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Abstract

For many multi-part object classes, the set of parts can

vary not only in location but also in type. For example,

player formations in American football involve various sub-

sets of player types, and the spatial constraints among play-

ers depend largely upon which subset of player types consti-

tutes the formation. In this work, we study the problem of lo-

calizing and classifying the parts of such objects. Pictorial

structures provide an efficient and robust mechanism for lo-

calizing object parts. Unfortunately, these models assume

that each object instance involves the same set of parts,

making it difficult to apply them directly in our setting. With

this motivation, we introduce the mixture-of-parts pictorial

structure (MoPPS) model, which is characterized by three

components: a set of available parts, a set of constraints

that specify legal part subsets, and a function that returns a

pictorial structure for any legal part subset. MoPPS infer-

ence corresponds to jointly computing the most likely sub-

set of parts and their positions. We propose a restricted,

but useful, representation for MoPPS models that facili-

tates inference via branch-and-bound optimization, which

we show is efficient in practice. Experiments in the chal-

lenging domain of American football show the effectiveness

of the model and inference procedure.

1. Introduction

Pictorial structures are graphical models for represent-

ing and localizing objects with multiple spatially related

parts. These models represent an object as a set of parts

with local appearance models for each part and deformable

connections between parts that describe their ideal rela-

tive locations. Given a pictorial structure, object recogni-

tion/localization corresponds to jointly assigning locations

to all parts that minimize the combined local, appearance-

based cost of each part plus the deformation cost based on

the connections between parts. For restricted—but useful—

classes of pictorial structures, efficient algorithms for per-

forming this minimization have been developed that make

recognition quite reasonable in practice [3]. By jointly rea-

soning about part appearances and relative positions, picto-

rial structures can provide more robust inference than ap-

proaches that reason about object parts in isolation, as has

been demonstrated for a number of multi-part object recog-

nition problems [1, 8, 4].

A fundamental assumption underlying pictorial struc-

tures is that each object instance contains the same set of

parts with the same set of deformation constraints among

those parts. Unfortunately, this assumption does not hold

for many multi-part object classes for which the set of parts

can vary not only in location but also in type. Examples

of this type of object class include furniture, such as chairs,

which can have different types of arms, legs, backs, rock-

ers, etc.; the human figure, along with accessories such as

watches, hats, footwear, etc.; houses and other buildings;

multi-agent sports scenes; car and airplane types; or any

object class for which occlusion can be an issue.

As a specific example, consider our motivating applica-

tion of recognizing player formations in American football,

which can be viewed as multi-part objects, whose parts cor-

respond to players. Each football formation involves var-

ious subsets of players, each having a distinct player type

corresponding to his role (e.g. left flanker, fullback, cen-

ter, etc.), and, importantly and as illustrated in Figure 1, the

spatial constraints between players are determined largely

by the particular subset of players in the formation. This

aspect, combined with the fact that appearance is similar

across players, makes the relative locations of players the

most informative piece of evidence for formation recogni-

tion, and the pictorial structure model seems to provide a

natural framework for exploiting this information. How-

ever, the rules of football enforce certain hard constraints

on formations that restrict the number of certain types of

players in the formation as well as their spatial configura-

tion, and these factors make it very difficult to formulate a

single pictorial structure to recognize all possible football

formations. Moreover, because there are thousands of legal

formations, formulating a pictorial structure model for each

one is practically infeasible and would ignore the significant

degree of common structure between similar formations.

In this work we study the problem of recognizing such



(a) (b)

Figure 1: The configuration of players in an American football formation can vary

drastically depending on the subset of players in the formation. Above are depicted,

mapped to an overhead view, two very different formations containing different sub-

sets of players. Player locations are marked along with confidence ellipses at two

standard deviations based on distributions of the relative locations of players. Be-

cause player appearances are nearly identical, this variation in structure provides the

necessary leverage point for formation recognition.

multi-part objects with variable part sets, or, more specifi-

cally, the problem of localizing and classifying the parts of

these objects. Our solution is an extension of classical pic-

torial structures called the mixture-of-parts pictorial struc-

ture (MoPPS) model. This model is characterized by three

components: a set of available parts, a prior distribution on

part subsets that assigns positive probability only to legal

part sets, and a function that returns a pictorial structure for

any legal part subset. Intuitively, a MoPPS model can be

viewed as an implicit representation of a very large collec-

tion of pictorial structures that captures the possible varia-

tions of objects with variable part sets. Under a generative

view of this model, a subset of parts is first drawn from the

corresponding prior distribution, then, given the part subset,

the corresponding pictorial structure is used to generate lo-

cations and appearances for each of the parts. Inference on

a MoPPS model corresponds to jointly computing the most

likely, or least cost, subset of parts and their locations.

