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Abstract

The task of registering video frames with a static model

is a common problem in many computer vision domains.

The standard approach to registration involves finding point

correspondences between the video and the model and us-

ing those correspondences to numerically determine regis-

tration transforms. Current methods locate video-to-model

point correspondences by assembling a set of reference im-

ages to represent the model and then detecting and match-

ing invariant local image features between the video frames

and the set of reference images. These methods work well

when all video frames can be guaranteed to contain a suf-

ficient number of distinctive visual features. However, as

we demonstrate, these methods are prone to severe misreg-

istration errors in domains where many video frames lack

distinctive image features. To overcome these errors, we in-

troduce a concept of local distinctiveness which allows us

to find model matches for nearly all video features, regard-

less of their distinctiveness on a global scale. We present

results from the American football domain—where many

video frames lack distinctive image features—which show

a drastic improvement in registration accuracy over current

methods. In addition, we introduce a simple, empirical sta-

bility test that allows our method to be fully automated. Fi-

nally, we present a registration dataset from the American

football domain we hope can be used as a benchmarking

tool for registration methods.

1. Introduction

Registering video frames with a static model is a com-

mon problem in many computer vision domains, including

robot localization [13, 7], augmented reality [3, 14], sports

analysis [5, 12], and others [1]. In general, video registra-

tion is required whenever we need to know what part of an

object or scene a video frame depicts or where an object in

that frame is located relative to a fixed coordinate system.

Consider, for example, our motivating problem of com-

puting a high-level description of an American football play

from video. A great deal of information about a particular

play can be ascertained from the trajectories of the players.

However, because the camera rapidly pans and zooms to

follow the play’s action, causing even a physically station-

ary player to appear to be moving as the video progresses,

raw player trajectories in the video are meaningless from an

interpretation standpoint. Prior to any interpretation step,

therefore, player trajectories must be determined within the

static football field coordinate system, where they are much

more meaningful. This can be achieved by registering the

football video with a model of the football field.

The standard approach to the registration problem is to

compute, for each frame in the video sequence, a set of

point correspondences between that frame and the model.

These correspondences are then used to numerically deter-

mine a registration transform that maps the video frame

to the model. The problem of finding such sets of corre-

spondences was investigated specifically within the Amer-

ican football domain by Intille [5], who hypothesized that

since the football field is (approximately) planar, the reg-

istration of football video with a 2-D football field model

can be achieved by computing a planar homography map-

ping the video field surface to the model. A planar homog-

raphy, which maps one plane to another, is a linear trans-

form with eight degrees of freedom and can be computed

from four or more 2D point correspondences [4]. Intille’s

approach to finding these correspondences involved locat-

ing, classifying and tracking line intersections on the field.

Unfortunately, this method lacks generality, since many do-

mains do not have such a precisely structured set of high

level features as the lines on a football field. More impor-

tantly, because of the difficulty inherent in consistently de-

tecting such high-level features, Intille’s method proved to

be unreliable and was abandoned in later work [6] in favor

of tedious manual registration. In a set of informal experi-

ments, we also found Intille’s method to be ineffective, and

we are unaware of any other successful demonstrations of



robust registration of American football video.

Modern approaches to registration have taken advan-

tage of recent breakthroughs in the detection [11] and de-

scription [10] of transform-invariant, local image features

which are designed to facilitate consistent detection and

easy, efficient matching between images. Using local fea-

ture techniques, the registration problem can be solved by

assembling a set of reference images to represent the model

and then detecting and matching local features between the

model images and the video. [3], [13], and [7] are all exam-

ples of this type of approach.

Compared to Intille’s method, local feature-based regis-

tration is attractive because of its generality and the proven

robustness of finding reliable matches between distinctive

local image features. As such, current local feature-based

registration methods work well in domains with an ample

supply of distinctive local features. It is important to note,

though, that most current local feature-based methods rely

solely on the presence of distinctive visual features for reg-

istration. Unfortunately, many domains can produce long

segments of video without enough distinctive local features

to robustly compute registration transforms, though there

may still be many informative but non-distinctive features.

