of real evidence to demonstrate
bounds on Klondike strategies of any kind.

Prior to this, we have conducted some research (Bjarna-
son, Tadepalli, and Fern 2007) in a version of Solitaire that



Figure 1: The Windows version of Klondike Solitaire.

allows a planner to know the location of all 52 cards, known
as Thoughtful Solitaire. Using a deterministic planner, we
demonstrated a policy that wins at least 82% of games in
this deterministic setting, but offered no conclusions regard-
ing the original probabilistic Klondike Solitaire. Recentde-
terminizationapproaches to probabilistic planning, such as
FF-Replan (Yoon, Fern, and Givan 2007) and Hindsight Op-
timization (HOP) (Yoon et al. 2008), create deterministic
instances of probabilistic problems by fixing the stochastic
elements of the domain, allowing these converted problems
to be solved using established classical planners. Another
Monte-Carlo method, UCT (Kocsis and Szepesvári 2006)
has recently been shown to be very successful in the com-
plex game of Go (Gelly and Silver 2007).

Our contributions in this paper are three-fold. First, we
present the domain of Klondike Solitaire as a challeng-
ing stochastic planning problem and establish some base-
line performance bounds. Second, we outline the short-
comings of modern planning solutions and present novel
solution techniques that combine UCT, HOP and sparse
sampling to solve a significant percentage of Klondike in-
stances. Third, we extend theoretical guarantees associated
with sparse sampling and UCT to a method we call “Sparse
UCT” that combines and generalizes these methods.

The remainder of the paper proceeds as follows: We dis-
cuss the probabilistic Klondike problem, highlighting the
difficulties a contemporary probabilistic planner will likely
encounter. We describe two Monte-Carlo planning methods,
Hindsight Optimization and UCT, and present planning al-
gorithms based on these methods for the Klondike problem.
We then describe and show results on Sparse UCT, including
a proof bounding its sample complexity. We will conclude
with a discussion of the possible future extensions and reso-
lutions of the shortcomings of these approaches.

Probabilistic Planners for Klondike
Klondike can be represented as a probabilistic planning
problem, where the outcome of actions uncovering a face-
down card are determined by a uniform distribution over
the set of unseen cards. Most of the standard moves in
Klondike are deterministic, moving face-up cards from one
stack to another without revealing the identities of face-

down cards. Once all cards are face-up, probabilistic actions
are no longer available and the planning problem becomes
deterministic. Of course, in traditional play, the identity of
each of the face-down cards is already fixed by the initial
shuffle of the cards. The most straightforward representa-
tion of this domain is as a partially observable deterministic
Markov decision process (POMDP). We can alternatively
represent each state as a uniform distribution over a set of
“belief states” corresponding to the permutations of possible
locations of face-down cards. For purposes of finding an op-
timal strategy, we represent the same problem as a stochastic
planning problem where each action that reveals a card ran-
domly assigns the identity of that card based on a uniform
distribution over the entire set of face-down cards.

Representing Klondike in a standard probabilistic plan-
ning language, such as PPDDL, is problematic because there
is no standard distribution for each action. Unlike standard
probabilistic planning domains, each action may require
a different distribution of possible outcomes based on the
number and identity of the current set of face-down cards.
Defining Klondike in such a manner is cumbersome and
complicated, as the representation can potentially increase
exponentially in the size of the state description. Without
some language extension that allows the enumeration of a
set of unseen objects or events and removal of those objects
from the set once they have been encountered, the applica-
tion of standard planning algorithms to Klondike and other
POMDP style domains will be problematic.

While it is not clear how to compactly describe Klondike
in PPDDL, it is not difficult to implement a simulation
model for Klondike. Moreover, Monte-Carlo sampling tech-
niques such as Hindsight Optimization and UCT have shown
great promise in recent years and only require simulation
models. Monte-Carlo techniques approximate the values
of states and actions by evaluating trajectories through the
modeled space, thus making it possible to reason about ac-
tions without exploring entire sections of a search space.