In the absence of special structure, exact inference in

MoPPS models is a hopelessly complex combinatorial op-

timization problem. Therefore, we describe a restricted but

reasonable representation for MoPPS models that facilitates

their easy specification as well as practically efficient infer-

ence. In particular, we represent MoPPS models in terms

of a large pictorial tree structure involving all possible parts

along with hard constraints on legal part subsets. This repre-

sentation facilitates the computation of upper and lower cost

bounds on part subsets that can be integrated into branch-

and-bound style optimization.

To validate the MoPPS model and tree representation,

we apply them to the challenging American football forma-

tion recognition problem. In a previous attempt to solve this

problem, Intille used a knowledge base of purely hard con-

straints along with a SAT-like procedure for inference [7].

Unfortunately, Intille’s method was quite brittle, required

significant human pre-processing, and performed poorly

enough to be deemed unacceptable for use in later stages

of his football understanding system. In contrast, our results

show that MoPPS models facilitate accurate recognition and

localization in a reasonable time frame without human pre-

processing. To our knowledge, there have been no other

attempts—in the football domain or otherwise—to solve the

recognition problem for objects with variable part sets.

2. Pictorial Structures

Under the classical pictorial structure model, a class of

objects is represented as a graph with n vertices V =
{v1, . . . , vn} representing the parts of the object and a set

of edges E = {(vi, vj) | vi and vj are connected} rep-

resenting the connections between parts. Associated with

each object class is also a set of model parameters Θ which

includes part appearance parameters A = {a1, . . . , an} and

connection parameters ∆ = {δij | (vi, vj) ∈ E} describing

the ideal relative locations of connected parts. A particular

instance of an object is represented as a set of locations of

its parts L = {l1, . . . , ln}.

Given an image I and a set of object model parameters

Θ, the posterior distribution over the set of part locations is

p(L | I,Θ) = α p(I | L,Θ) p(L | Θ), (1)

where α is a normalizing term, p(I|L,Θ) measures the like-

lihood of the image data given a particular configuration of

the object, and p(L|Θ) is the prior distribution over object

configurations.

Locating a single object in an image corresponds to

maximizing (1), and Felzenszwalb and Huttenlocher have

shown that if E, p(I|L,Θ), and p(L|Θ) satisfy certain, rea-

sonable conditions, then efficient algorithms exist to per-

form this maximization exactly [3]. Specifically, if the

edges in E form a tree and p(I | L,Θ) can be factored

as a product of individual part appearance models, then the

posterior distribution takes the form

p(L | I,Θ) = α

n
∏

i=1

p(I | li, ai)

∏

(vi,vj)∈E p(li, lj | δij)
∏n

i=1 p(li | Θ)deg(vi)−1
,

(2)

where the p(I | li, ai) are individual part appearance mod-

els, p(li, lj |δij) are priors over relative locations of con-

nected parts, p(li|Θ) are priors over individual part loca-

tions, and deg(vi) is the degree of vertex vi.

Under this factorization, finding the optimal configu-

ration L∗ of an object corresponds to the following well

known cost minimization problem:

L∗ = arg min
L





n
∑

i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)



 , (3)



where mi(li) = − log p(I|li, ai)+(deg(vi)−1) log p(li|Θ)
is the local match cost for each part and dij =
− log p(li, lj |δij) is the deformation cost between each pair

of connected parts. If p(li, lj | δij) is Gaussian, then (3)

can be computed exactly in O(hn) via distance transforms,

where h is the number of possible part locations [3, 2].

3. Mixture-of-Parts Pictorial Structures

As discussed in the introduction, the classical pictorial

structure model’s assumption of a static part set undermines

its ability to recognize some multi-object classes whose

parts can vary not only in location but also in type. To over-

come this limitation, we introduce in the next two subsec-

tions an extension of classical pictorial structures called the

mixture-of-parts pictorial structure (MoPPS) model and a

specific, restricted MoPPS model representation that facili-

tates practically efficient inference.

3.1. General MoPPS Model

The MoPPS model is a triple M = 〈V, pv, f〉 where V is

a finite set of parts, pv is a probability distribution over 2V

(i.e. subsets of V), and f is a function that assigns a picto-

rial structure model to each subset V ∈ 2V with pv(V ) > 0
(later, we discuss a particular representation for pv and f ).

