Speedup Learning

Alan Fern
School of Electrical Engineering and Computer Science
Oregon State University

July 2, 2009

Definition

Speedup learning is a branch of machine learning that studies learning mech-
anisms for speeding up problem solvers based on problem solving experience.
The input to a speedup learner typically consists of observations of prior
problem-solving experience, which may include traces of the problem solver’s
operations and/or solutions to solved problems. The output is knowledge
that the problem solver can exploit to find solutions more quickly than be-
fore learning without seriously effecting solution quality. The most distinctive
feature of speedup learning, compared to most branches of machine learn-
ing, is that the learned knowledge does not provide the problem solver with
the ability to solve new problem instances. Rather, the learned knowledge
is intended solely to facilitate faster solution times compared to the solver
without the knowledge.

Motivation and Background

Much of the work in computer science and especially artificial intelligence
aims at developing practically efficient problem solvers for combinatorially
hard problem classes such as automated planning, logical and probabilistic
reasoning, game playing, constraint satisfaction, and combinatorial optimiza-
tion. While it is often straightforward to develop optimal problem solvers
for these problems using brute-force, exponential-time search procedures, it
is generally much more difficult to develop solvers that are efficient across



a wide range of problem instances. The main motivation behind speedup
learning is to create adaptive problem solvers that can learn patterns from
problem solving experience that can be exploited for efficiency gains. Such
adaptive solvers have the potential to significantly outperform traditional
static solvers by specializing their behavior to the characteristics of a single
problem instance or to an entire class of related problem instances. The ex-
act form of knowledge and learning mechanism is tightly tied to the problem
class and the problem-solver architecture.

Most branches of machine learning, such as supervised classification, aim
to learn fundamentally new problem solving capabilities that are not eas-
ily programmed by hand even when ignoring efficiency issues—for example,
learning to recognize hand-written digits. Speedup learning is distinct in
that it is typically applied in situations where hand-coding an optimal, but
inefficient, problem solver is straightforward—for example, solving satisfia-
bility problems. Rather, learning is aimed exclusively at finding solutions in
a more practical time frame.

Work in speedup learning grew out of various subfields of artificial in-
telligence and more generally computer science. An early example, from
automated planning involved learning knowledge for speeding up the orig-
inal STRIPS planner [3] via the learning of triangle tables or macros that
could later be exploited by the problem solver. Throughout the 80’s and
early 90’s there was a great deal of additional work on speedup learning in
the area of automated planning as overviewed in [9, 16].

Another major source of speedup learning research has originated from
the areas of Al search and constraint satisfaction. Many of the intelligent backtracking
mechanisms from these areas, which are critical to performance, can be
viewed as speedup learning techniques [5], where knowledge is learned, while
solving a problem instance, that better informs later search decisions. Such
methods have also come out of the area of logic programming [7] where search
efficiency plays a central role.

In addition, various branches of Al have developed speedup-learning ap-
proaches based on learning improved heuristic evaluation functions. Samuel’s
checker player [11] was one such early example, where learned evaluation
functions allowed for the performance of deep game tree search to be ap-
proximated by shallower, less expensive, search.




Speedup <

\ 4

Learner
K
) 2
problem solver learned
traces knowledge
A
2
problem .| Problem Solver 5
generator problem solution
instance

Figure 1: Schematic diagram of a speedup learning system. The problem
solver receives problem instances from a problem generator and produces so-
lutions. The speedup learner can observe the input problem instances, traces
of the problem solver while solving the problem instances, and sometimes also
the solutions to previously solved problem instances. The speedup learner
outputs knowledge that can be used by the problem solver to speedup its so-
lution time either on the current problem instance (intra-problem speedup)
and/or future related instances (inter-problem speedup).

Structure of Learning System

Figure 1 shows a generic diagram of a speedup learning system. The main
components are the problem solver and the speedup learner. The role of the
problem solver is to receive problem instances from a problem generator and
to produce solutions for those instances. Example problem solvers might
include constraint-satisfaction engines, automated planners, or A* search.
The role of the speedup learner is to produce knowledge that the problem
solver can use to improve its solution time. The input to the speedup learner,
which is analyzed in order to produce the knowledge, can include one or more



of the following data sources: 1) the input problem instances, 2) traces of the
problem solver’s decisions while solving the input problems, and 3) solutions
to solved problems.

Clearly there is a large space of possible speedup learning systems that
result from different problem solvers, forms of learned knowledge, learning
methods, and intended mode of applicability. Below we first describe some
of the main dimensions along which speedup learning approaches can be
characterized. Next we provide examples of typical learners that span this
space, noting that the examples are far from an exhaustive list.