With the availability of an existing deterministic planner
for Thoughtful Solitaire, a straightforward attempt at a prob-
abilistic planner for Klondike would apply the deterministic
planner to the game of Klondike using a planner that formu-
lates plans in stochastic domains by determinizing instances
of the planning problem. Two such stochastic planners are
FF-Replan and Hindsight Optimization. FF-Replan (Yoon,
Fern, and Givan 2007) determinizes a probabilistic problem,
formulates and follows a plan until it encounters a state out-
side of its plan, at which point it formulates a new plan from
the current state. While this is relatively straightforward for
the game of Klondike, it seems unlikely that it will find
much success in Klondike. Such a planner would require
frequent re-planning due to the small chance of the plan-
ner guessing the card locations correctly. A more promising
approach would be to employ a deterministic planner uti-
lizing Hindsight Optimization (HOP) (Yoon et al. 2008).
Similar to FF-Replan, HOP uses a deterministic planner to
solve determinized instances of the probabilistic problem.
At each state, HOP independently samples each available
actionk times to approximate an average value for taking
each action, eventually choosing the action that has the high-



est value. This approach, utilizing Monte-Carlo samples to
estimate the value of each action has been shown to be very
successful, especially in more difficult domains that have
been determined to be “probabilistically interesting”. Be-
cause of the success of the Monte-Carlo HOP algorithm,
we will also consider another successful Monte-Carlo algo-
rithms. UCT (Kocsis and Szepesvári 2006) is a method of
generating search trees based on Monte-Carlo trajectories in
stochastic domains. UCT intelligently samples trajectories
based on an upper confidence bound calculated by an im-
plementation of Hoeffding’s inequality and is widely known
as the base of the most successful computer players of the
game of Go.

Planning in Klondike
In our work with Thoughtful Solitaire, (Bjarnason, Tade-
palli, and Fern 2007) we demonstrated that altering the ac-
tion space can significantly improve search efficiency with-
out compromising the essential play of the game. This was
accomplished by creating macro actions that absorbed the
turn-deckactions. In the traditional representation only a
single card in the deck is visible at any given time. Addi-
tional cards in the deck can only be reached by turning the
deck, three cards at a time. By absorbing allturn-deckac-
tions into a macro, all actions that would be available after
some number ofturn-deckactions are available at all times.
Because of the demonstrated improvements, we adopt this
action space in our work. Solutions to problems in this space
can be directly translated to solutions in the traditional rep-
resentation by re-inserting theturn-deckactions. We have
provided a simulator1 that represents this action space by
turning all deck cards face-up and highlighting those cards
that are playable through this macro. This representation can
be seen in Figure 2.

In addition to this action space modification, we placed
the following default preference over available actions:

1. moves from a tableau stack to the foundation stack that
reveal a new card

2. moves to a foundation stack

3. moves from a tableau stack to another tableau stack that
reveal a new card

4. moves from the deck to a tableau stack

5. moves from the foundation stack to a tableau stack

6. moves from a tableau stack to another tableau stack that
do not reveal a new card

We adopt this ordering in this work as a simple greedy
heuristic for action selection. Throughout all of our exper-
iments, a simple search for a goal state using this greedy
heuristic is used to quickly explore for the goal in those
states with no face-down cards. If the greedy search discov-
ers a win, the game is considered solved. If not, the action
is determined by the default exploration method. Adopting
this simple deterministic search helped improve our perfor-
mance. In addition to these heuristics we also adopted a sim-

1at web.engr.orst.edu/∼ronny/k.html

ple mechanism to prevent cycles by disqualifying all actions
that repeat states previously visited in the sampled trajectory.

In the absence of any meaningful performance baseline,
we used this greedy heuristic and a random search as a base-
line for our own work. We found that a random strategy
won 7.135% of games while a greedy strategy based on
the previously described prioritized actions won 12.992%
of games, each tested on one million randomly generated
games. These results appear to confirm the estimates of hu-
man play suggested by other sources (Diaconis 1999). As
with our other strategies, the random action selection mech-
anism utilized the greedy search method in states with no
face-down cards.

Hindsight Optimization
Hindsight Optimization (HOP) is a straightforward way to
use the existing deterministic planner in this stochastic en-
vironment. The general idea behind HOP is to estimate the
value of each action in a state via calls to a deterministic
planner on different determinizations of a probabilistic plan-
ning problem. In particular, a value of a state is estimated by
forming a set of determinized problems from the state, solv-
ing each one with a deterministic planner, and then averag-
ing the results. HOP uses these estimates to select actions
via one-step greedy look-ahead.