We use ΘV to denote the parameters of the pictorial struc-

ture assigned to part set V and take the vertices and edges

of the structure to be implicit in the parameters. Intuitively,

a MoPPS model can be viewed as generating image data by

first drawing a part subset V according to pv and generating

the image according the generative process dictated by the

pictorial structure parameterized by ΘV .

In the case of American football, the set of parts V corre-

sponds to all possible players, each of which has a specific

role (e.g. fullback, left flanker, shotgun quarterback, etc.).

The probability distribution pv assigns non-zero probability

only to those formations that contain exactly 11 parts, the

number of players required in a formation, and that obey the

formation constraints dictated by the rules of football (e.g.

there must be 7 players on the line). Given a legal subset

of players V , the corresponding pictorial structure ΘV en-

codes the spatial constraints among the players in V along

with local observation models for each player. Note that in

this domain, the observation models for each player/part are

identical since players have very similar appearances.

Given an image I and a MoPPS model M = 〈V, pv, f〉,
we are interested in inferring the most likely part set V and

the locations L of those parts. The joint posterior distribu-

tion over V and L is given by

p(L, V | I, M) = α p(I | L,ΘV ) p(L | ΘV ) pv(V ),
(4)

where α is a normalizing term, p(I|L,ΘV ) measures the

image data likelihood under the pictorial structure model

for V , and p(L|ΘV ) is the corresponding prior distribution

over part locations. Note that under this model the marginal

probability of the image data can be viewed as a mixture

distribution of pictorial structure components, with one per

legal subset of parts; hence the name MoPPS.

Let C(L | I, V ) = − log (p(I | L,ΘV ) p(L | ΘV )) de-

note the cost assigned to locations L for parts V by pictorial

structure ΘV . We can then write our objective of finding the

most likely locations and parts as computing

(L∗, V ∗) = arg min
(L,V )

C(L | I, V ) − log pv(V ). (5)

Assuming all pictorial structures ΘV allow for efficient

minimization of C(L | I, V ), e.g. by assuming tree struc-

tures and Gaussian edge potentials, then the primary com-

plexity in this minimization problem is the potentially expo-

nentially large set of part subsets that must be considered.

An exhaustive enumeration of these will typically not be

tractable. However, if one does not make any assumptions

about the MoPPS model then in the worst case exhaustive

search is the best we can do (it is straightforward to show

NP-completeness). To achieve practically efficient infer-

ence, therefore, we developed the MoPPS tree representa-

tion for a restricted class of MoPPS models. We present this

representation in the next subsection. To simplify the dis-

cussion, we will assume for the remainder of the paper that

pv is a uniform distribution over all legal sets of parts. There

are straightforward ways in which the inference procedure

we describe later can incorporate non-uniform priors.

3.2. The MoPPS Tree Representation

A MoPPS tree representation is a triple 〈V,Θ, T 〉, where

V is again a finite set of available parts, Θ is a tree-

structured pictorial structure (the global pictorial structure)

over the entire set of parts, and T is a boolean function

that maps each part subset V to either true or false de-

pending, respectively, on whether or not it is a legal part

subset. We will denote by Θ|V the projection of Θ onto

V , which is just the subgraph of Θ induced by the part set

V . Given a MoPPS tree representation the corresponding

MoPPS model is given by 〈V, pv,Θ|V 〉, where pv is uni-

form over subsets V with T (V ) = true.

This representation can be viewed as compactly speci-

fying f(V ) = Θ|V using the global pictorial structure by

returning the projection of part set V onto this structure for

any legal V . The set of pictorial structures allowed by this

model is constrained so that the pictorial structures returned

for any two part sets V and V ′ must be consistent for parts

in V ∩ V ′. Furthermore the pictorial structures Θ|V will all

be tree structured. An important property of this representa-

tion utilized in the inference procedure described in the next

section is the monotonicity of the pictorial structure cost

function. In particular, if C∗(I, V ) = minL C(L | I, V ) is



the minimum pictorial structure cost for part set V , then for

any part subsets (legal or illegal) V and V ′, if V ⊆ V ′ then

C∗(I, V ) ≤ C∗(I, V ′).
Clearly MoPPS trees cover only a subclass of possible

MoPPS models. Intuitively, they are unable to represent

object classes for which the spatial relationships between

parts are not pairwise independent. Also, MoPPS trees can-

not represent models in which one legal part set is a sub-

set of another because, due to the monotonicity property of

MoPPS trees, the larger part set will always achieve a higher

cost and so will never be selected as the best solution. How-

ever, despite these restrictions, MoPPS trees are rich enough

to represent interesting object classes, as we demonstrate in

Section 5, and they provide structure that can be leveraged

to help achieve practically efficient inference. Extending to

allow for richer subclasses while maintaining practical in-

ference is an interesting direction for future work.