In these domains, as we demonstrate in Section 3, relying

completely on the presence of distinctive visual features for

registration can result in crippling inaccuracy.

Again, the American football domain is a prime example

of one in which total reliance on the presence of distinctive

visual features can prove to be disastrous. There, important,

distinctive visual features can be found at certain locations,

such as within logos and around numbers on the field, but

large regions of the field also exist that contain either no

distinctive visual features at all or only a very small num-

ber of them. Often, video frames from the football domain

depict only these latter regions of the field, making regis-

tration via distinctive feature matching either impossible or

extremely unreliable. However, in video from the football

domain, we can almost always guarantee the presence of

some visual features, though they might be non-distinctive

ones. For example, sets of identical hash marks, depicted

in Figure 1, span the length of the football field, spaced one

every yard. Such non-distinctive features convey a great

deal of information about location on the field, and the abil-

ity to correctly match them to their corresponding model

features would allow for robust computation of registration

transforms. However, because these features are identical

in appearance, they cannot be matched using common dis-

tinctive feature matching techniques.

The main contribution of this paper is to develop a

generic registration approach that can leverage modern in-

variant feature techniques in domains like American foot-

ball, where distinctive image features are often scarce but

non-distinctive features are plentiful. Our method, which

Figure 1. Some domains, such as the American football domain,

shown here, produce images without distinctive visual features

that can be easily matched. However, in these domains, the pres-

ence of non-distinctive visual features, such as the hash marks in

the image above, can almost always be guaranteed.

is discussed in detail in Section 2, takes advantage of such

non-distinctive visual features to register video, even in the

absence of distinctive features. Specifically, we introduce

a concept of local distinctiveness that enables us to find

model matches for nearly all visual features in every video

frame. In addition, we present a simple, empirical stability

test that allows us to find a stable set of distinctive features

with which to initialize the registration process, resulting in

fully automatic registration.

Our approach is most similar in spirit to recent work by

Okuma et al. [12]. Their approach avoids relying on dis-

tinctive features by utilizing generic point correspondences

computed using the Kanade-Lucas-Tomasi tracking equa-

tion [15] along with edge-based model fitting. One major

drawback of this approach is that it requires manual ini-

tialization for every video sequence to be registered. This

can be cumbersome if a large collection of video must be

processed, as is the case in our application domain. While

Okuma et al.’s method is conceptually similar to the method

we propose in this paper, our use of invariant image fea-

tures, in conjunction with our initialization technique, al-

lows for fully automatic operation.

Our empirical evaluation in Section 3, shows that, com-

pared to distinctive feature-based approaches, our method is

very effective in the challenging American football domain.

We also note that a secondary contribution of this work is

to make available our substantial ground truth video dataset,

which we hope can be used as a standard benchmarking tool

for video registration methods.

2. Method

Our method registers a video sequence with a predefined,

static model by finding point correspondences between the

video and the model and using them to compute a registra-

tion transform for each frame. Under our method, video-



to-model point correspondences are found by matching in-

variant image features in the video to a set of features as-

sembled from reference images to represent the model. In

what follows, we describe how invariant image features are

detected in the video and reference images; how the set of

model features is assembled; how distinctive image features

are matched to form video-to-model point correspondences;

how these correspondences are used to compute registration

transforms; and how accurate transforms can be computed,

even in the absence of distinctive image features, by find-

ing matches between non-distinctive image features using a

concept of local distinctiveness.

2.1. Detecting Invariant Image Features

In this work, we use the Harris-affine detector [9] and

SIFT descriptor [8] to detect and describe image features.