In the case of Klondike, we can determinize a problem
given a particular state by shuffling the identity of all face-
down cards and revealing them to the planner so that all un-
certainty is removed. Each determinized problem thus corre-
sponds to an instances of Thoughtful Solitaire, for which we
can apply our previously developed deterministic planner.
The result of applying this planner to many determinized
problems at a particular state is an estimate of the win prob-
ability of that state.

Our deterministic planner is based on a nested rollout
search algorithm that utilizes a hand-coded weighted lin-
ear value function over binary features, defined in (Bjarna-
son, Tadepalli, and Fern 2007). The time complexity of this
search grows exponentially with the nesting or search level.
Search level 0 corresponds to a greedy 1-step lookahead
search while a level 1 search is equivalent to a traditional roll
out search. The increase in search time hampered our ability
to apply this method to its fullest capability within Hind-
sight Optimization due to the fact that many determinized
problems must be solved for each action selection. In par-
ticular, in some of our tests, we solved 100 determinized
problems for each action at each decision point resulting in
many thousands of calls to the deterministic planner during
the coarse of a single game.

Finally, in our HOP experiments, as well as our UCT ex-
periments, we found the greedy deterministic search previ-
ously described to greatly improve performance. Specifi-
cally, when all of the cards are finally revealed in a game,
our greedy search is used to attempt to solve it, and if it
can’t then HOP is resumed to select the next action.

Results Our results for HOP based tests can be seen in Ta-
ble 1. These results are impressive compared to our baseline,
more than doubling the performance of the greedy method,



Results for HOP Klondike Trials
#Samp Search Win Rate # Av. sec
/ decis Level (99% conf.) Games / Game

10 0 22.96±0.34 1000000 43.54
100 0 27.20±0.80 20614 689.78
10 1 25.24±0.78 20618 833.26

100 1 26.13±2.66 1814 9056.58

Table 1: Results for various HOP tests

even outperforming the “Las Vegas” standard of 20%. From
these results, it appears to be more effective to increase the
sampling amount than increasing the search rate.

Averaging Over Clairvoyance
One potential problem with HOP is that it can be overly opti-
mistic in some cases due to the determinization process. As
described in (Yoon et al. 2008) the degree to which this op-
timism is detrimental can be impacted by the type of deter-
minization process used. In particular, the strongest guaran-
tees were shown for determinization processes that produced
independent futures. Unfortunately, the determinization pro-
cess we used for Klondike, which was selected to make our
Thoughtful Solitaire planner applicable, does not have this
property. Because of this, there is reason to believe that the
HOP approach can fall into some of the pitfalls associated
with being overly optimistic. In particular, below we show
an example where our HOP approach will select an action
that leads to eventual failure, even when there are actions
available that will lead to certain success. This type of fail-
ure is discussed in (Russell and Norvig 1995) as a downfall
of averaging over clairvoyance.

In order to validate this effect, we have designed a sim-
ple instance where the deterministic planner may optimisti-
cally choose an action that can lead to a state where the
goal can be reached only by random guessing. We illus-
trate this effect in Figure 2. From Figure 2a, the follow-
ing sequence of actions will lead to a state in which a win
is guaranteed, independent of the unseen identities of the
four face-down cards: K♦ →T4, Q♣ →K♦ (leaving T2
empty), J♦→Q♣, J♥→Q♠, K♥→T2, Q♠→K♥ (leav-
ing T3 empty), 9♦→8♦, 9♥→8♥, 10♦→9♦, 10♥→9♥,
K♣→T3. Alternatively, choosing K♣→T4 from 2a may
lead to a state (shown in 2b) in which a guaranteed solution
exists only in the case that the identity of all cards is known
to the planner. By guessing incorrectly from 2b, the planner
may reach the dead end shown in 2c. Because the planner
fixes the location of the cards prior to searching for a solu-
tion, the future states are correlated, and both of these initial
actions (K♦→T4 and K♣→T4) will be valued equally, de-
spite the fact that K♦→T4 is clearly preferred in this situa-
tion.

Unfortunately, it is not clear how to implement HOP tra-
jectories in Klondike with independent futures with the pro-
vided value function and search mechanism. Because of
these possible problems we would like to investigate alter-
native methods that do not rely so heavily on deterministic
planners.

(a)

(b)

(c)

Figure 2: (a) A state in Klondike Solitaire.(b) A possible
state after K♣→T4. (c) A dead end forced by having to
guess.