4. MoPPS Inference

Given a MoPPS model M represented as a MoPPS tree

〈V,Θ, T 〉 we wish to solve the minimization problem de-

fined in (5). Note that that if we know V ∗, then we can effi-

ciently compute L∗ via the pictorial structure Θ|V ∗ . Thus,

the fundamental problem here is to compute V ∗. Under our

assumption of a uniform pv we can formulate the optimiza-

tion problem as

V ∗ = arg min
{V :T (V )}

C∗(I, V ). (6)

In other words, we simply wish to find a legal part set with

minimum pictorial structure cost among other legal sets.

Our approach to solving this optimization problem is to

cast it in the framework of branch-and-bound search (BBS)

and to leverage the special structure of the MoPPS tree

representation to efficiently compute informative upper and

lower cost bounds as required by BBS.

4.1. Branch-and-bound search

Branch-and-bound search is a classical approach to com-

binatorial optimization that searches through a tree struc-

ture in which every node represents a subset of a space of

combinatorial objects. Leaves of the BBS tree typically

represent singleton sets or single combinatorial structures.

As BBS proceeds, it continually expands new tree nodes

and prunes any node from consideration whenever it can be

proven that all structures it represents are suboptimal. Find-

ing these nodes is done by computing both an upper and

a lower bound on the cost of the combinatorial structures

represented by each expanded node. A node can be pruned

without sacrificing optimality if its lower bound is greater

than any other node’s upper bound.

In the case of MoPPS inference, the combinatorial ob-

jects of interest are legal part sets, and, hence, each node of

the search tree represents collections of part sets. Each node

is labeled by a set of parts V , indicating that the node repre-

sents all legal part sets V ′ that contain the parts in V . More

formally, we assume that a search space 〈V0, s〉 is available

for a given MoPPS optimization problem, where V0 rep-

resents the initial search node (V0 is just a set of parts or

possibly the empty set), and s is a successor function that

for any node of the tree V returns s(V ) = {V ′1 , . . . , V ′k}
where the V ′i are successor part sets of V and it is assumed

that the space satisfies V ⊆ V ′i for all successors.

For a particular application it is generally easy to hand-

specify the search tree. However, it is also relatively easy

to automatically compile such a search from a MoPPS tree

representation. In particular, we need only assume the avail-

ability of a function T ′ that returns true for a part subset V

iff it is a subset of some legal part set. Given the function T ′

one can automatically specify a space by setting V0 = ∅ and

then having s(V ) return the set of all part sets V ′ that result

from adding one part to V and such that T ′(V ′) is true. We

take this latter approach in our application.

The other basic elements that must be specified to cast

MoPPS inference as BBS are methods for computing an in-

formative upper bound cu(V ) and lower bound cl(V ) on the

cost of the set of part sets represented by a search node V .

Given a search space and upper and lower bound func-

tions, we use a best-first search strategy for BBS, which

additionally requires an ordering relation <o with which to

maintain a priority queue of encountered search nodes. Un-

der this strategy, each search step removes the first node

from the priority queue, expands it according to s, and adds

its successors to the priority queue according to <o. Search

stops when all search nodes have been eliminated except a

single leaf node representing the optimal solution. In our

experiments we consider two ordering relations: <l, which

orders nodes according to their lower bound, and <u, which

orders according to the upper bound. The effect of using

different ordering relations is that a better ordering will ex-

pand good leaf nodes earlier than a poor one.

Algorithm 1 gives pseudocode for best-first BBS.

4.2. Lower bound computation

An important property resulting from the subset relation-

ship maintained by the successor function s is that any de-

scendent V ′ of a search node V is a superset of V and hence,

due to the monotonicity of the MoPPS tree representation,

we have C∗(I, V ) ≤ C∗(I, V ′). In particular, the cost of a

node V will never be greater than that of any leaf node (i.e.

legal part set) under V . This means that to compute a lower

bound on the cost of any complete part set represented by

V , i.e. the any of the leaf nodes under V , we need only

to compute C∗(I, V ), which can be done efficiently using

the pictorial structure Θ|V . Thus, one choice for the lower

bound is to take cl(V ) = C∗(I, V ).