Dimensions of Speedup Learning

Intra-Problem versus Inter-Problem Speedup. Intra-problem speedup
learning is when knowledge is learned during the solution of the current
problem instance and is only applicable to speeding up the solution of the
current instance. After a solution is found, the knowledge is discarded as it
is not applicable to future instances. Inter-problem speedup learning is when
the learned knowledge is applicable not only to the problem(s) it was learned
on but also to new problems encountered in the future. In this sense, the
learned knowledge can be viewed as generalize knowledge about how to find
solutions more quickly for an entire class of problems.

Typically in inter-problem learning, the problem generator produces in-
stances that are related in some way and hence share common structure that
can be learned from earlier instances and exploited when solving later in-
stances. Rather intra-problem speedup learners treat each problem instance
as completely distinct from all others. Also note that inter-problem learners
have the potential to benefit from the analysis of solutions to previous prob-
lems instances. Rather, intra-problem learners are unable to use this source
of information since once the current problem is solved, no further learning
is warranted.

Types of Learned Knowledge. Most problem solvers can be viewed
as search procedures, which is the view that we will take when characteriz-
ing the various forms of learned knowledge in speedup learning. Below we
list four types of commonly used knowledge, noting that this is far from an
exhaustive list. First, pruning constraints are sets of constraints on search
nodes that signal when a certain branch of the search space can be safely
pruned. Second, macros operators are sequences of search operators that are
typically useful when executed in order. Problem solvers can often utilize

4



macros in order to decrease the effective solution depth of the search space
by treating macros as additional search operators. It is important that the
decrease in effective depth is enough to compensate for the increase in num-
ber of operators, which increases the search complexity. Third, search-control
rules are sets of rules that typically test the current problem solving state
and suggest problem-solving actions such as rejecting, selecting, or prefer-
ring a particular search operator. In the extreme case, learned search control
rules can completely remove the need for search. Fourth, heuristic evalua-
tion functions are used to measure the quality of a particular search node.
Learning improved heuristics can result in better directed search behavior.

Deductive versus Inductive Learning. Deductive learning refers to a
learning process for which the learned knowledge can be deductively proven
to be correct. For example, in the case of learned pruning constraints, a
deductive learning mechanism would provide a guarantee that the pruning
was sound in the sense that the optimality of the problem solver would be
unaffected. Inductive learning mechanisms rather are statistical in nature
and typically do not produce knowledge with associated deductive guaran-
tees. Rather, inductive methods focus on finding statistical regularities that
are typically useful, though perhaps not correct in all cases. For example,
an inductive learner may discover patterns that are strongly correlated to
pruning opportunities, though these patterns may have a small probability
of leading to unsound pruning.

In cases where one must guarantee a sound and complete problem solver,
deductive learning approaches are always applicable, though their utility de-
pends on the particular application. In certain cases, inductively learned
knowledge can also be utilized in a way that does not effect the correctness
of the problem solver. For example, inductively learned search-control rules
that assert preferences, rather than prune nodes from the search, do not
lead to incompleteness. Traditionally, the primary disadvantage of deductive
learning, compared to inductive learning, is that inductive methods typically
produce knowledge that generalizes to a wider range of situations than de-
ductive methods. In addition, deductive learning methods are often more
costly in terms of learning time as they rely on expensive deductive reason-
ing mechanisms. Naturally, a number of speedup learning systems exist that
utilize a combination of inductive and deductive learning techniques.




Examples of Intra-Problem Speedup Learning

Much of the speedup learning work arising from research in Al search and
constraint satisfaction falls into the intra-problem paradigm. The most com-
mon forms of learning are deductive and are based on computing explanations
of “search failures” that occur during the solution of a particular problem.
Here a search failure typically corresponds to a point where the problem
solver must backtrack. By computing and forming such failure explanations
the problem solver is typically able to avoid similar types of failures in the
future by detecting that a search path will lead to failure without fully ex-
ploring that path. Nogood learning is a very successful, and commonly used,
example of the general failure-explanation approach [13]. Nogoods are com-
binations of variable values that lead to search failures. By computing and
recording nogoods, it is possible to immediately prune search states that
consider those value combinations. There are many variations of nogood
learning, with different techniques utilizing different approaches to analyzing
search failures in order to extract general nogoods.

Another example of the failure-explanation approach, which is commonly
utilized in satisfiability solvers, is clause learning. The idea is similar to
nogood learning. When a failure occurs during systematic search, a proof
of the failure is constructed and analyzed to extract implied constraints, or
clauses, that the solution must satisfy. These learned clauses are then added
to the set of clauses of the original satisfiability problem and in later search
trigger early pruning when they, or their consequences, are violated. Efficient
implementations of this idea have lead to huge gains in satisfiability solvers.
In addition, it has been shown theoretically that clause learning can improve
solution times by an exponential factor [1].