UCT
UCT is a Monte-Carlo planning algorithm (Kocsis and
Szepesv́ari 2006), which extends recent algorithms for
multi-armed bandit problems to sequential decision prob-
lems including general Markov Decision Processes and
games. Most notably UCT has received recent stature as the
premiere computer algorithm for the game of Go (Gelly and
Silver 2007), resulting in huge advances in the field. Given
a current state, UCT selects an action by building a sparse
look-ahead tree over the state-space with the current state as
the root, edges corresponding to actions and their outcomes,
and leaf nodes corresponding to terminal states. Each node
in the resulting tree stores value estimates for each of the
available actions, which are used to select the next action to



be executed. UCT is distinct in the way that it constructs
the tree and estimates action values. Unlike standard mini-
max search and sparse sampling (Kearns, Mansour, and Ng
2002), which typically build depth bounded trees and ap-
ply evaluation functions at the leaves, UCT does not impose
a depth bound and does not require an evaluation function.
Rather, UCT incrementally constructs a tree and updates ac-
tion values by carrying out a sequence of Monte-Carlo roll-
outs of entire decision making sequences starting from the
root to a terminal state. The key idea behind UCT is to intel-
ligently bias the rollout trajectories toward ones that appear
more promising based on previous trajectories, while main-
taining sufficient exploration. In this way, the most promis-
ing parts of the tree are grown first, while still guaranteeing
that an optimal decision will be made given enough rollouts.

It remains to describe how UCT conducts each rollout tra-
jectory given the current tree (initially just the root node) and
how the tree is updated in response. Each nodes in the tree
stores the number of times the node has been visited in pre-
vious rolloutsn(s), the number of times each actiona has
been explored ins in previous rolloutsn(s, a), and a current
action value estimate for each actionQUCT (s, a). Each roll-
out begins at the root and actions are selected via the follow-
ing process. If the current state contains actions that have not
yet been explored in previous rollouts, then a random action
is chosen from among the unselected actions. Otherwise if
all actions in the current nodes have been explored previ-
ously then UCT selects the action that maximizes an upper
confidence bound given by

Q⊕UCT (s, a) = QUCT (s, a) + c

√
logn(s)

n(s, a)
, (1)

wherec is a constant that is typically tuned on a per domain
basis, which was set toc = 1 in our Solitaire domain. Af-
ter selecting an action, it is simulated and the resulting state
is added to the tree if it is not already present. This action
selection mechanism is based on the UCB bandit algorithm
and attempts to balance exploration and exploitation. The
first term rewards actions whose values are currently promis-
ing, while the second term adds an exploration reward to ac-
tions that have not been explored much and goes to zero as
an action is explored more frequently.

Finally, after the trajectory reaches a terminal state the
reward for that trajectory is calculated to be 0 or 1 depending
on whether the game was lost or won. The reward is used
to update the action value function of each state along the
generated trajectory. In particular, the updates maintain the
countersn(s, a) andn(s) for visited nodes in the tree and
updateQUCT (s, a) for each node so that it is equal to the
average reward of all rollout trajectories that include(s, a)
in their path. Once the desired number of rollout trajectories
have been executed UCT returns the root action that achieves
the highest value.

Results Performance results for UCT are presented in Ta-
ble 2 in a later section for direct comparison to the perfor-
mance of other methods. These results far surpass the results
attained by HOP, winning over 34% of games. This is some-
what surprising considering our UCT implementation does
not utilize prior domain knowledge as it explores and builds
the stochastic search tree.

Combining UCT with HOP

While the UCT results showed significant improvement over
HOP using existing deterministic Solitaire planners, perfor-
mance appears to have leveled off with the number of trajec-
tories. This led us to consider a new Monte-Carlo approach,
HOP-UCT, which aims to explore the potential for combin-
ing HOP and UCT. As already noted, one of the potential
shortcomings of our earlier HOP experiments was that the
deterministic planners required correlated futures which can
lead to poor decisions in Solitaire. This motivates trying
to develop a HOP-based approach that can operate with in-
dependent futures, where the outcomes of each state-action
pair at each time step are drawn independently of one an-
other. This can be done in a natural way by using UCT as a
deterministic planner for HOP.

To understand the algorithm note that an independent fu-
ture can be viewed as a deterministic tree rooted at the cur-
rent state. Each such tree can be randomly constructed by
a breadth-first expansion starting at the root that samples a
single child node for each action at a parent node. The ex-
pansion terminates at terminals. Given a set of such trees one
could consider running UCT on each of them and then aver-
aging the resulting action values across trees, which would
correspond to HOP with UCT as the base planner. Unfor-
tunately each such tree is exponentially large making the
above approach impractical.