Given an image as input, the Harris-affine/SIFT operator

computes a set of feature points, each represented by a set of

parameters describing the affine region surrounding the fea-

ture as well as a 128-dimensional descriptor vector. These

features are invariant in that, in theory, the same ones will

be detected in each of two images of the same object related

by a reasonable degree of affine transformation, including

translation, scale, in-plane rotation, and, to a limited extent,

out-of-plane rotation. In addition, corresponding features in

the two images will have very similar descriptors.

2.2. Assembling a Set of Model Features

There are several possible ways to form the set model

features, denoted below as Π. Our goal is to do so in such

a way that the model coordinates of the features in Π are

known, thereby allowing us to determine the model coordi-

nates of video features via feature matching.

In some domains, where the locations of model features

are only important in relation to each other, Π can be formed

simply and automatically by iteratively registering a set of

reference images to each other [1, 3]. In other domains,

however, the locations of features in Π must be known in

reference to a specific global coordinate frame, such as a

particular view of the model. In the American football do-

main, for example, we want to know the field coordinates

(e.g. bottom hash on the home 35-yard line) of each model

feature so that video frames can be localized on the field and

not just registered to an arbitrary view of it. This is achieved

by registering the set of reference images to a known view

of the field, as depicted in Figure 2.

It is, in general, difficult to automatically register a set

of reference images with specific coordinate frame in a

domain-independent manner. Fortunately, the amount of

manual work required to do so is minimal. For each ref-

erence image in the football domain, for example, we must

specify just one set of four point correspondences to com-

pute a planar homography mapping that image to the de-

Figure 2. A set of reference images from the American football

domain is registered with an overhead view of the field. Register-

ing the set of reference images in this manner allows us to know

the field coordinates of image features in the reference images and

so to localize video frames on the field via feature matching.

sired view of the field, as was done to generate the model

in Figure 2. It is also possible to automatically register the

set of reference images with each other, as when we are not

aligning them with a specific coordinate frame, and thus to

reduce the number of manually specified point correspon-

dences to a single set for all reference images instead of one

set per reference image.

2.3. Matching Image Features

In practice, it is not always the case that two images of

the same object will produce all of the same image features,

nor is it true that two descriptors belonging to matching fea-

tures will be identical. Therefore, it is necessary to have

some way to compute feature matches in which we can

be highly confident. To do so, we make use of the 2NN

heuristic proposed by Lowe in [8]. Given a feature X from

video, we find from the set Π of model features X’s two

nearest neighbors, π1(X) and π2(X), with respect to the

Euclidean distance between descriptor vectors. The 2NN

heuristic considers X and π1(X) to be a distinctive match

if, for a fixed threshold ρ ∈ [0, 1],

‖d(X)− d(π1(X))‖

‖d(X)− d(π2(X))‖
< ρ, (1)

where d(X) is the descriptor vector of feature X and ‖ · ‖
is the Euclidean norm. If (1) is not satisfied, X remains

unmatched, even if X and π1(X) are, in fact, matching fea-

tures. Figure 3 shows the results of matching features from

a frame of football video to part of the model in Figure 2

using the 2NN heuristic.

By choosing ρ appropriately (we use ρ = 0.6), the

2NN heuristic yields a very small number of false positive

matches. An unfortunate side-effect of this heuristic, how-

ever, is that it only finds matches between features whose

descriptors are very different from those of the rest of the set

of potential matching features. We call these features glob-

ally distinctive. The 2NN heuristic is generally incapable



Figure 3. Image features from a video frame in the American football domain are matched using the 2NN heuristic to a portion of the

model shown in Figure 2. There are very few false positive and many true positive ones. Most true positive matches, however are between

distinctive image features, such as the field logo, with few correct matches between non-distinctive ones, such as the hash marks.

of establishing correspondences for features whose correct

match in Π has a descriptor that is similar to many others

in Π. Indeed, this is the case with any heuristic that at-

tempts to minimize false positive matches while using only

local context information for each feature. Unfortunately,

as discussed above, relying solely on correspondences from

globally distinctive features can impair our ability to suc-

cessfully register video from some domains. In Section 2.5,

we discuss a method to overcome this difficulty, but first we

describe briefly how registration transforms are computed

from video-to-model correspondences.