Algorithm 1 Best-first branch-and-bound MoPPS tree search

Input: 〈V0, s〉 – Input search space

<o – Ordering relation

cl – Lower bound function

cu – Upper bound function

I – Input image

1: c∗ ←∞ // initialize minimum cost

2: Q← NIL

3: ENQUEUE(Q, V0, <o) // initialize priority queue

with initial search node

4: repeat

5: V ←DEQUEUE(Q) // get best node on queue

6: if s(V ) = ∅ then

7: if C∗(I, V ) < c∗ then // check for minimum cost leaf node

8: c∗ ← C∗(I, V )
9: V ∗ ← V

10: end if

11: if ∀ V ′ in Q, c∗ ≤ cl(V
′) then

12: RETURN V ∗

13: end if

14: else

15: {V ′

1
, . . . , V ′

k} ← s(V ) // expand V
16: for i← 1..k do

17: ENQUEUE(Q, V ′

i , <o)
18: end for

19: PRUNE(Q, cl, cu) // prune dominated nodes in Q
20: end if

21: until forever

This lower bound can be easily improved in cases where

one can find out the minimum number of parts in any

leaf node under V . This is straightforward in the foot-

ball domain since each formation must contain exactly 11

players. In general, suppose that the minimum size leaf

node has k additional parts beyond V , and let C∗v =
minv 6∈V C∗(I, {v}) denote the minimum cost of any picto-

rial structure Θ|{v}, where v is a part that is not in V (note

that each such cost is based only on the corresponding part’s

local match cost). It is straightforward to verify that in this

case cl(V ) = C∗(I, V ) + k C∗v is still a lower bound.

4.3. Upper bound computation

The main idea of our upper bound calculation is to

quickly find a legal set of parts Vu that is a superset of the

current node V and that we expect will have low (though

perhaps not optimal) cost. If we can find such a set of parts,

then we can use C∗(I, Vu) as an upper bound on the cost of

V . The key then is to quickly compute Vu, which we can

do by leveraging the MoPPS tree representation.

In particular, prior to search, we use the global pictorial

structure Θ to compute locations L for the entire set of parts

V . Then, to compute an upper bound on the cost of a node

V during BBS, we select Vu as the minimum cost legal sub-

set of V containing V with the location of each part in Vu

fixed at the one specified in L. That is, we select the Vu

that minimizes C(L[Vu] | I, Vu) such that V ⊆ Vu ⊆ V ,

T (Vu) = true, and where L[Vu] is the set of locations in L
for parts in Vu. We can then use cu(V ) = C(L[Vu] | I, Vu)
as an upper bound on the cost of V . This upper bound may

be tightened at the expense of an extra pictorial structure

optimization by computing cu(V ) = C∗(I, Vu).
The key to this upper bound is the fact that evaluating

C(L[Vu] | I, Vu) for different subsets Vu is many orders of

magnitude faster than computing V ∗, which involves opti-

mization over both locations and part sets. This permits for

the search for the optimal Vu to be done via another branch-

and-bound search or exhaustively, if computationally feasi-

ble. If exact optimization of Vu is still too costly, Vu may

be approximated with a greedy, approximate hill-climbing

search which at every step selects from the parts remaining

in V the minimum cost part that does not make Vu an ille-

gal part set. Such an approximation will typically yield a

useful upper bound, though this will not always be the case.

Ultimately, if a legal part set Vu has a low cost relative to

C(L | I,V) (above) and cl(V ) (below), it is likely that that

Vu is a reasonably good part set.

5. Experiments in American Football

In this section, we demonstrate the capability of the

MoPPS tree model by applying it to the challenging Amer-

ican football formation recognition problem. Our goals in

this domain are to classify the players that constitute the

formation as well as to determine their locations. This is an

interesting problem, considering that all professional and

most major college football teams employ crews of video

scouts who spend many man hours each week using spe-

cialized software to manually label opponent video by for-

mation and other factors to allow for content-based queries

by coaches. Thus, a semi-automated system for this task

would have commercial impact potential. Interestingly, the

imagery we use in our experiments comes directly from the

video used by the Oregon State University football team.

5.1. Domain Description

The dataset on which we tested the MoPPS tree model

contains 25 images of the initial formations of American

football plays.1 Each formation consists of 11 players who

may be one of 16 basic types. The rules of football impose

certain restrictions on formations such as the requirement

that there be at exactly seven players on the line of scrim-

mage (the imaginary line between offense and defense), the

requirement that the rest of the players be at least one yard

behind the line of scrimmage, and the requirement that there

be a quarterback and five down linemen.