Fortunately it is unnecessary to explicitly construct a tree
before running UCT. In particular, we can exactly simulate
the process of first sampling a deterministic tree and then
running UCT by lazily constructing only the parts of the de-
terministic tree that UCT encounters during rollouts. This
idea can be implemented with only a small modification to
the original UCT algorithm (Kocsis and Szepesvári 2006).
In particular, during the rollout trajectories whenever an ac-
tion a is taken for the first time at a nodes we sample a
next nodes′ and add it as a child as is usually done by UCT.
However, thereafter whenevera is selected at that node it
will deterministically transition tos′. The resulting version
of UCT will behave exactly as if it were being applied to an
explicitly constructed independent future. Thus, the overall
HOP-UCT algorithm runs this modified version of UCT for
a specified number of times, averages the action-values of
the results and selects the best action.
Ensemble-UCT The HOP process of constructing UCT
trees and combining the results begs the question of whether
other ensemble style methods will be successful. We con-
structed an Ensemble-UCT method that generates UCT trees
and averages the values of the actions at the root node in a
similar manner to HOP-UCT. We would expect Ensemble-
UCT to require fewer trees than HOP-UCT to achieve a sim-
ilar reduction in variance of the estimated action values. In
comparing HOP-UCT and Ensemble-UCT the total number
of simulated trajectories becomes a basic cost unit and we
will be able to gauge the benefit of spending trajectories on
new or existing UCT trees.
Results Comparing the performance of HOP-UCT and
UCT trials (seen in Table 2) suggests that sampling multi-



ple UCT trees boosts performance and decreases comput-
ing time compared to UCT trees with an equivalent num-
ber of total trajectories. We compare the 2000 trajectory
UCT and the 100×20 HOP-UCT trials which both utilize
a total of 2000 trajectories. Not only does the HOP-UCT
approach slightly outperform the UCT method, it requires
less than one third the time to do it. The performance of
the 200×20 Ensemble-UCT trials also illustrate the trade
off between performance and time complexity, which av-
erages a higher winning percentage than other methods. It
is faster and more successful than the 2000 trajectory UCT
method and the 1000×5 HOP-UCT method. However, it is
still within the 99% confidence interval of the 100×20 tra-
jectory HOP-UCT method, which requires far less comput-
ing time.

Sparse UCT
One observation we made regarding HOP-UCT was that the
time required per rollout trajectory was significantly less
than the time for regular UCT. The primary reason for this
is that the time for rollouts in regular UCT is dominated by
the time to sample a next state given a current state and ac-
tion. While this is generally a fast process, for example, in
Klondike requiring that we keep track of unseen cards and
randomly draw one, the time per trajectory is linearly related
to the sampling time, making the cost of sampling very sig-
nificant. The modified version of UCT used for HOP-UCT
only required sampling a new state the first time an action
was selected at a node and thereafter no sampling was re-
quired, which lead to a significant speedup.

This motivated us to consider a new variant of UCT called
Sparse UCT, which limits the number of calls to the sam-
pling process at each node in the tree to a specified sampling
width w. In particular, the firstw times an actiona is se-
lected at a nodes the usual sampling process is followed
and the resulting children are added to the tree. However,
thereafter whenever actiona is selected at a node one of the
already generatedw children is selected at random. This
random selection fromw existing children is generally sig-
nificantly faster than calling the sampling process and thus
can lead to a speedup whenw is small enough. However,
for very smallw the approximation to the original UCT al-
gorithm becomes more extreme and the quality of decision
making might degrade. Note that whenw = 1 the behav-
ior of Sparse UCT is equivalent to that of HOP-UCT. The
method for building a Sparse UCT tree is outlined in Algo-
rithm 1. This method can also be extended to Ensemble-
Sparse-UCT to evaluate root action values based on aver-
aged values from Sparse-UCT trees.