2.4. Computing Registration Transforms from Sets
of Point Correspondences

Having constructed a set of model features and found a

set of correspondences between each video frame and the

model, it is possible to compute a registration transform

for each frame. In the football domain, we can analytically

compute homographies from four or more correspondences

via least squares. Specifically, given a set of n ≥ 4 video-

to-model correspondences
(
(xi

v, yi
v), (xi

m, yi
m)

)n

i=1
, where

the (xi
v, yi

v) are image coordinates in the video frame and

the (xi
m, yi

m) are the corresponding model coordinates, a

least squares planar homography can be computed by form-

ing and solving the following linear system:
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Here, the hij are the entries of the homography matrix. Be-

cause the homography is defined up to a scale factor, we

may choose h33 = 1 [4]. We note that an alternative method

for homography computation is the direct linear transform

(DLT), which can handle the special case where h33 = 0.

See [4] for a complete discussion of this topic.

Unfortunately, both least squares and DLT are very sen-

sitive to outliers in the set of correspondences. In order

to cope with the unavoidable presence of false correspon-

dences, we use RANSAC [2] in conjunction with least

squares to find a consistent set of inlier correspondences

and a corresponding registration transform for each frame.

We refer to the set of inliers as a frame’s “core set”, since

it is comprised of correspondences in whose verity we are

highly confident.

2.5. Using Local Distinctiveness to Find Additional
Correspondences

The approach taken by current registration methods is

to compute registration transforms using the procedure de-

scribed between sections 2.1 and 2.4 (or some slight vari-

ation of it), using only correspondences between globally

distinctive features found with the 2NN heuristic. As dis-

cussed above, and as demonstrated in section 3, this ap-

proach fairs poorly in domains where many frames lack

globally distinctive image features. Our method attempts to

maintain registration through a sequence of these frames by

inducing correspondences between globally non-distinctive

features using a concept of local distinctiveness. Specifi-

cally, we say that a feature X is locally distinctive relative

to a spatial region R in a model or image, if it passes a spa-

tially restricted 2NN test,

‖d(X)− d(πR
1 (X))‖

‖d(X)− d(πR
2

(X))‖
< ρ, (3)

where πR
i (X) is the ith nearest neighbor of feature X

within region R of the model or image. Note that even if

X is not globally distinctive it can be locally distinctive rel-

ative to a particular R. If the region R can be selected so

that it is likely to contain a correct match for X , then a lo-

cally distinctive match is likely to be a correct one.

Matching via local distinctiveness plays two roles in

our registration method. The first is to track image fea-

tures between frames. Because video is sampled at very

high rates—typically around 30 frames per second—the

amount of change between any two consecutive frames is



very small, and a given image feature is likely to move at

most only a few pixels between those frames. We can take

advantage of this fact by searching for a feature’s locally

distinctive match in the next frame relative to a small region

R around the feature’s spatial location in the current frame.

By doing so, we essentially ensure our ability to find a cor-

rect match for that feature. The utility here lies in the fact

that if a feature tracked to the current frame has previously

been matched to the model, then that model match can be

effectively carried over to the current frame. If the current

frame does not have a sufficient set of globally distinctive

matches, then these additional tracked matches, many of

which may not be globally distinctive, can help produce a

stable registration transform.

The second role of matching via local distinctiveness

is to find new model matches for non-distinctive features.

Specifically, if we can assume that we have found a core

set of feature correspondences for the current frame that is

sufficient for computing an accurate registration transform,

we can use that transform to search for a locally distinc-

tive model match for any unmatched feature X relative to a

small region R around X’s predicted model location. This

is useful because it allows us to compute model correspon-

dences for non-globally distinctive features whenever they

appear in a video. These new matches can then be propa-

gated through the video using the above tracking approach.

Our overall registration procedure uses the above two ap-

plications of matching via local distinctiveness as follows.