The images in our dataset depict several various forma-

tions, but as illustrated in Figure 2 (a) and (b), the differ-

ences between them are sometimes very subtle. However,

because player appearances are very similar in our low-

resolution imagery, these cannot be used as an indicator of

1An expanded version of this labeled dataset is available at

http://eecs.oregonstate.edu/football/formations/dataset/.
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Figure 2: Some formations in American football differ only very subtly. The offen-

sive formations depicted above (the orange and black players, with inferred locations

and types overlaid) are two such ones. These formations differ by three players, but

the differences between their spatial configurations are very slight and may be diffi-

cult even for an untrained human eye to detect. Still, as shown, the MoPPS tree model

correctly locates and classifies all of the players in both images.

player identity. Instead, we must rely on the relative spa-

tial configuration of the players, which is determined by the

particular subset of players that constitutes the formation.

As discussed above, classical pictorial structures can-

not cope with the variation in player types in the class of

American football formations. Intille attempted to solve the

football formation recognition problem [7], but his recog-

nition system had many major shortcomings. For instance,

whereas we attempt to jointly compute the most likely set

of players and their locations, Intille’s system took as input

a set of manually specified player locations and attempted

only to assign player type labels to those locations. To do

this, Intille manually constructed a knowledge base of hard

constraints, such as “near”, “to the left of”, and “bit of ver-

tical space between”, relating player locations—in itself an

enormously time consuming and tedious task. He used this

knowledge base to cast formation labeling as a SAT-like

problem that was solved approximately using a number of

search heuristics. In the end, the results of this system were

poor, largely because of the strong numerical aspects of the

problem, and could not be used in later stages of Intille’s

football understanding system.

5.2. MoPPS Model for Football Formations

For formation recognition, we use a MoPPS tree model

with a total of 34 available parts corresponding to the 16

basic player types as well as several subtypes that capture

different attributes of certain players (such as whether the

quarterback is in shotgun formation or under center). These

parts, subject to a set of hard constraints based on the rules

of football, combine to form over 3200 legal formations.

Each image in our dataset can be automatically regis-

tered to an overhead view of the football field, as depicted in

Figure 1, using the technique described in [5], allowing us

to model the relative locations of players in 2D football field

coordinates. Specifically, the connection parameters δij are

the mean and diagonal covariance of a Gaussian distribution

over each player’s ideal location in field coordinates relative

to a “parent” player in the MoPPS tree. These parameters

were manually set using a small set of training images.

Each player is treated as being identical in appearance,

and the observation model p(I|li, ai) for players is a com-

bination of two models: one, pb(I|li, ai), based on back-

ground segmentation and another, ph(I|li, ai), based on

color histogramming.

To compute pb(I|li, ai), we register a large collection of

football video with the planar overhead field model and, for

each pixel in the model, draw a set of samples uniformly

from the set of all RGB values that register to that pixel.

This sample set is used to compute a kernel density estimate

of the field color distribution for the pixel under the (valid)

assumption that the pixel exhibits it’s true field color for all

but a small fraction of the video frames in which it appears.

This process is repeated for every pixel in the field model.

Player likelihoods for the image I are computed using this

model by projecting I into field model space and computing

the probability of each pixel under its corresponding field

color distribution. Pixels whose probability is below a man-

ually specified threshold are considered foreground pixels,

and all others are considered background pixels. The likeli-

hood pb(I|li, ai) is computed for each pixel in the original

image space as the proportion of foreground pixels within a

player-sized rectangular region anchored to that pixel at the

bottom center (to put high likelihood at players’ feet), and

these likelihood values are projected back into field model

space for compatibility with the structure model.

Because pb(I|li, ai) does not differentiate between play-

ers on opposing teams, we also use an HSV histogram-

based model ph(I|li, ai) to help separate the players on the

team of interest from the players on the other team. To com-

pute ph(I|li, ai), we use the method described by Pérez et

al. in [9]. Specifically, we compute a reference histogram of

HSV player color using a small set of manually segmented

player regions. The likelihood ph(I|li, ai) is computed at

each pixel in the original image space based on the sim-

ilarity between the reference histogram and the histogram

defined by the player-sized rectangular region anchored to

that pixel at the bottom center. These likelihoods are also

projected back into field model space.

Unfortunately, the simple combination of these two

models is imperfect because it can over count evidence.

Some authors attempt to mitigate the effects of overcount-

ing by applying a smoothing factor to the observation like-

lihood [3, 10]. However, we have found that this approach

accentuates false peaks in the observation likelihood that are

due to slight errors during registration with the field model.

Instead, we apply a multiplicative reward term βi to the ob-

servation likelihoods of players whose ideal locations make

over counting the evidence associated with them unlikely.

Thus, the final player likelihood p(I|li, ai) is the product of

pb(I|li, ai), ph(I|li, ai), and βi, and the appearance param-



eters ai for each player are the background color model, the

HSV histogram model, and βi.