In addition to improved rollout times, there is another po-
tential benefit of Sparse UCT for problems where the num-
ber of possible stochastic outcomes for the actions is large.
In such problems, UCT will rarely repeat states across dif-
ferent rollouts. For example, if an action has a large number
of uniformly distributed outcomes compared to the number
of rollouts then it is unlikely that many of those outcomes
will be visited more than once. As a result UCT will not
accumulate useful statistics for nodes in the tree, leading
to poor action-value estimates. Sparse UCT puts an upper

Input : s = initial state
y = # of trajectories that generate uct tree
w = # sampling width

Output : values for each action ins
s0 = s;1

for i = 1 to y do2

s = s0;3

while nots.win AND nots.dead-enddo4

if all actions ofs have been sampledthen5

a = argmaxa Q⊕
UCT (s, a);6

else7

a = random unsampled action froms8

if s.childCount[a] == w then9

s′ = randomly choose existing child of (s,a);10

else11

s′ = transition(s,a);12

new child for (s,a) = s′;13

s.childCount[a]++;14

s = s′;15

update all visited (si,aj) pairs with (s.win ? 1 : 0);16

Algorithm 1 : Generate UCT Tree Algorithm

limit on how many children can be generated for each ac-
tion at a node and thus will result in nodes to be visited re-
peatedly across rollouts accumulating non-trivial statistics.
However, as the sampling widthw becomes small the statis-
tics are based on coarser approximations of the true problem,
leading to a fundamental trade-off in the selection ofw. Be-
low we consider what theoretical guarantees can be made
regarding this trade-off.

Results The experimental (shown in Table 2) results seem
to indicate that there is little difference between UCT and
Sparse UCT when comparing equivalent numbers of sam-
ples per UCT tree. A particularly informative example of
this can be seen in the progression of four experiments that
build a UCT tree with 1000 trajectories. There appears to
be a decreased performance if the UCT tree has a sampling
width of 1, but even with a small sampling width of 5, per-
formance increases to within the confidence interval of the
experiments with sampling width of 10 and infinity (the lat-
ter reported in the UCT section of Table 2). These results
would seem to indicate that the number of outcomes associ-
ated with each action is not a significant limiting factor for
UCT in Solitaire. Also interesting is the increase in time re-
quired to generate each tree. Experiments with a sampling
width of infinity at most double the time of those experi-
ments with sampling width of 1. This may be explained,
in our experiments by the cost of generating random se-
quences, which will be reduced with the frequent re-visits
of existing states in those trees with small sampling width.

Analysis of Sparse UCT
The original UCT algorithm has the theoretical property that
its probability of selecting a non-optimal action at a state
decreases as poly

(
1
t

)
wheret is the number of UCT tra-

jectories. Here we consider what can be said about our UCT
variants. We consider finite horizon MDPs, with a horizon of



UCT
#traj samp. Win Rate # Av. sec
/tree width (99% conf.) Games / Game
100 inf 24.64±3.04 1331 44.50

1000 inf 34.24±4.52 733 1042.56
2000 inf 34.41±4.01 933 2980.44

HOP-UCT (sampling width = 1)
#traj #tree Win Rate # Av. sec
/tree /dec (99% conf.) Games / Game
100 20 35.47±4.00 953 767.57

1000 5 30.58±4.53 690 3531.12
Sparse UCT

#traj samp. Win Rate # Av. sec
/tree width (99% conf.) Games / Game
100 1 22.65±2.41 2000 40.11

1000 1 28.66±4.21 764 566.65
1000 5 33.98±1.63 5583 495.68
1000 10 33.79±3.11 1536 747.82
2000 4 35.62±2.58 2288 1485.19

Ensemble-UCT (sampling width = inf)
#traj #tree Win Rate # Av. sec
/tree /dec (99% conf.) Games / Game
200 20 36.97±1.92 4206 2280.55
100 10 32.86±1.57 5986 669.90
Ensemble-Sparse-UCT (sampling width = 2)
50 50 35.27±2.16 3249 1302.38

Table 2: Results on various UCT algorithms

D, and for simplicity restrict to the case where the range of
the reward function is[0, 1]. Our first variant, Sparse UCT,
is identical to UCT only it considers at mostw outcomes of
any state action pair when constructing the tree from the cur-
rent state, which limits the maximum tree size toO((wk)D)
wherek is the number of actions.

To derive guarantees for Sparse UCT, we draw on ideas
from the analysis of the sparse sampling MDP algorithm
(Kearns, Mansour, and Ng 2002). This algorithm uses a
generative MDP model to build a sparse expectimax tree of
sizeO((wk)D) rooted at the current states and computes
the Q-values of actions at the root via expectimax search.
Note that the tree construction is a random process, which
defines a distribution over trees. The key contribution of
that work was to show bounds on the sampling widthw that
guarantee near optimal Q-values at the root of a random tree
with high probability. While the analysis in that paper was
for discounted infinite horizon MDPs, as shown below, the
analysis extends to our finite horizon setting.