1. Initialize. Mark all frames as unprocessed and unini-

tialized. Select a frame for which the set of correspon-

dences from globally distinctive features results in the

“most stable” registration transform (see next section)

after applying RANSAC. Initialize the core set of this

frame to be the set of globally distinctive matches, and

mark this frame as initialized.

2. Include Globally Distinctive Features. Select an un-

processed, initialized frame. Add all correspondences

from globally distinctive features in the frame to its

initial core set and use RANSAC on the entire set to

compute a new expanded core set and its associated

registration transform. Note that this step will not af-

fect the core set of the initial frame selected in step 1.

3. Include Unmatched Features. For the selected

frame, compute, as discussed above, a set of corre-

spondences from features that are locally distinctive

relative to the frame’s registration transform. Union

these correspondences with the current core set and

use RANSAC to compute a final core set and the asso-

ciated final registration transform for the frame. Mark

this frame as processed.

4. Model Match Propagation. For each neighboring

frame of the selected frame that has not been pro-

cessed (either 1 or 2 frames), use the approach de-

scribed above to attempt to track each of the features in

the core set to the neighbor, and propagate forward the

model matches of successfully tracked features. Ini-

tialize the neighbor’s core set to the set of correspon-

dences determined by the propagated matches, and

mark the neighbor as initialized.

5. Loop. If unprocessed frames remain, go to step 2.

This approach allows us to maintain a large core set of

video-to-model correspondences and to add new correspon-

dences to that set as new features appear in the video frame.

In this way, as long as there are enough good features—

either globally or locally distinctive—in the video frame

to produce an accurate registration transform, the core set,

once formed, is self-sustaining, since an accurate registra-

tion transform allows us to find model correspondences for

all video features matchable via local distinctiveness.

All that remains then is to determine, in step 1, which

frame to select as the initial frame to process. This should

be a frame for which we are most certain that the set of cor-

respondences from globally distinctive features is sufficient

for computing an accurate registration transform. It is, in

general, dangerous to assume that the first frame of video

will always be such a frame. We therefore make the as-

sumption that at least one such frame exists in the video and

develop a test for finding one of them. This test is presented

in the next section. If the single-good-frame assumption

does not hold, we may revert to manual initialization.

2.6. Stability Test for Core Set Initialization

The stability of a set of correspondences can be com-

puted analytically by forming the least squares system in (2)

and measuring its conditioning using techniques from ex-

isting theory on the conditioning of least squares problems.

This theory, discussed at length in [16], provides bounds on

the error amplification factor that ensues from small pertur-

bances in the input. Unfortunately, we have found that, in

practice, this analytical approach often yields a poor choice

of initial core set. In turn, we have developed an empirical

stability test, which is outlined in Algorithm 1.

In general, sets of correspondences that produce sta-

ble transforms are large and widely distributed spatially.

Sets of low cardinality whose correspondences are not well

distributed, on the other hand, are very sensitive to small

amounts of noise. Figure 5 helps to elucidate the difference

between these two types of sets. Intuitively, our stability test

identifies those sets of correspondences that are the most in-

vulnerable to small amounts of noise.

The value S in Algorithm 1 represents a measure of how

drastically predicted model locations change with slight

perturbations in the input set of correspondences. Sets that

result in very low values of S are least sensitive to mea-

surement noise and produce the most stable transforms. We



Algorithm 1 Stability Test for Core Set Initialization

C: Potential initial core set

K: User defined number of iterations

S: Output stability

1: T← Registration transform from C

2: L← Set of randomly sampled image locations

3: LT ←Model coordinates of L via T

4: S← 0
5: for i← 1..K do

6: Ĉ← C perturbed with N (0, ǫ) noise

7: T̂← Registration transform from Ĉ

8: LbT
←Model coordinates of L via T̂

9: S← S + ERROR(LbT
,LT)

10: end for

initialize the registration process using the frame whose set

of correspondences from globally distinctive features yields

the lowest value of S.