5.3. Search strategies considered

In our experiments, we consider two different variants of

best-first BBS. The first of these, referred to below as LB

BBS, uses ordering relation <l and the lower bound func-

tion described in Section 4.2. Because a best-first search

ordered by <l must consider all nodes V with cl(V ) <

C∗(I, V ∗), the first leaf node drawn from the priority queue

in LB BBS necessarily corresponds to V ∗, and no nodes be-

fore V ∗ can be pruned. For this reason, we simply use con-

stant ∞ as an upper bound function for LB BBS to avoid

the cost of a more expensive computation. The second vari-

ant of BBS, referred to below as UB BBS, uses ordering

relation <u and the lower and upper bound functions de-

scribed in Sections 4.2 and 4.3, respectively. For compari-

son, we also consider exhaustive search and greedy, approx-

imate hill-climbing as described at the end of Section 4.3.

5.4. Results

Table 1 summarizes the quantifiable statistics of the

search procedures we consider for MoPPS inference. We

use two different metrics to quantify error in predicted lo-

cation, both of which compare the set of player types V ∗

and associated locations L∗ inferred by the MoPPS model

to a corresponding set of hand-labeled ground-truth player

types and locations. The first metric, ec(V
∗, L∗), computes

the mean pixel distance between the locations of correctly

classified players and the corresponding ground-truth loca-

tions. The second metric, ea(V ∗, L∗), associates ground-

truth locations with incorrectly classified players by find-

ing the minimum matching between the locations of incor-

rectly classified players and ground-truth locations not as-

sociated with correctly classified players and then computes

the mean pixel distance between the locations of all players

and their associated ground-truth locations.

A far more important measure of performance in the

football formation recognition domain is the percentage of

correctly classified players. This is because the huge num-

ber of possible formations precludes naming all of them,

so every football team uses their own language to describe

formations. Player type information, however, can be trans-

lated into any team’s formation language. Thus, the ability

to correctly recognize which players are on the field along

with special attributes of some (e.g. whether the quarterback

is in shotgun formation) is akin to the ability to correctly

recognize entire formations. This information, therefore,

would be used to index plays in a coach’s database.

Because best-first BBS is an optimal search, the location

error rates and player classification rate for LB BBS and

UB BBS are the same as those achieved through exhaus-

tive search. By both measures, MoPPS inference with these

methods is very accurate.

In particular, they achieve a mean location error rate of

4.36 pixels for correctly classified players. Considering that

six pixels in our field model are equal to one yard on the

football field, this error rate is quite good. Moreover, many

of the higher individual errors we observed can be attributed

to the fact that the low resolution of our imagery led the

MoPPS inference method to locate some players at their

waist instead of at their feet.

Even more striking is the 98.55% correct classification

rate these methods achieved, representing a total of four

misclassifications out of a possible 275 players. In each

of of these cases, the misclassified player was placed either

on a false peak in the observation likelihood around one of

the several logos on the field, all of which are composed of

colors identical to the ones in the players uniforms, or on a

second peak in the likelihood generated by a single player.

Of course, both LB BBS and UB BBS considerably out-

perform exhaustive search in terms of running time, with

LB BBS beating UB BBS by about a factor of two. To ob-

tain further insight on the running times of LB BBS and UB

BBS, we measured their anytime behavior, which is plot-

ted in Figure 3. Both search strategies perform similarly in

terms of location error, achieving very low error rates with

one minute of computation and near-optimal rates within

two minutes. However, in terms of the percentage of cor-

rectly classified players, LB BBS consistently outperforms

UB BBS for any given amount of computation time, again

achieving near-optimal results within two minutes. This can

be mostly attributed to the fact that UB BBS must spend ad-

ditional processing time during the upper bound computa-

tion at every node searching for the optimal superset Vu and

tightening the bound via pictorial structure minimization.

Overall, these results are very promising. While it is true

that our dataset of 25 images directly represents only a small

fraction of the over 3200 possible football formations, we

are reassured by the fact that many other formations can be

composed by combining correctly recognized pieces of our

25, suggesting the MoPPS model will likely work well for

these other formations, too. In addition, informal evaluation

on unlabeled images convinces us that the model is robust

outside the test set.

6. Summary and Future Work

In this paper we introduced the mixture-of-parts picto-

rial structure (MoPPS) model for recognizing object classes

whose parts can vary in both location and type. We formu-

lated a restricted but reasonable tree-structured representa-

tion of the MoPPS model and described how practically ef-

ficient inference could be performed on that model to jointly

compute the most likely set of parts and their locations. Fi-

nally, we demonstrated the effectiveness of the model and

inference procedure through experiments in the challenging



Search Running time (min.) Nodes Expanded % Correct ec(V
∗, L∗) ea(V ∗, L∗)

Strategy Mean Min. Max. Mean Min. Max. Class. Mean Std. Max. Mean Std. Max.