For the purposes of analysis, consider an equivalent view
of Sparse UCT, where we first draw a random, expectimax
tree as in sparse sampling, and then run the original UCT
algorithm on this tree fort trajectories. For each such tree
there is an optimal action, which UCT will select with high
probability ast grows, and this action has some probability
of differing from the optimal action of the current state with
respect to the true MDP. By bounding the probability that
such a difference will occur we can obtain guarantees for

Sparse UCT. The following Lemma provides such a bound
by adapting the analysis of sparse sampling. In the following
we will defineQ∗

d(s, a) to be the optimal action value func-
tion with d stages-to-go of the true MDPM . We also define
Td(s, w) to be a random variable over sparse expectimax
trees of depthd, derived from the true MDP, and rooted ats

using a sampling width ofw. Furthermore, definêQw
d (s, a)

to be a random variable that gives the action values at the
root ofTd(s, w).
Lemma 1. For any MDP with finite horizonD, k actions,
and rewards in[0, 1], we have that for any states and action
a, ‖Q∗

d(s, a) − Q̂w
d (s, a)‖ ≤ dλ with probability at least

1− d(wk)d exp
(
− λ2

D2 w
)

.

This shows that the probability that a random sparse tree
leads to an action value estimate that is more thanDλ from
the true action-value decreases exponentially fast in the sam-
pling width w (ignoring polynomial factors). We can now
combine this result with one of the original UCT results.
In the following we denote the error probability of Sparse
UCT usingt trajectories and sampling widthw by Pe(t, w),
which is simply the probability that Sparse UCT selects a
sub-optimal action at a given state. In addition we define
∆(s) to be the minimum difference between an optimal ac-
tion value and sub-optimal action value for states in the true
MDP, and define the minimum Q-advantage of the MDP to
be∆ = mins ∆(s).
Theorem 1. For any MDP with finite horizonD, k actions,
and rewards in[0, 1], if

w ≥ 32
D4

∆2

(
D log

16kD5

∆2
+ log

D

δ

)
thenPe(t, w) ≤ poly

(
1
t

)
+ δ.

Proof. (Sketch) Theorems 5 and 6 of (Kocsis and Szepesvári
2006) show that for any finite horizon MDP the error rate
of the original UCT algorithm isO(t−ρ(∆)2) whereρ is a
constant. From the above lemma if we setλ equal to ∆

4D
we can bound the probability that the action-values of a
randomly-sampled sparse tree are in error by more than∆

4

by D(wk)D exp
(
−

(
∆

4D2

)2
w

)
. It can be shown that our

choice ofw bounds this quantity toδ. Note that this bounds
the probability that the minimum Q-advantage of the sparse
tree is greater than∆2 by δ. The UCT result then says that for
trees where this bound holds the error probability is bounded
by a polynomial in1

t . The theorem follows by applying the
union bound.

This result shows that for an appropriate value ofw,
Sparse UCT does not increase the error probability signif-
icantly. In particular, decreasing the errorδ due to the sparse
sampling requires an increase inw that is of only order
log 1

δ . Naturally, since these are worst case bounds, they
are almost always impractical, but they do clearly demon-
strate that the required value ofw does not depend on the
size of the MDP state space but only onD, k, and∆. It is
important to note that there is an exponential dependence on



the horizonD buried in the constants of the UCT term in the
above bound. This dependence is unavoidable as shown by
the lower-bound in (Kearns, Mansour, and Ng 2002).

Summary of Results
This work presents the results of a broad family of algo-
rithms. UCT systematically builds a deep search tree, sam-
pling outcomes at leaf nodes and evaluating the result. HOP
solves several sampled determinized problems to approxi-
mate the value of root-level actions. Similarly, HOP-UCT
and Ensemble-UCT sample several UCT trees, to approxi-
mate the same action values. In the case of HOP-UCT, the
trees are determinized by restricting the UCT tree to a single
outcome for each action and state. Sparse UCT represents
a compromise between a determinized UCT and a full UCT
tree. In Klondike Solitaire, the UCT based methods have
been shown to be significantly more successful than HOP.