3. Experiments

Our method was tested on a set of 25 video sequences

from the American football domain1, each between 280 and

500 frames in length. Sequences were selected from two

different games to cover as much of the field surface as pos-

sible. Most of the sequences contain a significant number

of frames without distinctive field features. However, al-

most all frames contain some field features, such as the hash

marks depicted in Figure 1, for which a model match exists.

Every tenth frame of every video has an associated set of

hand-labeled ground truth video-to-model point correspon-

dences. There are between 300 and 700 such hand-labeled

correspondences for each video, for a total of about 12,000.

Our model was constructed from a set of 23 reference

images as described in section 2.2 and as depicted in Figure

2. Reference images were selected from video not included

in the dataset unless achieving total field cover in the refer-

ence set required us to select a frame from the dataset.

For comparison, we tested two other methods using the

same dataset and model. The first, which we call naı̈ve

registration (NR), uses only correspondences between glob-

ally distinctive features found using the 2NN heuristic. The

second, registration with uninitialized matching via local

distinctiveness (RUMLD), uses matching via local distinc-

tiveness as described in Section 2.5 but always initializes

the core set using the first frame instead of using the ini-

tialization technique described in Section 2.6. Our com-

plete method is referred to below as registration with initial-

ized matching via local distinctiveness (RIMLD). All three

1Our registration dataset is publicly available online at

http://eecs.oregonstate.edu/football/registration/dataset.

(a) S = 1.12× 10
2 (b) S = 1.60× 10

7

Figure 5. The large and widely distributed set of correspondences

in (a) yields an acceptable registration transform, but the small,

isolated set in (b) yields one that is worthless. The quality of each

set as a core set initializer is reflected by the value S returned by

the stability test outlined in Algorithm 1.

methods include a sanity check that reverts to the last good

registration transform if the current frame’s transform be-

comes grossly unacceptable.

Figure 4 illustrates some registration results from NR

and RIMLD that are representative for the American foot-

ball domain. As is typically the case, both methods are ac-

curate at the beginning of the video, where there is gener-

ally a large set of globally distinctive image features in the

frame. However, as the video progresses, the set of corre-

spondences used by NR to compute registration transforms

gradually dwindles to the point of instability. At this point

transforms computed by NR fail the sanity check, and NR

reverts to the last known good transform, resulting in reg-

istration error that snowballs as the video proceeds to the

end. RIMLD, on the other hand, maintains a large, stable

set of correspondences throughout the length of the video,

and registration is accurate to the end.

Registration accuracy for all three methods was quanti-

fied by computing the mean registration error for every tenth

frame of every video in the dataset using the set of hand-

labeled ground truth correspondences described above. Re-

sults were normalized to equal length by partitioning them

into twenty quantums, and both the mean and maximum er-

rors were computed for each quantum.

Interestingly, the results for RIMLD and RUMLD dif-

fer significantly on only a single video sequence. For this

video, as might be expected, RUMLD’s error rate is quite

high at the beginning of the video, but it quickly reduces to

nearly equal that of RIMLD after the core set has been ex-

panded through a combination of locally and globally dis-

tinctive features. The similar performance of RIMLD and

RUMLD can be explained by the fact that, with this one

exception, the first frame of every video sequence in the

dataset contains a large portion of one or more of the field

logos or the end zones, where there are many distinctive fea-

tures. Accordingly, these frames produce a stable enough



Frame 1 Frame 150 Frame 250 Frame 300 Frame 325 Frame 407

232 Correspondences 50 Correspondences 31 Correspondences 15 Correspondences 10 Correspondences 2 Correspondences

(a) Registration with NR

Frame 1 Frame 150 Frame 250 Frame 300 Frame 325 Frame 407

525 Correspondences 480 Correspondences 390 Correspondences 333 Correspondences 210 Correspondences 125 Correspondences

(b) Registration with RIMLD

Figure 4. The sequences above illustrate typical registration results on a 407 frame video from the American football domain. For this

video, NR maintains accuracy as long as the frame contains a stable set of correspondences from globally distinctive features. As early

as frame 250, this set loses stability, and registration becomes slightly inaccurate. By frame 325, the set of correspondences, down to 10

and concentrated within a small region of the image, yields a transform that fails the sanity check, and registration reverts to the last good

transform. On the same video, RIMLD maintains a stable set of at least 100 video-to-model correspondences throughout the run, and

registration is accurate until the end of the video.

set of correspondences with which to initialize registration.