LB BBS 4.35 0.48 11.18 392 51 988 98.55 % 4.36 7.00 17.46 5.65 16.09 37.11

UB BBS 9.00 1.44 24.14 412 57 1148 98.55% 4.36 7.00 17.46 5.65 16.09 37.11

UB BBS, 1st Leaf 2.45 1.90 5.23 52 36 110 92.00 % 4.72 7.96 27.20 9.36 23.27 66.07

Greedy 0.57 0.53 0.63 11 11 11 80.72 % 9.14 8.01 47.10 19.33 28.42 167.05

Exhaustive 41.69 41.40 41.92 3264 3264 3264 98.55 % 4.36 7.00 17.46 5.65 16.09 37.11

Table 1: This table summarizes the quantifiable statistics of various search strategies for MoPPS inference over the entire dataset of 25 images. Location error rates are in pixel

units, six of which in our field model are equal to one yard on the football field. The optimal searches, LB BBS, UB BBS and exhaustive search yield excellent results in terms of

both location error and classification rate. However, LB BBS provides a significant speedup over UB BBS, which is naturally much faster than exhaustive search. Halting UB BBS

as soon as it encounters its first leaf node yields good results within a modest time frame, and greedy, approximate hill-climbing search yields reasonable results fairly quickly.
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Figure 3: The plots above depict the anytime behavior of MoPPS inference with LB BBS and UB BBS over the entire dataset of 25 images in terms of (a) the percentage of

correctly classified players and (b) & (c) the mean location error rates. For both strategies, a solution was computed using greedy, approximate hill-climbing search whenever a

complete solution was not found in the alloted time. While both search strategies perform well in terms of location error, LB BBS clearly outperforms UB BBS in terms of the

percentage of players it classifies correctly within a given amount of time. This is notable because classification accuracy the most important measure for our application.

American football formation recognition domain.

We believe the MoPPS model will be generally useful

whenever detailed internal object structure is needed and

not just object existence/location. An important direction

for future work will be to evaluate the merits of this model

in terms of its expressiveness and computational speed on

other recognition domains, such as furniture, for example

chairs, which can be composed of various types of legs,

arms, backs, rockers, etc.; the human figure, along with ac-

cessories such as hats, watches, footwear, etc., of which ex-

ponentially many combinations are possible; specific types

of cars, which can have exponentially many combinations

of different parts like spoilers, rims, etc.; and similarly

for specific types of airplanes. In addition, we believe the

MoPPS paradigm is particularly well suited for coping with

occlusion during general object recognition and localization

and would like to explore its capacity in this regard.

Many other directions for future work exist including ex-

tending MoPPS to richer representations than trees, such as

k-fans [1]; incorporating richer sets of hard or nearly-hard

constraints and logic-based reasoning; developing a part set

prior that incorporates the image data to permit more ef-

ficient inference; and developing proposal distributions for

MCMC sampling methods to allow for probabilistic queries

(e.g. “what is the probability there is a tight end?”). There

are also several opportunities to incorporate learning into

the MoPPS paradigm, which we discuss in detail in [6].

Acknowledgments

We would especially like to thank the coaches and staff

of the Oregon State University football team for providing

us with our video data as well as the reviewers of this paper

for helpful comments and suggestions. We are also grateful

to NSF for financial support under grant IIS-0307592.

References

[1] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Object Recognition by Com-

bining Appearance and Geometry, volume 4170/2006 of LNCS, pages 462–

482. Springer, 2006.

[2] P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled func-

tions. Technical Report TR2004-1963, Cornell Computing and Information

Science, 2004.

[3] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition.

International Journal of Computer Vision, 61(1), 2005.

[4] R. Fergus, P. Perona, and A. Zisserman. A sparse object category for efficient

learning and exhaustive recognition. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, 2005.

[5] R. Hess and A. Fern. Improved video registration using non-distinctive local

image features. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, 2007.

[6] R. Hess and A. Fern. Toward learning mixture-of-parts pictorial structures. In

The ICML 2007 Workshop on Constrained Optimization and Structured Output

Spaces, 2007.

[7] S. Intille. Visual Recognition of Multi-Agent Action. PhD thesis, MIT, 1999.

[8] X. Lan and D. Huttenlocher. Beyond trees: common-factor models for 2D

human pose recovery. In Proc. IEEE Int’l Conf. on Computer Vision, 2005.
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