Inductive techniques for learning heuristic evaluation functions have also
been investigated in the intra-problem speedup paradigm. Here we discuss
just two such approaches, where in both cases the key idea is to observe
the problem solver and extract training examples that can be used to learn
an accurate evaluation function. A particularly successful example of this
approach is the STAGE system [2] for solving combinatorial optimization
problems such as traveling salesman and circuit layout. The problem solv-
ing architecture used by STAGE is based on repeated random restarts of a
fast hill-climbing local optimizer, which when given an initial configuration
of the combinatorial object, performs a greedy search to a local minimum
configuration. The speedup learning mechanism for STAGE is to learn an




approximate function that maps initial configurations to the performance of
the local optimizer when started at that configuration. Note that on each
restart of the problem solver the learning component gets a training exam-
ple that can be used to improve the function. The problem solver uses the
learned function in order to select promising configurations from which to
restart, rather than choosing randomly. In particular, STAGE attempts to
restart from a configuration that optimizes the learned function, which is the
predicted best starting point for the hill-climber. This overall approach has
shown impressive performance gains in a number of combinatorial optimiza-
tion domains.

As a second example of inductive learning of heuristics in the intra-
problem paradigm, there has been work within the more traditional problem
solving paradigm of best-first search [12]. Here the speedup learner observes
the sequence of search nodes traversed by the problem solver. For any pair
of nodes observed to be on the same search path the learner creates a train-
ing example in an attempt to train a heuristic to better predict the distance
between those two nodes. Ideally this updated heuristic function will better
reflect the distance from nodes in the search queue to the goal node of the
current problem instance and hence result in improved search performance.

Examples of Inter-Problem Speedup Learning

Much of the work on inter-problem speedup learning came out of Al planning
research, where researchers have long studied learning approaches for speed-
ing up planners. We focus on speedup in planning here, noting that similar
ideas have also been pursued in other research areas such as constraint sat-
isfaction. For a collection and survey of work on speedup in planning see [9]
and [16]. Typically in this work, one is interested in learning knowledge for
an entire planning domain, which is a collection of problems that share the
same set, of actions. The Blocksworld is a classic example of such a planning
domain. After experiencing and solving a number of problems from a tar-
get domain, such as the Blocksworld, the learned knowledge is then used to
speed up performance on new problems from the same domain.

There have been a number of deductive learning approaches to speedup
learning in planning, which are traditionally cited as explanation-based learning
(EBL) approaches [10]. EBL for Al planning is strongly related to the failure-
explanation approaches developed for CSPs as characterized nicely by [5].
There are two main differences between the inter-problem EBL work in plan-




ning and the intra-problem EBL approaches for CSPs. First, EBL approaches
in planning produce more general explanations that are applicable not only
in the problem in which they were learned, but also new problems. This is
often made possible by introducing variables in the place of specific objects
into the explanations derived from a particular problem. This allows the ex-
planations to apply to contexts in new problems that share similar structure
but involve different objects. The second difference is that inter-problem
EBL approaches in planning often produce explanations of successes and not
just of failures. These positive explanations are not possible in the context
of intra-problem speedup since the intra-problem learner is only interested
in solving a single problem.

Despite the relatively large effort invested in inter-problem EBL research,
the best approaches typically did not consistently lead to significant gains,
and even hurt performance in many cases. A primary way that EBL can
hurt performance is by learning too many explanations, which results in the
problem solver spending too much time simply evaluating the explanations
at the cost of reducing the number of search nodes considered. This problem
is commonly referred to as the EBL utility problem [8] as it is difficult to
determine which explanations have high enough utility to be worth keeping.

In addition to EBL, there has also been work on inductive mechanisms for
acquiring search-control rules to speedup Al planners. Typically, statistical
learning mechanisms are used to find common patterns that can distinguish
between good and bad search decisions. As one example, Huang et. al. learn
action-rejection and selection rules based on the solutions to planning prob-
lems from a common domain [4]. The learned rules were then added as con-
straints to the constraint satisfaction engine, which served to guide the solver
to solution plans more quickly. Another approach, which has been studied
at a theoretical and empirical level, is to learn heuristic functions to guide a
bounded search process [15], in particular, bread-first beam search. Results
in a number of planning domains demonstrate significant improvements over
planners that do not incorporate a learning component. One other class of
approach is based on attempting to learn knowledge that removes the need
for a problem solver altogether. In particular, to learn a reactive policy for
quickly selecting actions in any given state of the environment. Such policies
can be learned via statistical techniques by simply trying to learn an efficient
function that maps planning states to the actions selected by the planner.
Despite its simplicity, this approach has demonstrated considerable success
(6] and has also been characterized at a theoretical level [14].