The results for RIMLD and NR, however, do differ sig-

nificantly on nearly all videos in the dataset. The error for

these two methods over the entire dataset is summarized in

Figure 6. To put these error rates into perspective, we note

that six pixels in our model are equal to one yard on the

football field. This means that, even during important parts

of the football play, NR’s average error rate approaches 10

yards—quite significant if these results are to be used in an

interpretation system—while RIMLD maintains an average

error of around one half yard.

The reason RIMLD is so much more accurate than NR

is because RIMLD is able to maintain a model match for

nearly every visual feature in the video frame for which a

model match exists. Even at the end of a video sequence,

the core set often contains on the order of one hundred or

more well distributed correspondences. By comparison, the

set of correspondences determined by NR often shrinks to

between 25 and 50, or even less, as early as halfway through

the video, dwindling soon afterwards to ten or less. If such

a small set of correspondences is not widely distributed, a

small amount of error in either the video or model coordi-

nates of the image features can become dramatically exag-

gerated in the resulting registration transform.

Besides raw registration error, another important gauge

of registration quality is “smoothness.” Because the appear-

ance of a physical feature changes slightly in the video as

time progresses, its feature descriptor changes also, and cor-

respondences with a 2NN heuristic value near the thresh-

old ρ may step back and forth over that threshold between

frames. As the composition of the set of correspondences

from globally distinctive features changes thus from frame

to frame, registration with NR is prone to jitter. Because of

the nature of the matching process in RIMLD, on the other

hand, the composition of the core set of correspondences

changes only slightly as the video moves from frame to

frame, and registration with RIMLD is thus much smoother.

Of course, RIMLD is not perfect. As can be seen in Fig-

ure 6, RIMLD’s error rate does also increase slightly to-

wards the end of the video, reaching a maximum of around

30 pixels, or 5 yards in our model. The explanation for

this slight increase is that, many times, in the last frames

of the video sequence, the camera is zoomed so far in that

there simply are not enough features in the frame, globally

distinctive or otherwise, to robustly compute a registration

transform from feature correspondences. This is an issue

future registration methods—especially those that use only

local image features—may need to address. However, in
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Figure 6. The above two plots depict (a) the mean and (b) the maximum registration error per frame quantum for RIMLD and NR over the

entire dataset of 25 video sequences. The error bars in (a) indicate one standard deviation. By both measures, RIMLD is remarkably more

accurate than NR, especially later in the video, when many frames contain few or no globally distinctive features. Note that six pixels in

our model are equal to one yard on the football field.

American football video, the important action in the play

is usually over by the time RIMLD begins to show signs of

inaccuracy, so we do not concern ourselves with this matter.

4. Conclusions

In this paper, we introduced a method for video registra-

tion that uses invariant local image features in conjunction

with a matching technique based on a concept of local dis-

tinctiveness that finds video-to-model correspondences be-

tween non-distinctive features. In addition, we presented

a simple empirical stability test that provides a means by

which our registration method can be fully automated un-

der the assumption that at least one frame in the video—

not necessarily the first—contains a stable set of correspon-

dences from globally distinctive features. Our technique

was shown to yield significantly more accurate registration

results in the challenging American football domain than

methods that rely only on the presence of globally distinc-

tive features for registration. Finally, we offered our signifi-

cant ground truth video dataset to the community for use as

a benchmarking tool for video registration methods.
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