Our results suggest some general conclusions for this
family of UCT algorithms. Performance increases results
from increases in 1) the number of trajectories used to gen-
erate a UCT tree, 2) the sampling width of the UCT trees
and 3) the number of UCT trees used to approximate the
action values. Performance can be optimized by balancing
these variables in the context of the available sampling time.
For Klondike it appears that the time required to construct a
UCT tree is disproportionally longer for trees with a larger
number of trajectories. We observe improved performance
and time complexity for HOP-UCT, Ensemble-UCT and
Ensemble-Sparse-UCT methods compared to simple UCT
trees generated with a similar number of trajectories. The
presented algorithms can be unified under a general frame-
work of UCT-based algorithms parameterized by the num-
ber of UCT trees and the sampling width. Future work in-
cludes a more thorough exploration of this algorithm space
and empirical evaluation in multiple probabilistic planning
domains.

Conclusion and Discussion
To the best of our knowledge our results represent the first
non-trivial empirical bounds on the success rate of a policy
for Klondike Solitaire. The results show that a number of
approaches based on UCT, HOP, and sparse sampling hold
promise and solve up to 35% of random games with little
domain knowledge. These results more than double current
estimates regarding human level performance. A better the-
oretical understanding of why these algorithms are so suc-
cessful would be very valuable. We were surprised that our
method incorporating a sophisticated deterministic search
method was handily outperformed by UCT. We expect that
the results can be much improved by adding domain knowl-
edge and learning.

Many real world domains such as real-time stochastic
scheduling have similar characteristics as Solitaire. For ex-
ample, in fire and emergency rescue, there are exogenous
events such as fires that need to be responded to in a timely
manner. There are a variety of policy constraints such as
what kind of emergencies can be responded to with different
kinds of equipment, and where the resources should return

after the service. In addition to the optimal response prob-
lem, there are also problems of deciding where to house the
resources and how often they might be moved. Our pre-
liminary approach to this problem based on multi-level hill
climbing search is described in (Bjarnason et al. 2009). We
believe that approaches such as HOP, UCT, and Sparse UCT
hold promise here and deserve to be investigated.

Much of probabilistic planning is currently focused on ar-
tificial domains designed by researchers. Unfortunately they
do not bring out some of the representational issues that are
readily apparent in natural domains, for example, the prob-
lem of having to represent uniform distributions over vari-
able number of objects in Solitaire or the difficulty of repre-
senting the dynamics of a robot arm. We hope that encoun-
ters with real world domains might encourage researchers to
consider novel problem formulations such as planning with
inexact models or using simulators in the place of models.

Acknowledgements We gratefully acknowledge the sup-
port of the Army Research Office under grant number
W911NF-09-1-0153. We thank the reviewers for their thor-
ough reviews and helpful suggestions.

References
Bjarnason, R.; Tadepalli, P.; Fern, A.; and Niedner, C.
2009. Simulation-based optimization of resource place-
ment and emergency response. InInnovative Applications
of Artificial Intelligence (IAAI-2009), to appear.
Bjarnason, R.; Tadepalli, P.; and Fern, A. 2007. Search-
ing solitaire in real time.International Computer Games
Association Journal30(3):131–142.
Diaconis, P. 1999. The mathematics of Solitaire,
www.uwtv.org/programs/displayevent.aspx?rid=1986&fid=571.
Gelly, S., and Silver, D. 2007. Combining online and of-
fline knowledge in UCT. InProceedings of the Interna-
tional Conference on Machine Learning, 273–280.
Kearns, M.; Mansour, Y.; and Ng, A. 2002. A sparse sam-
pling algorithm for near-optimal planning in large markov
decision processes.Machine Learning49:193–208.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In15th European Conference on Machine
Learning, 282–293.
Levin, J. 2008. Solitaire-y confinement,
www.slate.com/id/2191295.
Russell, S., and Norvig, P. 1995.Artificial Intelligence, A
Modern Approach. Upper Saddle River, New Jersey 07458:
Prentice Hall.
Yan, X.; Diaconis, P.; Rusmevichientong, P.; and Van Roy,
B. 2005. Solitaire: Man versus machine. InNIPS 17,
1553–1560.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
AAAI-2008, 1010–1016.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-replan: A
baseline for probabilistic planning. InInternational Con-
ference on Automated Planning and Scheduling (ICAPS-
2007), 352–359.