8



Additional Definitions

Title: Supervised Classification

Synonyms: Classifier Learning

Definition: Supervised classification is an important class of machine learn-
ing problems where the goal is to learn a function that maps inputs to one of
a finite set of class labels. The input to the learner is a supervised training
set containing example inputs with the correct class labels. The output is a
function that can be used to classify new examples.

Title: Intelligent Backtracking

Synonyms: Dependency Directed Backtracking

Definition: Intelligent backtracking is a general class of techniques used to
enhance search and constraint satisfaction algorithms. Backtracking is a gen-
eral mechanism in search where a problem solver encounters an unsolvable
search state and backtracks to a previous search state that might be solv-
able. Intelligent backtracking mechanisms provide various ways of selecting
the backtracking point based on past experience in a way that is likely to be
fruitful.

Title: Deductive Learning

Synonyms: Analytical Learning

Definition: Deductive learning is a subclass of machine learning that studies
algorithms for learning provably correct knowledge. Typically such methods
are used to speedup problem solvers by adding knowledge to them that is
deductively entailed by existing knowledge, but that may result in faster so-
lutions.

Title: Inductive Learning

Synonyms: Statistical Learning

Definition: Inductive learning is a subclass of machine learning that stud-
ies algorithms for learning knowledge based on statistical regularities. The
learned knowledge typically has no deductive guarantees of correctness, though
there may be statistical forms of guarantees.



Title: Nogood Learning

Synonyms:

Definition: Nogood learning is a deductive learning technique used for the
purpose of intelligent backtracking in constraint satisfaction. The approach
analyzes failures at backtracking points and derives sets of variable bindings,
or nogoods, that will never lead to a solution. These nogood constraints can
then be used to prune later search nodes.

Title: Clause Learning

Synonyms:

Definition: Clause learning is a deductive learning technique used for the
purpose of intelligent backtracking in satisfiability solvers. The approach
analyzes failures at backtracking points and derives clauses that must be
satisfied by the solution. The clauses are added to the set of clauses from
the original satisfiability problem and serve to prune new search nodes that
violate them.

References

[1] P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelli-
gence Research, 22:319-351, 2004.

[2] J. A. Boyan and A. W. Moore. Learning evaluation functions for global
optimization and boolean satisfiability. In National Conference on Ar-
tificial Intelligence, pages 3—10, 1998.

[3] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence, 3(1-3):251-288, 1972.

[4] Y.-C. Huang, B. Selman, and H. Kautz. Learning declarative control
rules for constraint-based planning. In International Conference on Ma-
chine Learning, pages 415-422, 2000.

10



[5]

[10]

[11]

[12]

[13]

[14]

[15]

S. Kambhampati. On the relations between intelligent backtracking and
failure-driven explanation-based learning in constraint satisfaction and
planning. Artificial Intelligence, 105(1-2):161-208, 1998.

R. Khardon. Learning action strategies for planning domains. Artificial
Intelligence, 113(1-2):125-148, 1999.

V. Kumar and Y. Lin. A data-dependency based intelligent backtracking
scheme for prolog. The Journal of Logic Programming, 5(2):165-181,
1988.

S. Minton. Quantitative results concerning the utility of explanation-
based learning. In National Conference on Artificial Intelligence, 1988.

S. Minton, editor. Machine Learning Methods for Planning. Morgan
Kaufmann, 1993.

S. Minton, J. Carbonell, C. A. Knoblock, D. R. Kuokka, O. Etzioni,
and Y. Gil. Explanation-based learning: A problem solving perspective.
Artificial Intelligence, 40:63-118, 1989.

A. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):211-229, 1959.

S. Sarkar, P. Chakrabarti, and S. Ghose. Learning while solving prob-
lems in best first search. IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans, 28(4), 1998.

T. Schiex and G. Verfaillie. Nogood recording for static and dynamic
constraint satisfaction problems. International Journal on Artificial In-
telligence Tools, 3(2):187-207, 1994.

P. Tadepalli and B. Natarajan. A formal framework for speedup learning
from problems and solutions. Journal of Artificial Intelligence Research,
4:445-475, 1996.

Y. Xu and A. Fern. Learning linear ranking functions for beam search
with application to planning. Journal of Machine Learning Research,
10:1349-1388, 20009.

11



[16] T. Zimmerman and S. Kambhampati. Learning-assisted automated
planning: Looking back, taking stock, going forward. Al Magazine,
24(2)(2):73-96, 2003.

12



